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Abstract. The Weil and Tate pairings have found several new applica-

tions in cryptography. To eÆciently implement these cryptosystems it is

necessary to optimise the computation time for the Tate pairing. This

paper provides methods to achieve fast computation of the Tate pairing.

We also give division-free formulae for point tripling on a family of ellip-

tic curves in characteristic three. Examples of the running time for these

methods are given.

1 Introduction

The Weil and Tate pairings have recently been used to construct cryptosystems,
such as the identity-based key exchange and signature schemes of Sakai, Ohgishi
and Kasahara [14], the tripartite DiÆe-Hellman protocol of Joux [9], the escrow
El Gamal system of Verheul [17], the identity-based encryption scheme of Boneh
and Franklin [3], the credential scheme of Verheul [18], the short signature scheme
of Boneh et al [4], the ID-based key exchange system of Smart [16] and the ID-
based signature scheme of Paterson [13].

For most of these applications either the Weil pairing or Tate pairing may be
used (these pairings both provide good functionality for use in cryptosystems).
In practice, as has been observed in [7, 4], the Tate pairing is more eÆcient
for computation. (We give some timings in Section 10.1 which show how much
slower the Weil pairing is). If these cryptosystems are to be adopted for practical
applications it is essential to provide methods which improve the performance
of Tate pairing computations.

In this paper we give techniques which enable eÆcient computation of the
Tate pairing for cryptographic applications. Some of these techniques are familiar
from the literature on fast point exponentiation for elliptic curve cryptography,
but most of them are speci�c to the cryptographic application of the Tate pairing.

We now summarise the paper. Sections 2 and 3 describe the basics of the
Tate pairing and Miller's algorithm. Section 4 indicates how the Tate pairing is
used in cryptosystems. Section 5 contains the core observations which dictate
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the development of our later techniques. Section 6 shows how properties of the
group order (namely, the size of the large prime, and small Hamming weights)
may be used to give improved performance. Section 7 introduces new formulae for
elliptic curve point tripling in characteristic three, and shows how this leads to an
eÆcient ternary Miller's algorithm. Section 8 and 9 discuss the implementation
of the �nite �eld arithmetic. Section 10 contains some of our timing results.

We must note that in the �nal stages of preparing this paper we became
aware of the work of Barreto, Kim and Scott [1] which also provides an excellent
solution to the problem of eÆcient computation of the Tate pairing.

2 The Tate pairing

The Weil pairing was �rst introduced into cryptography by Menezes, Okamoto
and Vanstone [12] who used it to attack the elliptic curve discrete logarithm
problem on certain elliptic curves. The Tate pairing was introduced to cryptog-
raphy by Frey and R�uck [5] in their extension of the work of Menezes, Okamoto
and Vanstone.

Let E be an elliptic curve over a �nite �eld Fq . We write OE for the point
at in�nity on E. Let l be a positive integer which is coprime to q. In most
applications l is a prime and lj#E(Fq ). Let k be a positive integer such that
the �eld Fqk contains the lth roots of unity (in other words, lj(qk � 1)). Let
G = E(Fqk ) and write G[l] for the subgroup of points of order l and G=lG for
the quotient group (which is also a group of exponent l). Then the Tate pairing
is a mapping

h�; �i : G[l]�G=lG! F
�

qk
=(F�

qk
)l: (1)

The quotient group on the right hand side of (1) can be thought of as the set
of equivalence classes of F�

qk
under the equivalence relation a � b if and only if

there exists c 2 F
�

qk
such that a = bcl. We call this relation `equivalence modulo

lth powers'.

The Tate pairing satis�es the following properties [5]:

1. (Well-de�ned) hOE ; Qi 2 (F�
qk
)l for all Q 2 G and hP;Qi 2 (F�

qk
)l for all

P 2 G[l] and all Q 2 lG.

2. (Non-degeneracy) For each point P 2 G[l]� f0g there is some point Q 2 G

such that hP;Qi 62 (F�
qk
)l.

3. (Bilinearity) For any integer n, h[n]P;Qi � hP; [n]Qi � hP;Qin modulo lth
powers.

The Tate pairing is de�ned as follows. Given the point P compute a function
g such that the divisor of g is equal to l((P )�(OE)) (see [15] for an introduction
to divisors). Then compute a divisor D which is equivalent to (Q)� (OE) such
that the support of D is disjoint from the support of g. Then the value of the
Tate pairing (up to lth powers) is

hP;Qi = g(D)
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where g(D) =
Q

i
g(Pi)

ni if D =
P

i
niPi.

We emphasise that the Tate pairing is only de�ned up to a multiple by an lth
power in F

�

qk
. For most applications in cryptography a unique value is required,

and so it is necessary to exponentiate the value of the Tate pairing to the power
(qk � 1)=l (since raising to this power eliminates all multiples of order l).

3 Miller's algorithm

The Tate pairing can be computed using an algorithm �rst proposed by Miller
[11] which is also described in [5, 6]. Miller's algorithm is basically the usual
`double and add' algorithm for elliptic curve point multiplication combined with
an evaluation of certain intermediate functions which are the straight lines used
in the addition process.

Before giving the details of this algorithm we recall the elliptic curve addition
law (for more details see [2, 15]).

Let P and Q be points on an elliptic curve E. Let l1 be the line through
P and Q (if P = Q then l1 is taken to be the tangent to the curve E at P , if
one of P or Q is OE then l1 is a `vertical line' through the aÆne point). Then
l1 intersects the cubic curve E at one further point, say R1. Now let l2 be the
line between R1 and OE (which is a `vertical line' when R1 is not equal to OE).

Then l2 intersects E at a third point R2 which is de�ned to be the sum of P
and Q.

The lines l1 and l2 can be thought of as functions on the curve, and the
corresponding principal divisors are

(l1) = (P ) + (Q) + (R1)� 3(OE) and (l2) = (R1) + (R2)� 2(OE):

It follows that we have the following equality of divisors

(P )� (OE) + (Q)� (OE) = (R2)� (OE) + (l1=l2):

Let E be an elliptic curve over Fq and let P and Q be given points of prime
order l for which we want to compute hP;Qi. Miller's algorithm is given in Figure
1.

To understand how this algorithm works, �rst note that the divisor (Q0)�(S)
is equivalent to the divisor (Q)� (OE) and, since S was chosen randomly, it is
likely that the points Q0 and S in the support of (Q0)� (S) do not appear in any
intermediate computations in the algorithm. Secondly, note that at each stage
in the algorithm T1 is the point obtained by computing [m]P where m is the
integer whose binary expansion is the top n bits of the binary expansion of l.
The value f1 is the evaluation at the divisor (Q0)� (S) of the function f de�ned
such that

m((P )� (OE)) = (T1)� (OE) + (f):

Hence, at the end of the algorithm we have T1 = OE and f1 is the evaluation at
(Q0)� (S) of the function g such that l((P )� (OE)) = (g), as required from the
de�nition of the Tate pairing.
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Choose a random point S 2 E(Fqk ) and compute Q0 = Q+ S 2 E(Fqk ).

Set n = blog
2
(l)c � 1, T1 = P , f1 = 1.

While n � 1 do

{ Calculate the equations of the straight lines l1 and l2 arising in a doubling of T1.

Set T1 = [2]T1 and f1 = f21 (l1(Q
0)l2(S))=((l2(Q

0)l1(S)).

{ If the nth bit of l is one then

� Calculate the equations of the straight lines l1 and l2 arising in an addition

of T1 and P . Set T1 = T1 + P and set f1 = f1(l1(Q
0)l2(S))=((l2(Q

0)l1(S)).

{ Decrement n.

Return f1.

Fig. 1. Miller's Algorithm.

4 The cryptographic applications

We do not discuss the cryptographic applications of the Tate pairing in great
detail since we are interested in implementation issues which are common to all
schemes. We simply note that:

1. Cryptosystems based on the Weil pairing may be modi�ed to use the Tate
pairing, and this will improve their computational performance.

2. In many of these schemes the calculation of the Tate pairing is the dominant
computational task.

In most applications of the Weil and Tate pairing to cryptography we consider
an elliptic curve E over Fq with number of points divisible by some prime l. It is
necessary that l have at least 160 bits for security, and for eÆciency it is desired
that l and q not be too large. Also important for these applications is the �nite
�eld Fqk where k is de�ned to be the smallest integer such that lj(qk � 1). It is
necessary that qk have at least 1000 bits for security, and for good eÆciency it
is desired that qk not be too large. Further discussion about these matters may
be found in [7], but the conclusion is that there are three cases most relevant for
cryptography:

1. Supersingular elliptic curves such as y2 = x3+1 over certain prime �elds Fp
where p has 512 bits (in this case k = 2).

2. Supersingular elliptic curves of the form y2+y = x3+x+ b (b 2 f0; 1g) over
F2 considered as a group over F2m where m is prime of size around 250 (in
this case k = 4).

3. Supersingular elliptic curves of the form y2 = x3 � x� 1 over F3 considered
as a group over F3m where m is prime of size around 110 (in this case k = 6).

For the cryptographic applications the basic operation is to compute the
value of the Tate pairing hP;Qi where P 2 E(Fq ) and where Q 2 E(Fqk ) (usu-
ally Q is the image of some multiple of P under a non-rational endomorphism
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or \distortion map"). We stress that since a unique value is required for the
cryptographic applications we must also raise the value of the Tate pairing to
the power (qk � 1)=l.

5 EÆcient computation of the Tate pairing

Our analysis begins in this section, where we make three general comments about
eÆcient computation of the Tate pairing in the speci�c application we have in
mind.

The most important observation is that we are computing hP;Qi where P 2
E(Fq ) and where Q 2 E(Fqk ). In practice, this means that the coeÆcients of the
lines li in Miller's algorithm (Figure 1) are all elements of the smaller �eld Fq

while the large �eld Fqk is only used for computing the value f1.

This observation is the most fundamental observation in the paper and most
of the implementation details arise from trying to make the most it. In particular,
to bene�t from this observation, one should work with an eÆcient representation
of Fq for all operations involving the elliptic curve E, the points T1 and T2, and
the straight lines li. One should then implement eÆcient operations for Fqk which
allow fast scalar multiplication by elements in Fq . The natural way to proceed
is to represent Fqk as a degree k extension of Fq . We give many more details
in Section 9. We comment that this is di�erent to the approach proposed by
Boneh, Lynn and Shacham [4].

A further example of working in sub�elds whenever possible is to consider
the choice of the random point S in Miller's algorithm (Figure 1). As stated,
S 2 E(Fqk ) but in fact we may take S 2 E(Fq ) and this reduces the number of
operations in Fqk .

It is interesting at this point to consider the relationship between the Weil
pairing and the Tate pairing. We write el(P;Q) for the Weil pairing. In most sit-
uations the Weil pairing is related to the Tate pairing by the equation el(P;Q) =
hP;Qi=hQ;P i (and no exponentiation is required to get a unique value) and this
is the way the Weil pairing is usually computed. Other methods to compute the
Weil pairing (such as Section III.8 of [?]) seem to be even less eÆcient. This leads
to the often quoted statement \the Weil pairing is just two applications of the
Tate pairing". However, in the case that P 2 E(Fq ) but Q 2 E(Fqk ) then these
two Tate pairing operations require very di�erent computation times. Hence,
the Weil pairing seems to require much more than twice the running time of the
Tate pairing in the cryptographic applications.

Our second observation relates to the well-known fact that divisions are more
expensive than multiplications. This statement is particularly true for divisions
in the large �eld Fqk since we are representing it as a degree k extension of the
�eld Fq . Hence it is desirable to reduce the number of divisions in Fqk in Miller's
algorithm. Consider the divisions which are required in the large �eld Fqk when
computing the value f1. It is obvious that these divisions can all be gathered
into a single division at the conclusion of the algorithm by representing the value
f1 as a quotient f1=f2 and using multiplications to update the fi.
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Our third general observation is that, as with elliptic curve point exponen-
tiation algorithms, there is a signi�cant improvement by using window methods
(see [2], [8]). These methods employ a precomputation stage which computes
the values [n]P for all values n in a `window' of 3 or 4 bits. Miller's algorithm
then proceeds by performing addition operations according to windows in the
binary expansion of the exponent l instead of bit by bit. This does not change the
number of doubling operations, but it does reduce the number of addition oper-
ations. The methods are completely standard (see [2, 8]) and it is not necessary
to repeat them here.

Note that in Section 6 we describe a class of groups which are particularly
eÆcient for the Tate pairing computation, and the window methods are no longer
useful for these groups.

Finally we mention the use of projective coordinates and homogenizingMiller's
algorithm to remove divisions. We have implemented such a method and found
that in practice it gives worse performance. The number of multiplications in-
volved in such a method grows so much that it outweighs the bene�t gained
from avoiding divisions in Fq (we �nd that an inversion in F3m represented with
a polynomial basis takes only about 5 times the time of a multiplication, see
Section 9.3).

6 Choice of groups

As noted by Boneh and Franklin [3] it is not necessary that the prime order l be
of the same size as the �eld q. For instance, when working with supersingular
elliptic curves over Fp where p > 3 it is necessary that p have at least 512 bits,
but l may be chosen to have 160 bits.

This technique of working in a smaller subgroup has a huge impact on the
complexity of Miller's algorithm, since the number of iterations depends on
log2(l). This technique may be used in characteristic 2 and 3 as well, when-
ever the group order of E(Fq ) has factors of a suitable size.

A further method which speeds up the Tate pairing very signi�cantly is to
choose the prime l such that it has very low hamming weight (or, more generally,
so that it has low hamming weight in a signed binary representation, or in a
ternary representation in characteristic three). This greatly reduces the number
of addition operations in Miller's algorithm. Note that this technique means that
window methods are no longer required, and so there is no precomputation step
in this case.

The system of Boneh and Franklin [3] for large prime characteristic can be
trivially modi�ed to employ primes l of low Hamming weight. In characteristic
2 an example of such a group order is the following: Let E be the elliptic curve
y2 + y = x3 + x + 1 over F2283 . Then #E(F2283 ) = l where l is the prime
l = 2283 + 2142 + 1, which has Hamming weight 3. There are other cases in
characteristic 2 with prime number of points which have the same property of
their (signed) binary expansion. Similarly, supersingular curves with a prime
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number of points in characteristic 3 will have low Hamming weight of the signed
ternary expansion of l.

For several examples in characteristic two and three the group order N has
small Hamming weight, but the large prime factor l is a quotient of N by a
small cofactor and so it does not have small Hamming weight. In practice one
can compute the Tate pairing of the points P and Q of order l with respect to the
group order N (and it is recommended to then raise to the exponent (qk� 1)=N
which also has low Hamming weight). In this case the small Hamming weight of
N provides computational savings in Miller's algorithm, while the result is still
a unique element of order l. An important point to note is that the value of the
Tate pairing when computed with respect to the group orderN is not necessarily
the same as the value of the Tate pairing when computed with respect to the
large prime l (hence the use of this time-saving technique must be speci�ed in
the system parameters to enable interoperability). This technique is used for the
implementation results in Section 10 and it reduces the running time by at least
30%.

7 Speci�c advantages in characteristic 2 and 3

In this section we discuss certain features of elliptic curves in small characteristic.
In particular, we discuss certain arithmetic operations which are particularly

eÆcient, such as point tripling in characteristic three.

7.1 Doubling in characteristic two

It is well-known in elliptic curve cryptography that there are performance ad-
vantages available in characteristic two, particularly when implementing elliptic
curve exponentiation directly in hardware. For a survey of point exponentiation
methods in characteristic two see Hankerson, Hernandez and Menezes [8]. These
methods can all be used to improve Miller's algorithm in characteristic two, and
it follows that cryptosystems based on the Tate pairing on supersingular curves
in characteristic two have good performance. Note that, for the �eld sizes we
are considering, Karatsuba multiplication does not provide any bene�t. All the
relevant methods from [8] were used to obtain the timings in Section 10.

7.2 Tripling in characteristic three

In characteristic three for our supersingular elliptic curves (and, more generally,
for curves over F3m with equations of the form y2 = x3 + Ax + B) it happens
that the tripling operation can be performed extremely eÆciently.

Indeed, one can give tripling formulae which do not require divisions! For the
Tate pairing computation it is necessary to obtain the equations of the straight
lines used for the addition rule, and so one division is unavoidable.

We give all the details of the tripling operations and the straight lines below.
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Let P = (x1; y1) be a point on E : y2 = x3 � x+ b over F3m . The tangent to
E at P has slope �2 = 1=y1 and the equation of the tangent line is

l1 : y � �2x+ (�2x1 � y1) = 0:

The point (x2; y2) = [2]P has coordinates x2 = �22 + x1 and y2 = ��32 � y1. The
equation of the vertical line is l2 : x� x2 = 0.

The line between (x1; y1) and (x2; y2) has slope �3 = y31��2 and its equation
is

l01 : y + (�2 � y31)x + (y31x1 � �2x1 � y1) = 0:

The point (x3; y3) = [3](x1; y1) has coordinates x3 = x1+ y21+ y61 and y3 = �y91 .
The equation of the vertical line is l02 : x�x3 = 0. Note that these formulae pro-
vide a division-free algorithm for tripling on these elliptic curves in characteristic
three.

Also note that cubing is very fast in characteristic three (especially in hard-
ware, or if a normal basis representation is used) and so computing y31 ; y

6
1 and

y91 is cheap from y1 and y21 .
These formulae for point tripling are very eÆcient and so it is prudent to re-

write Miller's algorithm to utilise a signed base-3 representation of the exponent
l. Recall that a signed base-3 representation is an expression

l =

mX

n=0

li3
i

where li 2 f�1; 0; 1g. We call each li a `trit'. We sketch the details in Figure 2.
We stress that, in practice, care must be taken to implement the formulae for
l1 and l01 above so that the number of multiplications in the large �eld Fqk is
minimised.

Note that the eÆcient tripling formulae are valuable for eÆcient implemen-
tation of the application of Koblitz in [10].

8 EÆcient implementation of characteristic three �elds

It is essential to have an eÆcient implementation of arithmetic in the �nite �eld
F3m . A lot of research has been done into eÆcient implementation of character-
istic two �nite �elds, and also for large characteristic p, but characteristic three
does not seem to have been studied in detail. Either polynomial bases or normal
bases may be used [2], and we use polynomial bases.

The conventional wisdom for representing values in characteristic two is to
represent each coeÆcient by a single bit and to pack 32 coeÆcients into a sin-
gle computer word. In this way, the addition of two values can be performed
eÆciently by using an exclusive-or machine instruction to add 32 coeÆcients at
a time. Most �nite �eld packages treat characteristic two as a special case and
then degenerate to using a bignum implementation for odd characteristic. This
can be improved upon.
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1. Choose a random point S 2 E(Fq ) and compute Q0 = Q+ S.

2. Precompute P2 = [2]P and the value f2 of the function f such that 2((P ) �

(OE)) = (P2)� (OE) + (f) evaluated at the divisor (Q0)� (S).

3. Let n be the number of trits in a signed base-3 representation for l. Set T1 = P

or P2 and f1 = 1 or f2 according to whether the nth bit of the ternary expansion

of l is 1 or 2.

4. Decrement n.

5. While n � 1 do

{ Perform a tripling of T1, i.e., compute the equations for the lines l1; l2; l
0

1; l
0

2

above, set T1 = [3]T1, and update the value of f1 via

f1 = f31 (l1=l2 � l
0

1=l
0

2)((Q
0

)� (S)):

{ If the nth trit in the signed base-3 expansion of l is 1 then set T1 = T1 + P

and update f1 by f1 = f1(l1=l2)((Q
0) � (S)) where l1 and l2 are the lines

appearing in the point addition.

{ If the nth trit in the signed base-3 expansion of l is �1 then set T1 = T1�P2

and set f1 = f1f2(l1=l2)((Q
0)� (S)) where l1 and l2 are the lines appearing

in the point addition.

{ Decrement n.

6. Return f1.

Fig. 2. Miller's Algorithm in base three.

We note that a coeÆcient in characteristic 3 has the values 0, 1, or 2. That is,
we need two bits to represent such a value. Rather than pack 16 2-bit coeÆcients
into a 32 bit word, we pack the high order bits into one word array and the low
order bits into a separate word array.

In other words, we write the 16 coeÆcients modulo 3 as a = alo + 2ahi. This
gives the following advantages:

1. Doubling a value can be performed by swapping the high and low order bit
arrays. Note: negation is identical to doubling in characteristic 3.

2. Adding two values r = a+ b leads to

(rhi; rlo) = (ahi; alo) + (bhi; blo)

where

rlo = ((alo ^ blo)&(� (ahijbhi)))j(ahi&bhi)

rhi = ((ahi ^ bhi)&(� (alojblo)))j(alo&blo):

Here, as usual, � means bitwise complement, & means bitwise and, j means
bitwise or, and ^ means bitwise exclusive-or. In other words, we can add 32
coeÆcients with 12 boolean operations.

3. Cubing is performed analogously to squaring in characteristic 2 by using
a \thinning" algorithm with a reduction operation (this is just a shift if a
normal basis is used).
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4. Subtracting two values is performed using addition:

(rhi; rlo) = (ahi; alo)� (bhi; blo) = (ahi; alo) + (blo; bhi):

9 EÆcient computation in extension �elds

We now describe some implementation details for �nite �eld extensions. These
issues arise because of our choice of �eld representation, which in turn is moti-
vated by the bene�t of working in sub�elds wherever possible.

The two most important cases are the elliptic curves y2 = x3 � x � 1 over
extensions of F3 and y2 + y = x3 + x+ b over extensions of F2 . In practice it is
necessary to be able to work eÆciently with �nite �elds F36m and F24m where m
is prime. We give further details about how to achieve this.

9.1 Characteristic two

We represent F24m by a tower of two quadratic extensions of F2m . To be precise,
let F = F2m and denote

F1 = F [x]=(x2 + x+ 1) �= F22m

and

F2 = F1[y]=(y
2 + (x + 1)y + 1) �= F24m :

A general element of F2 can be written as a+ bx+ cy + dxy with a; b; c; d 2 F .

The naive way to perform multiplication of two elements (u1 + yv1) and
(u2 + yv2) of F2 (where ui; vi 2 F1) to obtain the product

(u1u2 + v1v2) + y(u1v2 + u2v1 + (x+ 1)v1v2)

would require 4 multiplications in F1 (plus the `special' multiplication by the
term (x + 1)). A more eÆcient multiplication process is to compute the three
products t1 = u1u2; t2 = v1v2 and t3 = (u1 + v1)(u2 + v2). The desired product
is then recovered as (t1+ t2)+y(t3� t1+xt2) which requires 3 multiplications in
F1 plus the `special' multiplication xt2 (which is shown below to be just a single
addition).

Similarly, multiplication of general elements (u1 + xv1)(u2 + xv2) in F1 can
be performed with just 3 multiplications in F , plus one `special' multiplication.

Finally, note that the result of the special multiplication x(u + xv) is equal
to v + x(u+ v), which is computed by a single addition.

In conclusion, the cost of a general multiplication in F2 is reduced from 16
(or more) multiplications in F to only 9 multiplications in F .

Division in F2 can be reduced to a single division in F by using conjugates.
The details are straightforward, and since there is only one division in F2 in our
algorithm this is not worth discussing in depth here.
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9.2 Characteristic three

We represent F36m by a tower of extensions of F3m . To be precise, let F = F3m

and denote

F1 = F [a]=(a3 � a+ 1) �= F33m

and

F2 = F1[b]=(b
2 + 1) �= F36m :

(Note that i = b and � = a and � = �a in the notation of Section 3.9 of [7])

As in the previous subsection, a multiplication of general elements in F2 can
be performed with fewer multiplications than the naive method. The details are
as follows:

To multiply (u1 + bv1)(u2 + bv2) where u1; u2; v1; v2 2 F1 we compute t1 =
u1u2, t2 = v1v2 and t3 = (u1 + v1)(u2 + v2). The product is then recovered as

(t1 � t2) + b(t3 � t1 � t2):

The product of (u1+av1+a
2w1) and (u2+av2+a

2w2) with u1; u2; v1; v2; w1; w2 2
F is

(u1u2+v1w2+w1v2)+a(u1v2+v1u2+v1w2+w1v2+w1w2)+a
2(u1w2+v1v2+w1u2+w1w2):

To compute this in fewer than 9 multiplications compute t1 = u1u2, t2 = u1w2,
t3 = v1v2, t4 = v1w2, t5 = w1u2, t6 = w1v2, t7 = w1w2 and t8 = (u1 + v1 +
w1)(u2 + v2 + w2). The product is recovered as

(t1 + t4 + t6) + a(t8 � t1 � t2 � t3 � t5) + a2(t2 + t3 + t5 + t7):

Hence we have reduced the cost of multiplication in F2 from 36 to 24 multi-
plications in F .

Again, inversion can be reduced to a single inversion in F by using conjugates.
The details are straightforward (the conjugates of (u + av + a2w) are simply
(u+ (a+ 1)v + (a+ 1)2w) and (u+ (a+ 2)v + (a+ 2)2w)).

Finally, the exponentiation operation in the �nite �eld F2 is performed using
the signed base-3 expansion of the exponent (which has low Hamming weight in
most of our examples and so window methods are not necessary).

9.3 Timing results

In summary, we have the following timing results for �eld operations. We record
the cost in terms of the number of multiplications in the ground �eld. Let F
be F2m or F3m respectively and F2 be F24m or F36m . Here, for instance, F � F2
means the cost of multiplying a general element of F2 by an element of F and
1=F means the cost of inverting an element of F .
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Characteristic two Characteristic three

m 241 283 97 163

F � F 1M 1M 1M 1M
F � F2 4M 4M 6M 6M
F2 � F2 9M 9M 24M 24M
1=F 13.85M 9.25M 5.36M 5.05M
1=F2 44.85M 40.25M 107.36M 107.05M

Notes:

1. The �eld extension inversion was not heavily optimised because it is only
invoked once in the computation of a Tate or Weil pairing.

2. In characteristic three it is cheaper to perform a �eld inversion than to
compute a �eld by �eld extension multiplication. We attribute this to the
ineÆciency of multiplication, rather than to any special bene�t of inver-
sion in characteristic three (it is an open problem to provide more eÆcient
multiplication algorithms in characteristic three).

3. It is always worth tracking whether a value is in the �eld or in the �eld
extension - and performing the appropriate operation.

4. The costs of performing the �eld inversion were established by timing 100,000
�eld inversions and 100,000 �eld multiplications. The other costs were es-
tablished by examination of the code.

10 Timing results

We have implemented the Tate pairing using the methods given above. All tim-
ings were performed on a 1 GHz Pentium III with 256Mb RAM (an HP VISU-

ALISE NT workstation). The language used was C. The compiler was Microsoft
Visual C++ V6.0 with speed optimisations on.

10.1 Characteristic two timings

We give a few timings for characteristic two. Due to the numerous techniques
available for eÆcient characteristic two arithmetic and elliptic curve operations
it follows that characteristic two is the best choice for fast implementations of
the Tate pairing.

Example 1:

Consider the elliptic curve E : y2 + y = x3 + x+ 1 over

F2241 = F2 [x]=hx
241 + x70 + 1i:

The large prime order is l = 2241 � 2121 + 1

Consider points P 2 E(F2241 ) and Q 2 E(F2964 ) of order l.

Weil Pairing el(P;Q) time: 140.9 ms.
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Tate Pairing hP;Qi(2
964

�1)=l time: 32.50 ms (including the �nite �eld expo-
nentiation).

Example 2:

Consider the elliptic curve E : y2 + y = x3 + x+ 1 over

F2283 = F2 [x]=hx
283 + x194 + x129 + x65 + 1i:

The large prime l is 2283 + 2142 + 1

Consider points P 2 E(F2283 ) and Q 2 E(F21132 ) of order l.

Weil Pairing el(P;Q) time: 175.8 ms.

Tate Pairing hP;Qi(2
1132

�1)=l time : 57.19 ms (including the �nite �eld expo-
nentiation).

Notes:

1. These times show that cryptosystems based on the Tate pairing are com-
pletely practical for PC-based applications.

2. As explained in Section 5, the Weil pairing takes longer than twice the run-
ning time of the Tate pairing for the cryptographic applications.

10.2 Characteristic three timings

We now give timings for characteristic three.

Example 3:

Consider the elliptic curve E : y2 = x3 � x+ 1 over

F397 = F3 [x]=hx
97 + x16 + 1i:

The group order is N = 7l = 397 + 349 + 1.

We took points P 2 E(F397 ) and Q 2 E(F3582 ) of order l and computed the
Tate pairing of order 7l.

Tate Pairing: 168 ms (including �nite �eld exponentiation)

Example 4:

Consider the elliptic curve E : y2 = x3 � x+ 1 over

F3163 = F3 [x]=hx
163 + x80 + 2i:

The group order is N = 7l = 3163 � 382 + 1.

We took points P 2 E(F3163 ) and Q 2 E(F3978 ) of order l and computed the
Tate pairing with respect to the order 7l.

Tate Pairing: 581 ms (including the �nite �eld exponentiation)
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