

Multicast Gateway for Service Location in
Heterogeneous Ad Hoc Communication

Qi He, Dan Muntz
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-233
August 19th , 2002*

E-mail: qhe@cc.gatech.edu, dmuntz@mail.com

service location,
service
discovery,
multicast, ad hoc
network,
appliance
aggregation

Service discovery is essential to enable users to effectively search
for dynamically available services. Multicast is used extensively by
many service discovery protocols, but it is particularly expensive in
ad hoc networks. It is also often difficult to interface different
multicast protocols used in different types of networks. In this
work, we design a service discovery protocol for heterogeneous ad
hoc communications that combines the solutions to these two
issues. At the center of the protocol are: 1) clustering of devices
according to the physical communication media each device
supports; 2) gateways that connect physical clusters and at the same
time perform scoping, tunneling and informed forwarding of
multicast service discovery traffic. The protocol demonstrates the
use of scoping and tunneling to improve multicast performance at
the session layer and for heterogeneous ad hoc networks. The use of
physical communication-based clustering at the service location
protocol is an example of cross- layer optimization. Experiments
with our Linux implementation of the protocol demonstrate the
effectiveness of the protocol to improve the latency of service
discovery and reduce bandwidth consumption.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Comp any 2002

Multicast Gateway for Service Location in Heterogeneous Ad Hoc
Communication

Qi He, Dan Muntz
qhe@cc.gatech.edu, dmuntz@mail.com

Abstract

Service discovery is essential to enable users to
effectively search for dynamically available services.
Multicast is used extensively by many service discovery
protocols, but it is particularly expensive in ad hoc
networks. It is also often difficult to interface different
multicast protocols used in different types of networks.
In this work, we design a service discovery protocol for
heterogeneous ad hoc communications that combines the
solutions to these two issues. At the center of the protocol
are: 1) clustering of devices according to the physical
communication media each device supports; 2) gateways
that connect physical clusters and at the same time perform
scoping, tunneling and informed forwarding of multicast
service discovery traffic. The protocol demonstrates the use
of scoping and tunneling to improve multicast performance
at the session layer and for heterogeneous ad hoc networks.
The use of physical communication-based clustering at
the service location protocol is an example of cross-layer
optimization. Experiments with our Linux implementation
of the protocol demonstrate the effectiveness of the protocol
to improve the latency of service discovery and reduce
bandwidth consumption.

Keywords: service location, service discovery, multicast,
ad hoc network, appliance aggregation

1 Introduction

With the increasing usage of network-enabled mobile
devices, we are more likely to be in a changing and
unfamiliar environment. This, along with the increasing
number of services available in the network, makes
it essential to discover services dynamically. Many
service discovery protocols, such as the IETF Service
Location Protocol (SLP[2]) and Bluetooth SDP[7], use
multicast extensively. Although most of these protocols
have considerations for lower-layer protocol cost, service
discovery has been primarily investigated as a session
layer issue, independently of lower-layer protocols. For

heterogeneous ad hoc communication, one of the enabling
technolgies for mobile computing, there are two specific
issues that are not well addressed by these protocols:

• multicast routing between different physical
communication media is often not available due
to the difficulties involved in interfacing different
multicast protocols used by each communication
media

• ad hoc multicast is particularly expensive

Ad hoc multicast routing is expensive in bandwidth and
power since flooding is usually involved for every packet
forwarding, as we will describe in section 2.3. People have
thus considered some form of node clustering indispensible
for ad hoc multicast routing[4]. Many research efforts[4, 3]
on multicast routing protocol for a specific type of ad hoc
network have focused on an efficient dynamic clustering
algorithm. Scoping of flooded multicast traffic could also
be helpful. However, unlike the Internet, where multicast
group membership and forwarding state can be aggregated
based on networks/sub-networks and thus the scope of
multicast traffic determined, an ad hoc network has a flat
routing structure and consists of devices with unconstrained
mobility, which makes it difficult to scope flooded multicast
traffic.

In this work, we are interested in reducing multicast
cost of a service discovery protocol through scoping and
tunneling at a higher protocol layer. In particular, we
observe that for the heterogenous ad hoc networking context
we are targeting, there is a relatively stable grouping
where devices are clustered according to the physical
communication medium each device uses. Devices of two
different clusters can communicate with each other only via
one or more gateway devices that span clusters (supporting
multiple physical communication media). We propose
to exploit this clustering to improve the performance of
service discovery in ad hoc networks. The basic idea
is to scope service discovery traffic to local physical
clusters, or to unicast tunnel service discovery traffic to
destination clusters, both according to a small amount of

state maintained on gateways. Since the clusters connected
by a gateway may use incompatible multicast routing
protocols, a gateway also serves to connect the two clusters
for the service discovery protocol.

To that end, we first need to devise a way for the
service discovery protocol to use the clustered topology.
We have each gateway device join the service discovery
multicast group of adjacent clusters so that forwarding
between clusters can be performed. Secondly, we need to
consider how we can benefit from using clustering in the
resource discovery protocol. Our approach is for gateway
devices to maintain a small amount of information about
the service types available in each cluster in the whole
network. With this information, 1) certain service discovery
queries can be satisfied by local gateways; 2) other queries
can be tunnelled directly to relevant clusters rather than be
multicast throughout the whole network.

The rest of the paper is organized as follows. Section
2 details the application and networking context we are
targeting and discusses the performance implications of a
service discovery protocol that uses multicast extensively.
Section 3 gives an overview of the proposed service
discovery protocol. Section 4 describes the details of the
protocol. Sections 5 and 6 present the implementation
and simulation-based evaluation. Section 7 discusses some
future work. The paper is concluded in section 8.

2. Overview of the Problem

2.1. Networking and Application Context

Our proposed service discovery protocol are designed
for network environments that have the following
characteristics:

• devices use different communication media, wired or
wireless, such as 802.11, Bluetooth, IrDA

• network infrastructure or servers are not assumed to
exist

• devices peer with each other in an ad hoc way, i.e.,
there is no prior knowledge of the services available
on each other, or server support to lookup each other

• the range of communication is relatively small,
such that devices using the same physical ad hoc
communication medium can reach each other through
multi-hop routing, i.e., they are in the same cluster

• devices have different resource availability, and many
are expected to be resource constrained

With the fourth characteristic above, we constrain our
current work to situations where devices that have the same

physical communication medium form only one multi-hop
cluster. Although the ideas in our work apply to situations
where this condition does not hold, we need to address
additional problems in those cases, such as device mobility
betweeen two clusters of the same communication medium.

Applications running within such a context are becoming
more and more pervasive. Some examples include mobile
device users who participate in an interactive lecture or
conference, personnel coordinating in a disaster relief
effort, and soldiers sharing information on the battlefield[9].
In particular, we identify appliance aggregation as a
promising application, which has become a topic of
interest recently. Through sharing of resources, appliance
aggregation can both make individual devices more usable
and enable many distributed applications among the
devices. Appliances come with different networking
technologies. While there have been lots of research
efforts in ad hoc routing for each wireless communication
medium, cross media communication has received much
less attention. It is one of our goals in this paper to show
how cross media communication could be considered along
with higher layer protocols.

2.2. Service Discovery and Location

Service discovery and location protocols are designed
to simplify or eliminate the configuration needs for users
to access the services available in the network. Through a
service discovery protocol, a client can:

• browse for available services

• search for (specific) services

. They have been studied for different networking and
application contexts, in particular, for Internet/WWW and
for mobile/ad hoc users. In the latter category, existing work
can be categorized as follows.

Server-based Approaches Many research projects adopt
a server-based approach, where clients are statically or
dynamically configured with a service discovery or location
server on which the client can register and lookup services.
The BARWAN[5] project at UC Berkeley automatically
reconfigures a device of common local services as the
device enters a new location. Those services include
common services such as DNS, SMTP, as welll as the
resource discovery server. Other work in this category
includes INS (Intentional Naming Service)[11] at MIT,
Centaurus[10] at UMBC, etc.

Server-less Approaches While server-based approaches
eases client implementation, it does not necessarily fit a
pervasive computing environment we are targeting, such

as the appliance aggregation application. In ad hoc
communcations, fixed infrasture, or a server, is unlikely
to be present. High device mobility makes it hard
for centralized servers to aid service locating, thus the
decoupled service discovery and service locating may
make the overall system more expensive. Devices that
provide services to each other could join and leave without
notice, so that it is more difficult for the central servers to
provide correct information. For such ad hoc and dynamic
environment, serverless service discovery protocols have
been favored.

In server-less protocols, a client usually uses multicast
to send queries with service specifications, and matching
services reply to the queries. Two examples in this category
are SDP[7], the service discovery protocol of Bluetooth and
SLP (Service Location Protocol)[2] developed in IETF. In
SDP, a service type is represented by a Universally Unique
IDentification(UUID). A service in SLP is represented by a
string composed of a service type part and a URL part with
optional scope and attributes specification.

2.3. Multicast in Ad Hoc Networks

Since serverless service discovery and location protocols
are important to ad hoc networking applications and they
use multicast heavily, multicast performance in ad hoc
networks becomes an interesting issue. Multicast in ad hoc
networks has some distinctive characteristics which make it
particularly expensive:

• Some form of flooding is usually used because
keeping multicast forwarding state is not desirable or
feasible[8].

• At the MAC level, multicast packet receiving/sending
consumes more power than unicast packet
receiving/sending[6].

The unconstrained mobility of devices within a totally
flat topology makes it hard to keep track of multicast group
membership in ad hoc networks. In addition, it is infeasible
to maintain much routing state on the often resource-
constrained peer devices. Therefore, ad hoc multicast
protocol usually uses flooding or some variation of flooding,
instead of keeping multicast forwarding state. With such
a protocol, all nodes forward a multicast packet to all
neighbouring nodes unless the same message has been
received already. We can see that without any knowledge of
receivers’ position in the network, lots of bandwidth could
be wasted to reach receivers. This is different from Internet
multicast, where forwarding state can be aggregated and
maintained according to receivers’ domain or IP address,
by which multicast traffic is only directed to those parts of
the network where there are receivers. While some form

of flooding is also used for establishing unicast routing
state in ad hoc networks, flooding for multicast is often per
packet forwarding, and hence is much more frequent and
pervasive.

2.4. Summary

We concern our work with an efficient serverless
service discovery protocol for heterogeneous ad hoc
communication. Such a protocol should have low
bandwidth/energy cost and low service discovery latency.
We have identified that ad hoc multicast can adversely
affect the performance of a service discovery protocol, but
we do not intend to improve a particular multicast routing
protocol, nor are we interested in changing the interfaces
provided by the service discovery protocol such that the
users use multicast differently. Instead, we try to reduce
the cost through session layer scoping and tunneling of
multicast traffic.

3. Overview of the System

In this paper, we propose a cluster-based service
location protocol that provides interfaces compatible with
those of SLP. In this section, we will describe key
ideas of the proposed protocol: clustering and informed
forwarding, through which the protocol reduces SLP cost
in heterogeneous ad hoc communication. To do that, we
first have to introduce the main components and service
primitives of SLP.

3.1. SLP

SLP[2] is defined to be distributed protocol but with
the option to have centralized Directory Agents (DA). SLP
defines three main protocol components:

• User Agents(UA) perform service discovery on behalf
of the clients

• Service Agents(SA) represent and advertise services

• Directory Agents(DA) collect service advertisement
and respond to service discovery queries

Both SAs and DAs join the SLP multicast group. SLP
client (UA or SA) can use a statically configured DA or use
multicast to dynamically discover DAs. When there is no
DA, all registration or service discovery query is multicast
to the SA group and those SAs that represent matching
services will respond to the query.

InfraredBluetooth

Ethernet

PDA

Laptop

Desktop

Laptop

802.11

Figure 1. A cluster-based view

SLP Service Primitives Following is a list of major
service primitives provided by SLP along with the protocol
behavior when there are no DAs1.

1. register/deregister: a registration/deregistration is sent
to the SLP group. The registration is cached by local
SLP daemon that represents the service.

2. findsrvtypes: a multicast query is sent to the SLP group
and every SLP daemon should respond with the service
types provided by the services it represents.

3. findsrvs: a multicast query is sent to the SLP group and
those SLP daemon that represents a service matching
the specification in the query should respond with the
details of that service.

Notice that these primitives are sufficient for the basic
services users expect of a service discovery protocol,
although there are a few other SLP primitives, such as
findattrs, findscopes, so we focus on the optimized protocol
behavior with these operations.

3.2. Clustering

If we can scope multicast traffic within a part of the
network or tunnel multicast packets only to those parts of
the network that have receivers, we can greatly reduce the
multicast-related cost of a protocol in ad hoc networks.
However, to do that in a service discovery protocol, we
have to maintain the semantics of the protocol. E.g., while
a multicast discovery packet can be scoped, we want the
originating client to still be able to get information of the
whole network. We observe that scoping and tunneling
based on network routing is most desirable. If we know
that messages will be bound according to certain routing
structure, it is much easier to have a strategy to store
service information and maintain the semantics of the
service resource discovery protocol. This is analogous to

1Since the protocol behavior without DA is not fully specified in
rfc2246, we have to sketch it out based on some references.

�
�
�
�
�
�

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
��������������� GW1

GW2

GW3

GW4

Eth802.3

802.11

CellPhone

V:FindSrvs(NewSrv1,IR)

IR

Bluetooth

CDPD

PDA

IV:SrvTypeResp(NewSrv1,IR,GW1)

III:FindSrvTypes()

II: ServiceAnn(NewSrv1, IR, GW1)

VI:FindSrvs(NewSrv1)I: ServiceReg(NewSvc1, IR)

Figure 2. Protocol Operation

some reliable multicast protocols where certain multicast
routers are designated to maintain a copy of recently
received packets so that local recovery can be provided to
downstream group members.

An ad hoc network typically does not have a fixed
routing structure, as the intermediate nodes connecting
a pair of nodes can be any nodes and keep changing.
However, for heterogeneous ad hoc networks, we find
another view of the system as shown in Figure 1. In
terms of communication, devices are grouped according
to the physical communication media they are equipped
with. Devices using different communication media can
talk to each other only via those gateway devices that have
multiple media. Compared to the MAC layer clustering of
some ad hoc networks, which is often based on physical
proximity and has to adapt to node mobility to dynamically
form clusters, this clustering is much more stable since it is
unlikely that a device will change the communication media
it uses dynamically. This motivates the idea of scoping and
tunneling based on this cluster structure and maintaining
resource discovery semantics using the gateways.

Many ad hoc multicast routing protocols use clustering
based on physical proximity so that flooding is performed
not by every node, but by every cluster. Our work is
orthogonal to these protocols and can always be used with
them. The scoping in our protocol is also different from
that of SLP in that an SLP scope is defined to restrict
unauthorized accesses from outside a group. SLP also
provides the option for applications to specify the maximum
hops (TTL) a multicast packet traverse for performance
considerations similar to ours. It should be noted that our
protocol does not interfere with this feature.

3.3. Gateways

To utilize the cluster structure of the physical network
in the service location protocol without integrated layer

processing, the gateway devices in Figure 1 join the SLP
multicast group and become the multicast gateways defined
in our service discovery protocol. Gateway is one of
the three components defined in our protocol. The other
two components are UA and SA, both of which perform
essentially the same functionaltiy as defined in SLP and run
on every node that needs to use service discovery or provide
services. A gateway node runs as an SLP daemon that
performs the multicast scoping, tunneling and forwarding
of SLP traffic, as we will describe shortly.

Notice that in case that the network layer forwarding of
multicast traffic between different physical media clusters
is already implemented and enabled on a gateway device,
we need to map the global SLP group address to a multicast
address that is local to and unique to each of the adjacent
clusters. In the rest of the description, we assume network
layer multicast forwarding is not available, while network
layer unicast forwarding is.

A gateway can be configured with or learn the type of
communication medium, as well as the IP address of each
interface. A node can specify whether it can and wants to
act as a gateway, although if zero configuration is strictly
required, a node can dynamically find out whether it is a
gateway based on whether it has more than active nework
interfaces.

3.4. Scoping, Informed Forwarding and Tunneling

To maintain the semantics of the SLP primitives,
gateways perform informed scoping, forwarding and
tunneling based on certain information they maintain. Since
gateways in our protocol are not dedicated servers and
are often resource constrained themselves, it becomes a
distinguishing characteristic between gateways and the SLP
DAs that the amount of state maintained by gateways is
much smaller.

We first observe that browsing for services constitutes
a heavy usage of a service discovery protocol and that
much less information is needed to satisfy this query than
queries for the details of particular services. In our protocol,
gateways only remember the service types available in
each cluster along with the gateways to each cluster. The
update of this information is triggered by register/deregister
invocations. With this information available on every
gateway, the findsrvtypes query can be satisfied locally and
need not be forwarded beyond the local cluster. We call
this scoping. The findsrvs query can be unicast tunnelled to
the gateways of those destination clusters where there are
services matching the service type specified in the query
and need to be multicast only in those clusters. We call this
informed forwarding and tunneling. Whenever a register
message results in a new service type in a cluster or a
deregister message results in the disappearance of a service

type from a cluster, local cluster gateways should send the
service type information to all the other gateways2, also
indicating the cluster where the service type exists and the
entry gateway to that cluster.

It should be noted that both the findsrvtypes query and
the findsrvs query can optionally include specification of
scopes and/or attributes that furthur narrow down the search
results. Apparently, there is a tradeoff between the multicast
traffic saving and the amount of state gateways maintain
when we decide whether to store scopes and attributes
along with service types. Our protocol currrently maintains
service type information only.

4. Cluster-based Service Location Protocol

This section provides more details of the protocol
behavior related to the register/deregister, findsrvtypes and
findsrvs primitives.

Registering Services As a user invokes the register
primitive and its SA sends out a service registration message
(e.g., message I in Figure 2) to the SLP group, as they do
in SLP, a local gateway that receives the message checks
existing information and decides whether the service type
is new to the local cluster. If it is, the gateway adds a
record in the form of <service type, cluster, cnt>, where
cnt indicates the number of services of this type in local
cluster and is initialized to 1. The local gateway then
composes a service announcement message (e.g., message
II in Figure 2), which conveys the service type, service
residing cluster and cluster gateway information, and sends
the message to the group of gateways. Upon receiving
an announcement message, a gateway will create a record
in the form of <service type, cluster, cluster gateway>.
If a service registration provides a service type existing
in the local cluster, local gateways will increment the cnt
of the corresponding record by 1 but will not send an
announcement to other gateways. When an SA multicasts
a deregistration message, a local gateway that receives the
message will decrement the cnt of the corresponding record
by 1. If cnt is reduced to 0 after the decrement, the gateway
decides that the service type no longer exists in local cluster
and it will compose a deannouncement message to other
gateways.

Browsing for Services When a UA invokes the
findsrvtypes primitive, a multicast query (e.g., message
III in Figure 2) is sent to the SLP group and the local
gateway replies (e.g., message IV in Figure 2) to the

2To further reduce the energy consumption of nodes receiving
unwanted multicast message, a different multicast address is used by
gateways only to receive those messages intended only for gateways.

initiating client with the service types information along
with corresponding clusters and gateways. The cluster
information might be useful for clients to choose services
from specific clusters, e.g., a service in an 802.3 Ethernet
cluster might be favored over a service residing in a
Bluetooth cluster.

Searching for Services A UA can invoke the findsrvs
primitive with or without cluster/gateway specifications.
The user interface to findsrvs is changed to allow users to
specify clusters/gateways. If the user does not specify this
information, the UA may specify it on behalf of the user.
Note that the UA entity is usually implemented as a library
or a daemon that is shared by applications on a host. It can
cache the results of some previous queries and use some
information, clusters information for a specific service type
in this case, as input to later queries.

If a local gateway receives a query with cluster/gateway
information, it will directly use this information as the
basis of forwarding/tunneling. Otherwise, it will lookup
the gateways of all the destination clusters that have
the matching service type. Once the local gateway
has the cluster/gateway information for all the intended
destinations, the gateway will unicast tunnel the message
(e.g., message V in Figure 2) to those gateways, unless an
adjacent cluster is one of those destination clusters, in which
case it multicasts the query. Assuming that there is another
service of type NewSrv1 in the 802.11 cluster on Figure 2
and that the CDPD user does not specify cluster information
in its FindSrvs query, GW4 will multicast the query to the
802.11 cluster and the same process of deciding whether
and how to tunnel will be performed on GW3. A gateway
receiving a tunnelled FindSrvs query will re-multicast the
message (e.g., message VI in Figure 2) in the adjacent
cluster that has the matching service type.

The FindSrvs query also carries a new field indicating the
original client that issues the query, so that matching servers
can reply to it.

Gateway Dynamics Gateways are usual peer devices that
may come and leave without notice. A leaving gateway
does not have to do anything. If there are gateways
connecting the same two clusters, then its leaving should
not have interrupted the normal operation of the service
discovery protocol3. If two clusters are partitioned after
the gateway’s leaving, then communication between the two
clusters is stopped at the physical layer anyway. For a newly
joining gateway to participate in the protocol, it should first
get the service type information of the current network from
an adjacent gateway.

3Some devices may experience longer service discovery delays.

Known Gateway Cache Since many messages sent to the
SLP group or gateway group are actually intended for local
gateways or gateways of adjacent clusters, one optimization
to the protocol is for regular nodes to cache local gateway
addresses and for gateway nodes to cache addresses of
other gateways in adjacent clusters. Although we can
certainly do active discovery for that purpose, a more
efficient and adaptive approach is to update the cache with
the source address information as messages are received.
For a regular node, local gateways are those that have
ACKed a registration/deregistration message or replied to a
findsrvtypes message. For gateways, adjacent gateways are
those that ACK a service announcement/deannouncement
message. As gateways join and leave the aggregation or
as gateways move in/out of the range of local gateway, the
gateway cache on each node can be updated with the reply
messages sent out from the local node, although there will
be a failure when a cached gateway is no longer reachable
and the message should be resent with multicast.

Loop Detection Physical connections in a heterogeneous
ad hoc network can form loops as in any other networks.
Hence in forwarding SLP multicast packets, the protocol
should avoid loops among gateways. Gateways can run a
routing protocol among themselves to avoid loops, as IP
routing protocols do. However, such a routing protocol will
require gateways to periodically exchange information. In
an ad hoc network where gateway themselves could move
constantly, the overhead of keeping the routing state up-
to-date among gateways will be overwhelming. A more
appropriate approach is to dynamically detect loops by
stamping each message with the cluster identifications as it
passes each cluster/gateway. Since service discovery traffic
is not very heavy as compared to (multimedia) data traffic,
and the applications we are targeting are not likely to have
many clusters, the bandwidth overhead of this approach is
unlikely to be significant.

5. Implementation

We implemented the proposed protocol on Linux based
on the openslp[1] code. We add about 3,000 lines of code
to openslp. The major changes/additions are related to
the SLPDaemon (SLP SA), which now supports gateway
functionality as detailed in section 4. There are also
changes to libslp (UA) to provide an enhanced interface to
FindSrvs and to use gateway caches. The forwarding and
tunneling process is based on the information configured
for the interfaces of a gateway, the source of a query and
the IP routing table of the gateway. At several places,
the implementation also uses two multicast related socket
options provided by the system: IP MULTICAST LOOP
to enable/disable delivering multicast packets to receivers

on the same node as the sender, and IP MULTICAST IF
to set the interface on which to send out a multicast packet.
Appendix gives a snippet of pseudo code for forwarding and
tunneling of a FindSrvs query.

We test the protocol by using it in AAFS (an
Appliance Aggregation File System that provides a file
system interface for resource sharing among devices
in an ensemble) and conducted experiments in a three
cluster setting. We use three Ethernet subnets (all
composed of Linux machines) to emulate a heterogeneous
communication environment. Multicast routing is not
available across subnets while unicast routing is supported
on the gateway machines (nodes connecting two subnets).
Our experiments demonstrate that:

• the protocol provides an SLP gateway between clusters
that multicast routing is not supported at the network
layer

• the protocol has a shorter latency than SLP for the
findsrvtypes query

• the protocol results in less multicast traffic than SLP

• the cost of running a gateway SLP daemon on a device
is minimal

• the known gateway cache further reduces multicast
traffic

6. Performance

Although we are able to prove that the protocol works,
for the following reasons, we are not able to evaluate the
performance of the protocol in terms of its energy and
bandwidth savings through either real tests or simulations:

• ad hoc multicast protocol implementation is not
currently available and it is hard to obtain a reasonably
large multi-hop test environment

• ad hoc multicast protocols are not available in network
simulation tools in the public domain

• it is difficult to obtain a workload trace for the service
discovery protocol

However, if we assume that global flooding is used for
multicast in our ad hoc networks, we can count the total
number of multicast transmissions, which is often used
to measure multicast efficiency[4]. With global flooding,
every node that receives a new multicast packet will re-
broadcast it. Given that service discovery traffic is light as
compared to data traffic, and that global flooding has the
best performance for light load multicast traffic[4], it is a
reasonable assumption to make. Under this assumption,

we use the following synthetic workload to evaluate the
protocol:

• we use a real or synthetic trace of multicast group
membership

• we use an ensemble environment that has three
physical clusters and we assume the three clusters
are never partitioned, i.e., there are always gateways
connecting them. Each device belongs to one of the
clusters with certain probabilities.

• when a new device (member) joins an ensemble
(group)

1. it registers n services, each of which is 1 of S
predefined service types, where n is uniformly
distributed in (0,N)

2. it browses (FindSrvTypes) for the service types
available in the ensemble

3. it chooses m service types that it is interested
in and do a search (FindSrvs) for each type,
where m is uniformly distributed in (0,N) and
is smaller than the maximum number of service
types available. Notice that FindSrvs with the
cluster-based protocol provides the option to
specify a cluster. A FindSrvs in our experiment
uses this option with a probability of 50%

4. if the new device provides a new service type,
other devices in the ensemble performs a search
for the new service type with a certain probability

• when a device leaves an ensemble, it deregisters all the
services it registered

For the membership traces, we use the following model:

• the system has a fixed population of 450 members

• each member switches between in-ensemble state and
out-of-ensemble state. The periods it stays in and out
of the ensemble both follow possion distributions and
the ratio of mean out-period to mean in-period is a
parameter to the trace generation procedure

• the trace has a fixed number (900) of joins/leaves and
it ends after the last leave

The main parameters to an experiment are: a
membership trace, a distribution of members to the clusters,
S and N. For each experiment, we count the multicast
transmissions over the whole trace, with both the original
and the cluster-based SLP protocol. The ratio (cluster-based
SLP vs. SLP) is a measure of relative multicast cost of the
cluster-based SLP protocol.

0

0.05

0.1

0.15

0.2

0.25

1 10

R
at

io
 o

f M
ul

tic
as

t T
ra

ns
m

is
si

on
s

Mean Out/Mean In

Comparison of Multicast Transmissions

Multicast Transmission Saving

Figure 3. Perf with diff traces

0.14

0.16

0.18

0.2

0.22

0.24

0.26

3.3/3.3/3.3 4/3/3 2/4/4 6/2/2 8/1/1

R
at

io
 o

f M
C

as
t T

ra
ns

(in
/o

ut
 1

/1
)

R
at

io
 o

f M
C

as
t T

ra
ns

(in
/o

ut
 1

:3
0)

Member Cluster Distribution

Performance with Diff Cluster Distribution

Mean in/out 600-18000
Mean in/out 600-600

Real Trace

Figure 4. Perf with diff cluster distribution

Figure 3 shows the multicast transmission comparison
between the two protocols with different synthetic traces
(we use a 5:3:2 membership distribution across the three
clusters in this experiment). We can see that when we
decrease the mean length of stay outside the ensemble, thus
increase the average group size, the saving by the cluster-
based SLP increases, suggesting that the protocol scales
with the ensemble size. In this case, cluster-based SLP
gains performance primarily on the FindSrvs queries. Given
certain N, S and member cluster distribution, a FindSrvs
query has a better chance to be satisfied locally in a larger
ensemble than in a smaller one. Figure 4 compares the two
protocols with different membership distributions over the
clusters. We can see that, for all the membership traces, the
highest saving by the cluster-based SLP is achieved when
membership distribution is most even. This is explained by
the fact that with uniform distribution of services among
all devices and without a user’s perference of using local
cluster services over remote services, cross cluster traffic is
minimized when members are most evenly distributed over
clusters.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

4 6 8 10 12 14 16 18 20

R
at

io
 o

f M
ul

tic
as

t T
ra

ns
m

is
si

on
s

Max # of Service Per Member

Performance with Diff Service Per Member

Ratio of Multicast Trans

Figure 5. Perf with diff # of services per
member

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

20 25 30 35 40 45 50 55 60

R
at

io
 o

f M
ul

tic
as

t T
ra

ns
m

is
si

on
s

of Possible Service Types

Performance with Diff # of Service Typesr

Ratio of Multicast Trans

Figure 6. Perf with diff # of service types

Figure 5 shows that the relative cost of the cluster-
based SLP increases significantly as the average number of
services provided/imported by a device increases. Given a
fixed number of clusters and a certain membership trace, as
the average number of services provided/imported by each
device increases, there are more chances that a device will
issue a query for a service that is in another cluster, thus
increasing the relative cost of the cluster-based SLP. Figure
6 shows that the relative cost of the cluster-based SLP
increases, although very little, as the number of possible
service types increases. Increasing the number of possible
service types increases the probability that a device issues
a query for a service type not available in its local cluster,
with a 50% probability to flood multicast throughout the
network.

7. Future Work

We will futher work on solutions to larger range
environments where multiple clusters of the same type of

communication medium may exist. Our evaluation has not
explicitly shown the bandwidth and energy savings resulted
from the less multicast traffic in ad hoc networks. Our future
work will focus on a simulation environment where both the
heterogeneous ad hoc network environment and an ad hoc
multicast protocol are available. We also need to obtain a
real workload for our simulation.

8. Conclusion and Acknowledgments

In this paper, we propose to improve the performance
of a service location protocol in ad hoc networks through
scoping, tunneling of multicast traffic with minimal state
maintenance. The work is also an example of cross
layer optimization in that the scoping and tunneling in
the proposed protocol utilizes the physical layer cluster
structure within the network. Our preliminary results from
the experiments show that shorter service discovery latency
can be obtained and bandwidth/energy cost of multicast
traffic can be reduced.

We would like to thank Dejan Milojicic for some helpful
discussions and comments on the draft. We would also like
to thank Ira Greenberg, Alan Messer, Rajnish Kumar and
Vahe Poladian for their useful input.

References

[1] http://www.openslp.org.
[2] http://www.srvloc.org.
[3] C.-C. Chiang and M. Gerla. On-Demand Multicast in

Mobile Wireless Networks. In ICNP, 1998.
[4] C.-C. Chiang, M. Gerla, and L. Zhang. Forwarding group

multicast protocol(FGMP) for multihop, mobile wireless
networks. Cluster Computing, Dec 1998.

[5] E. B. et.al. A Network Architectuer for Heterogeneous
Mobile Computing. IEEE Personal Communications
Magazine, 1998.

[6] L. Feeney and M. Nilsson. Investigating the Energy
Consumption of a Wireless Network Interface in an Ad Hoc
Networking Environment. In Infocom, 2001.

[7] E. A. Gryazin. Service Discovery in Bluetooth.
[8] G.Tsudik and K.Obraczka. Multicast Routing Issues in Ad

Hoc networks. In International Conference on Universal
Personal Communications, 1998.

[9] J.Broch, D.A.Maltz, D.B.Johnson, Y.C.Hu, and J.Jetcheva.
A Performance Comparison of Multi-Hop Wireless Ad Hoc
Network Routing Protocols. In Mobicom, 1998.

[10] L.Kagal, V.Korolev, S.Avancha, A.Joshi, T.Finin, and
Y.Yesha. A highly adaptable infrasture for service discovery
and management in ubiquitous computing. Technical report,
2001.

[11] W.Adjie-Winoto, E.Schwartz, H.Balakrishnan, and J.Lilley.
The Design and Implementation of an Intentional Naming
System. In ACM SOSP, 1999.

9. Appendix

ProcessSrvRqst(query, src)
{

incoming_if = RouteLookup(src);
orig_cluster = query->orig_cluster;

clusterList = NULL;
if (query->clusterList == NULL)

clusterList =
SLPDatabaseLookup(query->srvtype);

else
clusterList = query->clusterList;

tunnel = 1;
need_forward = 0;

while (clusterList)
{
cluster = clusterList->cluster;
if (cluster != orig_cluster)
{

if (cluster belongsto G_Clusters)
{

tunnel = 0;
need_forward = 1;

}
else

need_forward = 1;
}
clusterList = cluster->next;

}

if (need_forward)
{
if (tunnel)
{

for each gw in query->gwlist
{

unicast_to_gw(gw, query);
}

}
else
{

for each if in G_interfaces
{

if (if != incoming_if)
{
setsockopt(G_socket,

IPPROTO_IP,
IP_MULTICAST_IF,

&if,
sizeof(struct sockaddr_in));

sendto(SLP_SERVICE_GROUP, query);
}

}
}

}
}

