)

invent

Spice language manual

Chris Dollin

Digital Media Systems L aboratory
HP Laboratories Bristol
HPL-2002-229

October 30" | 2002*

Spice is a programming language suitable for occasional
programmers working with text, HTML, and XML, while scaling to
medium-sized projects with several experienced programmers. It is
an expression-oriented language with multiple values, dynamic
typing, automatic storage management, and multiply-dispatched
methods. This document contains a general introduction to the
language by example, suitable for readers with some programming
experience, and areference manual describing the language in detail.

* Internal Accession Date Only Approved for External Publication
a Copyright Hewlett-Packard Company 2002

Contents

I preamble

1 origins, growth, and features

IT a gentle introduction to Spice

2 a gentle introduction to Spice
2.1 hello,world
2.2 one, two, bucklemy shoe
2.3 wariables

2.4 typedvariables

3 function definitions
3.1 typed arguments Lo
3.2 typedresults
3.3 indefinite arguments

3.4 abbreviating function definitions oL
4 arrays

5 dot and infix notation

5.1 dot and infix function definition

6 ifs and buts

6.1 elselessnessandelseif

10

11
11
12
12
13

14
14
15
15
15

16

17
18

19

6.2 andsandors 20

6.3 short conditionals oL oL 20
6.4 wunlessanddo oo 20

7 loops 21
71 repeat 21
T2 for ... 22

8 multiple values 23
81 oneandnone 23
8.2 multiple-valueloops oL 24
83 explode 24

9 procedures as values 25
9.1 first-class proceduresl 25
9.2 lambda-expressions Lo 26
9.2.1 “full lexical scope” 26

9.3 hole-expressions Lo 27
9.4 combining functions oL 27
10 more on absent 29
11 classes 30
11.1 class definition 30
11.2 updaters oL 31
113 methods 31
11.4 initialisers Lo 32
11.5 inheritance o Lo 33
11.6 overloading functions oL, 33

12 type-expressions 35
12.1 multiple oL 35
122 lots o o e 35
12.3 arrays L 35

12.4 optional types

13 packages
13.1 public and private oL Lo
13.2 imports
133 readonly
13.4 protected access and aliases

13.5 pervasive importo Lol
14 switches
15 numeric literals and units
16 fake XML syntax
17 enumerations

18 all sorts of unmentionable things
18.1 extended relational expressions
182 0p . . vt o e
18.3 super and extends Lo

18.4 shared slots

IIT the Spice reference manual

19 introduction

19.1 anoteonsyntax

20 lexis
20.1 words ... oL e
20.2 markso
203 comments L L
204 literals L

20.4.1 numeric and unit literals

37
38
38
39
39
40

41

42

44

46

47
47
47
48
48

49

50
50

20.4.2 string literals oo oL 53

20.4.3 character literals 55
20.4.4 regular expression literals 55

21 top-level syntax 56
21.1 programsol 56
21.2 modifiers 56
21.3 packages 57
214 imports 58
21.5 procedure definitionso oo 59
21.5.1 multiple definitiono 61
21.5.2 super and extends Lo 62

21.6 variable definitions L. oL oL 62
21.7 class definitions oo 63
22 small syntax 66
22.1 exXpressions . . . oL oo ... e e e e e e e e e e 66
22.1.1 name e e e e e e e e 67
22.1.2 hole 67
22.1.3 literal 68
22.1.4 explosions 68
22.1.5 prefix operatorso 68
22.1.6 postfix operatorsol 68
22.1.7 infix operatorso 68
22.1.8 assignment operators. 69
22.1.9 bracketed expressions 69
22.1.10call expressionso 69
22.1.11sequence expressions 70
22.1.12index expressionsol 70
22.1.13lambda expressionsl 70
22.1.14quotation expressions L. 71
22.1.15XML-like expressions 71

22.1.16new exXpressions« . .ottt e e e e e e e
221070 . L
22.1.18repeatl
22.1.19for
22.1.20switch oL
22.1.21var and procedure expressions

22.2 type exXpressions i o e e e e e

23 implemented but dubious features

23.1 throw and try expressions

24 designed but unimplemented features
24.1 unit definitionso oL

24.2 enumeration definitionso oo
25 scope rules

26 the standard library

26.1 generic procedures
26.2 numbers L.
26.3 enumerations Lo Lo
26.4 values with units oL,
26.5 strings L
26.6 symbols
26.7 booleans
26.8 AITAYS o e e e e e e e e e e e e e
26.9 bits. e
26.10procedures e e e e e e
26.11dictionaries and tables
26.12input and output oLl

26.12.1 pathname syntax and accessors

26.13types e e e

78
78

80
80
81

82

27 glossary

28 syntactic summary

96

98

Part 1

preamble

Chapter 1

origins, growth, and
features

This document describes the programming language Spice, which was developed,
from an idea of Dave Raggett’s, by Chris Dollin and Steve Leach. Spice is
intended to be a programming language suitable for occasional programmers
working with text, HTML, and XML, while scaling to medium-sized projects
with several experienced programmers.

The initial design work was done in autumn 1998 and subsequent modifications
made as implementations progressed and the designers gained some experience
with their creation.

The original language contained stylesheets and its syntax was closer to EC-
MAScript. The current language has lost stylesheets, which we could not fit
cleanly into our general framework, and its syntax has no C-like basis, being
more like that of Popll. The core of the language language remains and we are
experimenting with the addition of regular expressions.

The designers had some particular properties that they wished to exploit to-
gether in a programming language.

Spice has automatic storage management; programs allocate new values, which
are disposed of automatically of when they are no longer referenced. This frees
the programmer from a considerable administrative burden.

Spice is dynamically typed; by default, types are run-time entities attached to
values, rather than compile-time entities attached to expressions. This gives
flexibility in program development, at the cost of reduced up-front error detec-
tion and some run-time overhead. Type annotations can be added to variable
declarations, and the compiler will use these for error checking and optimisation.

Spice is expression oriented; (almost) all of the constructs of the language return

values, including loops. Spice is multiple valued; expressions denote a “row” of
zero or more values. The number of values an expression denotes is not a
compile-time property.

Spice is higher order; it supports functions as values, full lexical scoping, and
has a syntax for function literals (aka lambda-expressions).

Spice is multiply dispatched; functions can be defined piecemeal (“overloaded”)
on differing combinations of argument types, and when the function is called,
the piece with the “best fitting” formal arguments is executed. The usual single-
receiver dynamic dispatch of object-oriented languages (Smalltalk, C++, Java)
is a special case of Spice’s multi-methods, which are inspired by CLOS and
ObjectClass.

Spice is class neutral; new overloadings of any generic function can appear in
any package where that function is visible, and there is no special syntax that
distinguishes the invocation of an overloaded function from a non-overloaded
one. Classes do not provide namespaces.

The remainder of this document is in two parts; an introductory guide, intended
to give a practicing programmer a taste of Spice, followed by a semi-formal
reference manual describing the language as of September 2002.

Part 11

a gentle introduction to
Spice

10

Chapter 2

a gentle introduction to
Spice

In this and subsequent sections we speak as though the reader has access to a
Spice system into which they can type Spice code and have it executed. Lss
fortunate readers will have to take the results on trust.

2.1 hello, world

A long-standing Unix-spawned tradition is that one’s first program in a new
language should be the one that prints “Hello, World” or some suitable variant,
so here it is in Spice:

the traditional example
println("hello, world.");

Pasting this into your Spice evaluation should result in “hello, world” being
displayed somewhere obvious.

The line starting “#” is a Spice comment; the “#” and the following characters,
up to the end of the line, are ignored by the compiler. A lone “#” anywhere in
a line (unless as part of a string) introduces such a comment.

“hello, world.” is a string literal representing a sequence of characters. Most
characters can appear as themselves in a string, but specific exceptions are all
three quoting characters (string quotes, character quotes’, and symbol quotes ©)
and the escape character \.

println is the name of a built-in procedure. We’ll see later that Spice has several
kinds of procedure, including functions, methods, and constructors; we use the

11

term “procedure” to refer to them all without distinction.

The syntax F(X) is one form of procedure call; it evaluates the procedure F
(which in this case is easy) and the argument(s) X (ditto) and then calls the
procedure, supplying it with the values of the arguments. The procedure does
something (such as printing its argument) and may return some results. println
doesn’t have any results.

The semicolon is a statement separator, signifying the end of one statement and
(possibly) the beginning of another. Sometimes they are not necessary, but this
introduction will put them all in.

2.2 one, two, buckle my shoe
println isn’t restricted to strings; it can do numbers, too.

println(1);
println(1.032);
println(40 + 2);

Evaluating these should result in the values 1, 1032, and 42 being printed. The
underbar in 1_032 is just a visual separator. Spice has the “usual” arithmetic
operators, 4+, -, ¥, and /, although they have some extra wrinkles we’ll meet
later.What’s more, println can take multiple arguments:

println(1, 2, "buckle my shoe");

which will print 1 2 buckle my shoe. Note that the arguments are printed
preceeded by a space (this behaviour can be changed), and that there’s only
one newline printed, at the end. The degenenerate case println() with no
arguments just prints a newline.

2.3 variables
You can declarelvariables to hold values.

var X :=1+2+3+4+5+6+7+8+ 9 + 10;
println(x);

which will print 55. The value x holds can be changed by assignment:

Lvariables must be declared; trying to use a name that hasn’t been declared is an error,

even if you’re assigning to it, unlike eg Basic or Javascript.

12

x :=x * 10; println(x);

will print 550. Using the word val instead of var makes an unassignable variable
(rather an oxymoron, but there it is).

2.4 typed variables

It’s possible to specify that a variable is restricted to holding values of a given
type. For example,

var count: Small := 0;
someActionsHere() ;
count := "of Monte Christo";

declares count as a variable of type Small, restricted to “small” integer values
(typically in the range plus-or-minus half-a-billion) and then throws an error
when it attempts to assign a string (of type String) to it. If a variable is
declared with a type but no initial value, then the default value for that type is
used to initialise the variable; the default value of type Small is O:

var anInt: Small; println(anInt);

will print 0. If there’s no type then the variable is declared to be of type Any
(which means what it sounds like); the default value of Any is a special value
called absent.

13

Chapter 3

function definitions

There’s no magic about procedures that the user cannot harness. A simple way
to define your own procedure is to write a function definition:

define function add(x, y) => x + y enddefine;
println(add(1, 2));

add is defined and then invoked in the usual way, resulting in 3 being printed;
the body of add is evaluated!'to deliver its result.

3.1 typed arguments
The arguments to a function can be typed in the same way that variables can.

define function addChecked(x: Small, y: Small) =>
X +y
enddefine;

Calls to addChecked with non-Small arguments will throw an error. Spice
can (sometimes) take advantage of the type information to produce better code
or more informative error messages. Later on, we’ll see how type information
can be used to write polymorphic or overloaded functions.

IThere’s no need for a special return statement to specify the procedure’s return value;
the value of the procedure body is returned as the procedure result, and the body here is the
sum-expression x-+y.

14

3.2 typed results

The result of a function can also be typed.

define function addToInt(x, y) returns Small =>
X +y
enddefine;

The result from addToInt must be an Small value; if not an error will be
thrown. Again, the Spice compiler may be able to use this information to
generate better code or error messages.

3.3 indefinite arguments

How does println manage to have arbitrarily many arguments? It uses an
indefinite argument, marked with ellipsis notation:

define function gather(rosebuds...) => rosebuds enddefine;
println(gather("while", "ye", "may"));

rosebuds is an indefinite argument whose value is all of the (remaining) argu-
ments to the function. This prints as {while ye may}, which is the way array
values are printed; the arguments are turned into an array.

It’s possible to have one or more definite arguments before or after a final in-
definite argument:

define function foo(x, y...) as
println(x); println(y)
enddefine

foo needs at least one argument x but takes arbitrarily many more, which are
gathered into y. It then prints both x and y; if there are no extra arguments,
then y is an empty array, which prints as {}. println returns no results, so foo
returns no results.

3.4 abbreviating function definitions

Function definitions are so common that, in the interests of brevity, it’s usually
possible to omit the word function in the definition:

define subtract(x, y) as x - y enddefine;

We will usually leave it in.

15

Chapter 4

arrays

Spice allows arrays to be constructed using array expressions, which are expres-
sion sequences enclosed in braces:

var lots := {27, "now", "is", "the", "time", 42};
println(lots);

which will print {27 now is the time 42}. Arrays can contain values of any
type. Individual elements can be extracted by indexing:

println(lots[2]); lots[2] := "anguish"; println(lots);

which will print now and {27 anguish is the time 42}!. The function length
delivers the number of elements in its array argument:

println(length(lots));

will print 6.

IThe first element of a Spice array has index 1, so element 2 is the second element.

16

Chapter 5

dot and infix notation

It’s often useful and clearer to write calls to one-argument functions, expecially
those that just extract components from structured values like arrays, using dot
notation:

println(lots.length);
or even:

lots.length.println;

are just other ways of writing the previous calls. Similarly it is often clearer to
write calls to two-argument functions using at notation:

println(4 @add 5);

will print 9, after calling the add defined earlier. You can cascade this use of
@ just as you can a plain operator:

println(1 Q@add 2 @add 3 Qadd 4);

will print 10.

In fact you can call procedures of any number of arguments using dot- or at-
notation, because of a general rule of the language:

X.£(Y) == £(X,Y) == X @f Y, and X.f == £(X) == X @f

When at-notation and dot-notation'are used together, the “smaller symbol”
(the dot) makes a “smaller expression” than the larger one, so that

IThe only difference between . and @ is that . is much more tightly binding — it’s the
most binding infix operator — and @ is loosely binding, being only just tighter than the logical
connectives and and or.

17

x.f @g y.h
means

(x.f) eg (y.h)

5.1 dot and infix function definition

Although the plain fucntion definition syntax we’ve seen already is enough,
because of the equivalence of the different notations we’ve described, Spice allows
you to define a function in the style in which you expect it to be called:

define function x @add y as x + y enddefine;
or
define function x.add (y) as x + y enddefine;

The arguments can still be typed using :, and for a function defined with dot-
notation, the special on syntax:

define function x:Small @add y:Small as
Xty

enddefine;

#

define function on Small x.add (y:Small) as
X +y

enddefine;

Apart from the type differences, all four of these definitions are equivalent, and
add can be called in any of the ways we’ve discussed.

We’ll see later how these notations tie into the more common object-oriented
approaches, and why the on syntax is so-called.

18

Chapter 6

ifs and buts

So far, all of our expressions have been unconditional — get the arguments, do
something, deliver the result; no choices are involved.

Spice has conditional expressions for expression choices, and relational expres-
sions for tests.

if lots.length < 10 then "short" else "long" endif.println;

The relational expression lots.length < 10 compares the length of lots (which
is probably still 6) with 10 and delivers true if it’s less than and false if it’s
equal or greater. true and false are the built-in values of type Bool. Spice
also has the obvious >, <=, and >=, and = for equality, and the less obvious
/= for inequality.

The conditional expression tests the boolean value; if it is true its value is its
then arm, if it is false its value is its else arm, and if it’s not boolean!, an
error is thrown.

println is being called here with dot notation, with its argument being the
result of the if-expression, here the string short.

6.1 elselessness and elseif

The else part of a conditional is optional. If you miss it out, it’s as though
you’d written one with no expression following.

1Unlike various other languages, 0, the null string “’, and the null reference absent, are

not alternatives to false, and values such as 1, “yes”, and println are not alternatives to
true.

19

If you want to write a chain of tests, rather than ending up with ever-more-
deeply nested if-endif structures, Spice lets you introduce additional tests with
elseif:

if x = "hello" then
println("well hello there!")
elseif x = "goodbye" then
println("sorry to see you go")
else
println("eh? what does", x, "mean?")
endif

You can have as many elseifs as you need.

6.2 ands and ors

The test of an if can be composed using the special operators and and or. X
or Y is true if X is or if Y is, but Y is only evaluated if X is false. Similarly X
and Y is true if both X and Y are true, but Y is not evaluated if X is false.

That’s what makes these operators “special”: their right operand is only eval-
uated if its value is needed.

6.3 short conditionals

Spice also permits “short” conditional expressions, for which it uses the same
syntax as Algol68 (by coincidence): the expression (X | T | F) is equivalent to
if X then T else F endif.

6.4 unless and do

Spice has an alternate form of if, the unless (with closing keyword endunless)
which is the same except the sense of the (first) test is inverted. You can use
the word do in place of then; although you can do this in any part of an if or
unless, it usually turns up in an unless with no else.

20

Chapter 7
loops

Spice has a rich for loop construct, which allows iteration over collections,
termination on conditions, and specification of loop results. A subset of those
is available in the repeat construct.

7.1 repeat

Suppose we want to iterate over the elements of an array lots. Here’s one way
to do it with repeat while:

var i := 0;

repeat while i < lots.length do
;35 stuff involving lots[i] ...;
i+:=1

endrepeat

The expression i +:= 1 is equivalent to i := i + 1, but more compact, especially
when i is some complex expression.

For example, to find the element of an array containing a specific element by
complete linear search:

define function findIndex(a, x) as
var i := 0;
var here := 0;
repeat while i < a.length and here = 0 do
if a[i] = x then here := i endif;
i+:=1
endrepeat;

21

here
enddefine

The index of the first element equal to x is stored into here and then returned
as the procedure result. The equality test = compares values using type-specific
code.

If you’re wondering why Spice uses repeat while, and not just while, the
reason is that it also has repeat until (where the condition is inverted), and
that you can write code between the repeat and the while. while is also used
in for loops.

7.2 for

We can perform the same loop with automatic counting and implicit value
return, using a for-loop with two control clauses:

define function findIndex(a, x) as

for
i from 1 to a.length
until a[i] = x then i
finally O
endfor;
enddefine

The variable i is automatically declared as a variable that exists only while
the loop is executing; it takes values from the from value (1) to the to value
(a.length) inclusive. The loop terminates early when an element a[i] = x
is found, and it delivers the result i. If the loop terminates normally (ie by
exhaustion of a source), it returns the value of the finally clause, here 0.

for loops can also iterate over collections, using the in syntax:

define function findIndex(a, x) as

for
i from 1; ax in a
until ax = x then i
finally O
endfor;
enddefine

ax is automatically declared, and takes on the value of each element in turn;
we still need to keep track of the index, so we count i from 1 upwards anyway.
Leaving out the limit for i means that it will count upwards “forever”; similarly,
leaving out the from part starts it at 1. (No, you can’t leave out both.)

22

Chapter 8

multiple values

So far, we’ve seen Spice expressions and procedures which deliver single results.
Spice expressions can deliver multiple results directly!, often avoiding the need
to construct new objects to hold them.

define function plusOrMinus(x, y) =>
x+y,x-y
enddefine;

The comma keeps both its left and right operand values (exactly as it does in a
function argument list); plusOrMinus delivers two values.

println(20 @plusOrMinus 17);

will print 37 3.

8.1 one and none

Because Spice’s multiple values get everywhere, sometimes you need to prune
them. There are two useful built-in functions for this: none and one.

none(X) simply discards the values of all its arguments, as though it were
defined by:

define function none(ignored...) as enddefine;

! Another trick for getting several values out of procedure calls is to use reference parameters
- but Spice doesn’t have those. The nearest equivalent would be to pass already-made objects
and update them.

23

one(X) returns the first of the argument values X, if there are any, and other-
wise delivers absent, as though it were defined by:

define function one(args...) as
(args.length == 0 | absent | args[1])
enddefine;

8.2 multiple-value loops

The result of a loop is all the results from the executions of its body, plus any
finally-values.

println(for i from 1 to 10 do i*i endfor)

to print 1 2 9 16 25 36 49 64 81 100.

8.3 explode

One built-in function produces multiple results as a matter of course; explode.
explode takes one argument and explodes it into its constituents (if any) as
a multiple result. Applied to an array, it explodes it into its elements; applied
to a string, it explodes it into its characters. Applied to an atomic object (a
number, a character, a boolean, absent) it delivers no values.

24

Chapter 9

procedures as values

Spice procedures are not restricted to being defined and called; there are several
ways they can be manipulated.

9.1 first-class procedures

Spice procedures are first-class values; they can be passed as parameters, re-
turned as results, and stored into variables and data-structures such as arrays.

This is particularly useful when you need to do something to all the elements of
a collection, but the details of how the collection are kept is secret (eg to allow
you to change it later); you write a function that walks over the collection and
does “something” to each element. The only collection type we’ve met so far is
arrays, so here’s an example supposing that anArray is an array variable:

define function appCollection(f) =>
for x in anArray do x.f endfor
enddefine

Now the expression appCollection(println) (which of course can also be writ-
ten println.appCollection) will print all the elements of anArray. If the
elements do something sensible when passed to some function mangle, then
mangle.appCollection will mangle all of them.

appCollection returns all the values that f returns for the caller to do with as
they like. Of course, we might want to construct a new collection from the old
one by mangling each element:

define function mapCollection(f) =>

25

{f.appCollection}
enddefine

which gathers up the results from appCollection and makes a new array out
of them.

9.2 lambda-expressions

Passing functions as arguments, and applying them, is all very well, but it can
get tedious defining trivial functions to use. For example, if we want to make a
new collection by incrementing every element of the old one, we can write:

define function inc(x) as x + 1 enddefine;
inc.mapCollection.println;

If them is, say, the collection {0 8 41} then this will print {1 9 42}. But
it’s tedious to have to define a function, put it somewhere in the code, give it a
suitably mnenomic (but short) name, then then pass it. Wouldn’t it be nice if
you could write the function right where you were going to pass it?

Of course the answer is “yes”, otherwise we wouldn’t have posed the question.
The expression (A => E), where A is an argument list (with the brackets
omitted) and E is a sequence of expressions, is called a lambda expression
(for historical reasons to do with Church’s lambda calculus) or a procedure literal.
Lambda-expressions are intended to be used for short procedures; otherwise they
can make the code look cluttered.

Instead of defining inc above, we can write
(x => x + 1) .mapCollection.println

for the same effect. To double each element, use (x => x * 2); to square it,
use (x => x * x); to replace it with 0 use (x => 0).

9.2.1 “full lexical scope”

Because we haven’t said you can’t, you may suppose that you can write lambda-
expressions within procedures, and similarly, that those expressions may refer
to, even assign to, local variables of those procedures. And you can.

define function const(x) => (ignored => x) enddefine

26

const is a function that makes constant functions; const(E) is a function that
delivers the value of E whatever it’s applied to, so const(0) is a function [of
one argument] that always delivers 0. The variable x which is the parameter
to const is available to the lambda-expression even after const has finished
executing.

This behaviour (that the variables of a function are visible to lambda-expressions
within that function, and that they live on after the function returns) is called
full lexzical scoping. It’s relatively uncommon in programming languages (with
the notable exceptions of Common Lisp, Scheme, Popl1, and Smalltalk), but it
is your friend.

9.3 hole-expressions

Lots of little lambda-expressions are just an operator (or function call) with one
(or two) arguments “missing”; like inc and its brethren above. For these Spice
allows you to write a special form of lambda-expression, the hole expression,
which is a function call or operator invocation with some of its arguments re-
placed by holes. The usual hole is written ?, and it stands for “the argument”;
it makes the application or invocation into a lambda expression.

So ? 4 1 is another way of writing (x => x + 1), where x has been replaced
by the hole and the argument declaration is unnecessary.

? - 1 is the function that subtracts 1 from things, 42 - ? is the function that
subtracts things from 42, and 7 * 7 is the function that squares things. Both
?’s refer to the same argument.

Just in case you ever want to use holes for functions with more than one ar-
gument, there are as many holes as you like, written 7?1, 72, and so on; ? is
shorthand for ?1. A hole-expression has as many implied arguments as the
biggest hole it uses; the Spice compiler will be curious about expressions with
missing holes (eg 719 + 1).

9.4 combining functions

Because it’s possible to write functions that take and deliver other functions,
its possible to write combining functions who’s job is just to manipulate other
functions; this can result in a style known as higher order programming.

The standard function Then [note the capital T!] takes two functions f and g
and returns a new function that takes some arguments X, applies f to them,
and then applies g to the result; it might be written as:

define Then(f: Function, g: Function): Function =>

27

(args... => args.explode.f.g)
enddefine;

Note that explode generates arbitrarily many results, all of which become
arguments to f; all of fs results become arguments to g; and all of gs results
become the results of the lambda-expression. Nothing special has to be done by
the programmer to keep track of how many arguments and results are returned.

28

Chapter 10

more on absent

We mentioned earlier that the value absent is the default value of type Any.
It’s used in Spice as the “missing” value, when no more constructive value is
available, for example as the result of a failed lookup in a table.

It turns out that code like “the value of X, unless it’s absent, in which case the
value of Y” appears quite often. Spice allows this to be written compactly using
the operator ||.

X || Y has the value X, unless it’s absent, in which case it has the value Y; Y is
not evaluated unless it has to be (ie, X is absent). It’s rather like a pumped-up
or where any non-absent value counts as true.

Similarly, X && Y is absent if X is absent, and the value of Y otherwise;
again, Y is only evaluated if it has to be (ie, X isn’t absent). It’s rather like a
pumped-up and.

29

Chapter 11

classes

So far we’ve only uses (some) of the built-in Spice types: integers, strings,
arrays, and procedures. Spice also allows you to define your own data-types
using classes.

11.1 class definition

A class definition allows you to define a new type for objects which you can use
in your code. The simplest class definition introduces a type with named slots:

define class Pair
slot front: Any := absent
slot back: Any := absent
enddefine;

This defines a new class object, Pair, with two slots called front and back. The
slot declaration is similar to a var declaration, except that it makes variables
“inside” objects; you can leave out the initialiser and type in the usual way.

The name Pair becomes a new type name. You can use it as the type part of
a variable declaration: var p: Pair means that p can hold only Pair objects.
(The default value of Pair is a Pair with both slots absent.) Or it can be used
to type a procedure argument.

You can print out the class if you wish; Pair.println will print something like
<Class Pair extends <absent>>. (We say “something like” because it’s
possible to change the default way objects get printed.)

You can make new Pair objects with the expression new Pair(). Each such
object has a front and a back, which start off as absent, and which you can

30

change. Every object also responds to the function typeOf by delivering its
class object.

11.2 wupdaters

Suppose we’ve declared var p := new Pair(); so that p holds a new Pair
object. We can assign to the front and back slots of p:

p.front := 1, p.back := "two";
println(p.front, p.back);

prints 1 two. In Spice, it’s possible to call procedures on the left-hand-side of an
assignment, in which case what happens is that the updater of that procedure is
called. Just as Spice makes procedures to access the slot-slots of a class value,
it gives them updaters to change those values'.

You can define your own updaters if you wish:

define function x.foo :=y as
println("updating", x, "with", y)
enddefine;

The := y says this this is defining the updater of foo (and there had better
be a definition for foo elsewhere; you can’t define the updater of a procedure
that doesn’t exist) and that y is the name of the parameter which is the “right-
hand-side of the assignment”. y can be typed, as usual.

While an updater can do whatever it likes, it is usual that updaters are given
only to access functions, and that they do the “obvious thing”; after an assign-
ment x.foo := E then the expression x.foo should deliver the value E that was
assigned.

If foo is a procedure, then foo.updater is the updater of that procedure, if it
has one, and absent otherwise.

11.3 methods
A class can also define methods which act on objects of the type it defines.

define class Pair

1Unlike some languages (Common Lisp, Dylan), it is the procedure value that has the
updater, not the procedure name. This means that you can call the updaters of procedures
passed as parameters or stored into data structures. This is the bevahiour found in Popll.

31

slot front: Any := absent
slot back: Any := absent

#
define method wipe() =>
this.front := absent, this.back := absent
enddefine;
#
define method setPair(x,y) =>
this.front := x, this.back =y
enddefine;
#
enddefine

This version of Pair defines two methods, wipe and setPair. wipe sets both
slots to absent, and setPair sets them to the given parameter values. The
name this is bound to an implicit additional parameter, which is the instance
of Pair to be changed.

Methods are procedures, and you call them in the usual ways; if p is an instance
of this Pair, then p.wipe will wipe it, and p.setPair(1,2) will set its front
to 1 and its back to 2. This reveals that this is bound to the first argument
value. In fact, if it takes your fancy, you can use a different name than this,
using the same function-definition syntax that we saw earlier:

define method self.wipe as
self.front := absent; self.back := absent; none
enddefine

would be a suitable replacement for Pair’s version of wipe.

We’ll see more about methods when we discuss inheritance, later.

11.4 initialisers

The new Pair() syntax is a bit limited, because you can’t easily set new values
for its slots. If you want to create a new object and set the values of its slots,
you can define an initialiser. Here’s yet another version of Pair:

define class Pair
slot front: Any := absent
slot back: Any := absent
define init pair(x,y) =>
this.front := x, this.back := y

32

enddefine
enddefine
You can make a new initialised Pair by writing new pair(“hello”,“world”).
This works by making a new Pair and then handing that on as the this for
pair. Any values returned by an initialiser are discarded; the result of a new
expression is the newly constructed object.

You can have as many initialiser definitions as you like for a class. As a special
favour, you can use define init (with no name) inside a definition of a class P
to define overloadings of new P (X).

11.5 inheritance

A class can extend an existing class. Here’s one example; we might choose to
make triples an extension of pairs.

define class Triple extends Pair

slot side
define init triple(x, y, z) extends pair(x, y) =>
this.side := z
enddefine;
endclass;

Triple has all the slots that Pair does, and one more: side. front and back
automatically work on Triples. Triples are Pairs, and then some. The ini-
tialiser triple works by first invoking the initialiser pair in its extends clause
to do the first two elements, and then assigning the third itself.

Not just front and back, but any function that works on Pairs and doesn’t
explicitly exclude non-Pairs will work on Triples.

11.6 overloading functions

How does this happy state of affairs come about? When the argument type is
the name of a class (like Pair), then it will accept values of any of its extensions
(like Triple).

Sometimes, we want the behaviour of a method to be different in sub-classes than
in the parent. In this case, the parent must define the method to be generic
and mark the varying argument type with :-, and the different definitions for
the sub-classes must be declared as specific and mark the same argument(s)
with :-. This works outside as well as inside classes; the only difference is that
inside a class, the implicit this argument is added to the method signature.

33

Here’s an example of generic procedures outside a class:

define generic size(x:- Any) as O enddefine;
define specific size(x:- Small) as x QlogBase 2 enddefine;
define specific size(x:- String) as x.length enddefine;

This defines the size of an integer to be its bitswidth (and blows up if x is 0),
the size of a string to be its length, and the size of anything else to be 0. The
choice of which definition of size to use is made when size is called, by looking
at the types of its arguments.

34

Chapter 12

type-expressions

So far we’ve said little about the type-expressions that can be written following
:, except that certain built-in names (Any, Small, String) are allowed, and
the names of any classes.

In fact types can be expressed with expressions, which have the same syntax
and semantics as value-expressions. There are four important type-expressions
in Spice: multiple, lots, array, and non-optional types.

12.1 multiple

If T and U are types, then (T, U) is the multiple type which is a value of type
T then a value of type U.

12.2 lots

If T is a type, T** is the lots of T type, which is some unspecified number of
Ts as multiple values. The return type of a procedure defaults to being Any**.

12.3 arrays

If T is a type, then {T} is the type array of T or T row. Note carefully that
the Spice array constructor {E} always makes values of type {Any}, because
Spice arrays can hold any kind of value; to make eg an {Small} you have to
invoke a special constructor IntArray(E).

35

12.4 optional types

Unless otherwise specified, absent is not permitted where a value of a specific
(non-Any) type is expected; so a variable typed as Small cannot legally be
given absent as its value. This can be over-ridden by using the optional type
constructor; if T is a type, T?? is the type which all the values of type T and
also the value absent.

36

Chapter 13
packages

So far we’ve seen fragments of Spice code out of context for illustrative purposes.
In real life, Spice code code should be organised into packages. A package is a
collection of procedures, variables, and classes which work together to provide
a coherent service to the programmer who uses that package.

A package starts with a package header, which identifies the package and the
version of Spice it was intended for, specifies any other packages it may need,
and then continues with the package body, which is a sequence of declarations
and expressions.

The header starts with the spice specification part, which consists of the reserved
word spice, a version string, and possibly some preference settings. The version
string is a string specifying the version of Spice that the package is supposed to
work with, and the preference settings control the Spice compiler.

Otherwise the header starts with the reserved word package and the package
name, which is a series of simple names deparated by dots. For example,

spice "release.2.0";
package this.is.an.example;

Spice does not constrain package names to conform to file names on your local
system!, but it’s a good idea to put a package whose name ends in .foo in
a file called foo with a suffix (sometimes, misleadingly, called the “file type”)
acceptable to your Spice implementation, for example .spi2.

1 An IDE for Spice is required not to insist that package names form a path through a filing
system hierarchy, and is required to accept package name components longer that the local
filing system component names, and with “strange” characters in.

2The current Spice prototype compiler allows the mappings from package names to filestore
names to be specified in package mapping entries in its initialisation file, as part of a proof-
of-concept.

37

13.1 public and private

A package exists to make a service available to its users, which it does by making
some of its identifiers visible to those users. By default, none of the identifiers in
a package are visible. However, declarations can be marked as public by writing
declaration qualifiers. To make a public variable, for example:

public var exposed: String := "hello"

declares a public string-only variable called exposed. You can mark a variable
private instead, but since this is the default, it won’t make much difference.
public and private are keywords.

You can declare a function public in the same way:
define public inc(x) => x + 1 enddefine;

More importantly, you can declare a class public. If you do so, the class name
is public, and so are all the non-slot methods declared in it. The slot methods
(ie the names of slot-variables) are still private by default; you can declare them
public explicitly, and you can declare the other methods private explicitly.

13.2 imports

public is one side of the coin; imports is the other. A package can import
another one in its header.

package using.example;
import this.is.an.example;

This makes all the public identifiers from this.is.an.example visible inside
using.example. If you don’t specify where this other package is to be found,
the Spice compiler will use a set of (implementation-specific) rules to locate it,
but you can be explicit:

import this.is.an.example from "/home/hedgehog/example.spi";
import this.is.an.example from
"http://cdollin/Spice/Modules/example.spi";

Following the from is an expression (almost always a string literal) with the
URL for the source of the package.

Spice does not require than imported packages are written in Spice; it is expected
that implementations will define ways to import packages written in commonly-
used languages such as C, C++, Java, and Javascript.

38

13.3 readonly

It’s possible to qualify public variables and slots as read only, which means
that they can be read but not changed by importing packages. For ordinary
variables, all that need be done is to prohibit assignment to them; but for slots,
which are accessed by procedures, it’s not quite so simple.

When a slot is marked read-only
public [readonly] slot magic := 42;

(the square brackets mark readonly as a modifier, as it is not a reserved word)
then the compiler makes two versions of magic; one for local use, and one for
export. Only the local version has an updater. This can cause the interesting
situation:

package readonly.example;
#
define class P
public [readonly] slot magic = 72;
enddefine;
#
define function testEqual(x) as
println(x == magic)
enddefine;
#
endpackage
#
now run testEqual from another package
#
package Q
import readonly.example;
#
testEqual(magic);
#
endpackage

which will print false as the exported magic is a different function to the local
one.

13.4 protected access and aliases

It’s possible to import a package, but to declare that you need to specify its
name everywhere you specify its variables:

39

import protected readonly.example;

To refer to magic now you need to prefix it with the last part, the leafname, of
its package name: example::magic. (You don’t use the full name of a package
except in package and import declarations.)

The main use of protected is to allow an imported package to define lots of
useful names (usually constants) without polluting your own packages names-
paces.

If you don’t like the last part of the package name, or if it would be ambiguous,
you can change the part you specify:

import protected boo = readonly.example;

Now boo is an alias for readonly.example, replacing its leafname, and we can
write boo::magic.

13.5 pervasive import

A package that imports some identifiers — say, brick and concrete — from
another package does not by default re-export them; they’re not part of its
public interface. They can be injected into the public interface by qualifying
the import with public:

public import readonly.example;

Now this package exports example::magic.

40

Chapter 14

switches

The power of Spice’s overloaded functions means that you won’t write switches
so often as you might in a more conventional language. But you still need to be
able to choose from finite selections of integer and string values, so Spice has a
general switch construct:

switch x
case 1 then statement1();
case 2 case 3 then statement2();
case "hello" then # nothing
case "world" then statement3();
else statement4();

endswitch

If x has the value 1, then statement1() is executed. If it has the value 2 or 3,
then statement2() is executed. If it has the value “hello”, nothing happens;
if it has the value “world” statement3() is executed. And if it has none of
these values, statement4() is executed.

The switch expression and the case expressions can be any Spice type; they’re
not restricted to numeric values. String and symbols are particularly useful.
The case values need not even be compile-time constants, although that makes
the switch less efficient, and in the interests of efficiency, if a switch has a
compile-time case label of N then that takes priority over any run-time case
label evaluating to N.

There’s no need for a break or similar construct to leave the switch; the case
body starts with its first statement and ends just before the next case or else.
Only one else is allowed per switch.

If there’s no default, it’s as though else none(); had been written.

41

Chapter 15

numeric literals and units

So far we’ve taken numbers pretty much for granted, writing them as digit
sequences with the occasional _ for visual clarity. Spice has an extensive set of
numeric literals.

All numeric literals start with a digit, and all numeric literals may contain
underbars (which are ignored; they are there for the reader’s visual convenience).
When numeric literals contain letters, their case is irrelevant.

Numeric literals can be written in many bases: a non-decimal base is specified
by writing it at the front of the number and following it with x (or X). The rest
of the literal is interpreted as being expressed in that base, with letters being
used for the extra digits; so the base cannot be more than 36. As a special case,
0x can be used as in C and Java, for base 16.

A numeric literal may have a scaling factor, which is the letter e (or E) optionally
followed by a sign (“4” or “”) and a series of digits. The digits represent a
number in decimal, and the scaling factor is the literal’s base raised to that
power. If the literal’s base is greater than 10 then the sign is not optional
(otherwise 0x4e5 would be ambiguous). If present, the scaling factor is before
the units.

A numeric literal that has a base less than or equal to 10 may end with a series
of letters specifying the units in which the value is expressed. Typical units
are px (pixels), in (inches), s (seconds), em (ems — a printing unit), and mm
(millimetres).

The arithmetic operators work on values with units in the “natural” way, so
you can add and subtract values with like units. (You can’t just add a number
to a unit value, though; 42in 4+ 1 will generate a run-time error.) What’s
more, if the units are different but have the same underlying dimension (eg
both lengths), then they can still be added and subtracted, by converting them
to a common scale.

42

You can multiply values with units by numbers, in the obvious way. You can
multiply values with units together, too; 6in * 7in is 42 in in, or 42 square
inches. Division works in the corresponding inverse way.

An integral literal is a series of digits, possibly with a base specifier (in which
case the digits can include letters), possibly with a scaling factor and units. A
floating literal is a series of digits, a decimal point, and a second series of digits;
again, it may include a scaling factor and units.

43

Chapter 16

fake XML syntax

To make simple manipulations of XML data possible, Spice has a built-in XML
data type and an XML-like syntax for constructing those values.

val x = <snark> 99 </snark>;

will construct an XML node with tag the string snark and a single element,
the value 99, and initialise x with it. The value is an instance of the built-in
class XMLNode, which has three useful methods: xmlTag will return the tag
of the node, xmlChildren will return a sequence of the elements of the node,
and xmlAttributes will return a sequence of the attributes.

A tag constructed by the <tag> syntax will be a literal string, but Spice allows
it to be any value you like; just use as a tag an expression in brackets. In this
(and other) cases it’s a pain to have to repeat the tag in the </tag> part, so
Spice allows the special closing tag </> which closes the most recent unclosed
tag.

println(<(34 / 2)> 42 </>);
will print 17. The elements between the opening and closing tags are expres-
sions, not literal text (so Spice XML isn’t real XML text, just a useful fake),
and of course can include more XML constructs:

<chapter><verse>"hello"</>,1+2,<verse>"world"</></chapter>

Note the sneaky commas needed to separate elements.

Each attribute in the sequence returned by xmlAttributes is a Maplet, a
single key-value pair; maplet.mapName is the key, and maplet.mapValue
is the value. The attribute-setting syntax:

44

<tag attrOne=1 attrTwo="pi" attrThree=x attrFour=(Expr)> </>

allows arbitrary expressions to be bound to attributes, but for syntactic reasons
if the expression isn’t a constant or variable it has to be enclosed in brackets.

When working with XMLNodes, Spice multiple values are especially useful,
because they can be constructed by loops:

<answer>

for x in somelnterestinglList do
computeZeroOrMoreValuesFrom(x)

endfor

</answer>

All the answers from compute... become child elements of the answer node.

45

Chapter 17

enumerations

Sometimes you want a collection of distinct named values, for example as
the names of options (small, medium, large, jumbo). Rather than us-
ing val integer variables (which can be confused with plain integer values) or
strings/symbols (vulnerable to silent mis-spellings), Spice allows you to define
enumeration values:

define enum Size = small, medium, large, jumbo enddefine;

Size becomes a new type name, and small, medium, large, and jumbo be-
come new values of that type. print(medium) will print medium; the values
retain their names. Each value also has an associated small integer, starting at
1 (for the first) and taking on successive values; you can see this number using
magnitude, so large.magnitude.println will print 3, and you can construct
enum values from numbers: new Size(4) is identical to jumbo. Using values
outside the range will generate an error.

Spice’s enumerations are just shorthand. An enum type is a class extending the
built-in Enum class, which has slots for the name and magnitude of its values.
Each enum value is an instance of its class'with the slots set appropriately.

1Spice implementors are encouraged to implement enum values as efficiently as possible,
taking advantage of their specialised nature.

46

Chapter 18

all sorts of unmentionable
things

18.1 extended relational expressions

In Spice, the relational operators have a special syntactic property; you can
write expressions like x <=y <= z to mean (x <=y) and (y <= z). The
expression y will be evaluated at most once. The operators do not have to be
the same (x = y <= z is fine) and you can chain them up as long as you like
(x =y = z = h = q s fine, to00).

18.2 op

Sometimes you’d like to get at the functions that implement Spice’s infix op-
erators, usually so that you can pass them to higher-order procedures (eg for
zipping two arrays together with a specified procedure such as addition). The
form op Operator, where Operator is a Spice operator, gets a procedure that
has the effect of that operator; so op + is a procedure of two arguments that
adds them together and op = is a procedure of two arguments that tests them
for structural equality.

op and and op or deliver ordinary procedures of two arguments (the special
syntactic property that means that E; and Es need not evaluate E, is lost) as
does op =, op <=, etc (the chaining property is lost).

47

18.3 super and extends

Sometimes, in an overloaded procedure definition, you wish to invoke the more
general version of that procedure; you do the general case, then you do your
more specific one. The identifier super in a procedure is bound to the next
most general definition of that procedure.

An initialiser (ie a method new) must invoke its more general case, and what’s
more, must do so before it starts its own initialisation. Rather than using super
(which in any case doesn’t have quite the right effect), that pre-initialisation is
described in the extends clause of the initialiser, which provides calls to the
other initialisers. If the extends clause is left out, it is as though you’d written
extends Parent() where Parent is the parent class of this one.

18.4 shared slots

A class can have a shared slot, introduced by shared in place of slot. A shared
slot is a single location accessible through any instance but shared by them all.
(A shared slot is different from a variable declared in a class; it is accessed by
method-call syntax, as ordinary slots are, rather than simply by its name, as
variables are.)

48

Part 111

the Spice reference manual

49

Chapter 19

introduction

19.1 a note on syntax

Syntax is described using an extended BNF. Terminal symbols that are names
are in bold; terminals that are symbols are in bold and quoted, eg, “+-4”.
Non-terminals are in this font.

Grouping is shown by round brackets. Optional elements are enclosed in square
brackets, eg in “?” [Integer] the Integer may be omitted. A suffix operator
* is used to mean “zero or more of”, while a postfix operator + means “one or
more of”.

The infix operator E ** X is used to mean “Zero or more Es separated by Xs”;
X is usually a comma or semicolon. Similarly infix E +4 X means “one or
more E’s separated by X’s”.

All the syntax definitions in the body of the document are collected together in
appendix B.

50

Chapter 20

lexis

A Spice program is made up of a series of tokens. Tokens are separated by token
gaps. Token gaps are unimportant except that they may serve to separate tokens
that would otherwise combine into single tokens (eg the two tokens x and then
must be separated by a gap, otherwise they would be recognised as a single
token xthen).

A token gap is any sequence of spaces, newlines, horizontal or vertical tabs, and
form-feeds, possibly containing comments (see below).

A token is a word, a mark, or a literal. A word is a sequence of letters and digits;
a mark is a sequence of mark characters; and a literal is a string, character,
numeric, or unit constant. The lexis makes no substantive difference between
those words (or marks) that are reserved and those that may freely be used as
identifiers (or operators).

20.1 words

A word is a series of letters, digits, or underbars, starting with a letter. Words
are case sensitive and of unlimited length.

By convention, type names start with upper-case letters and non-type names do
not, and capitalisation rather than underbars are used to mark word boundaries
in names.

20.2 marks

A mark is either a simple mark or a compound mark. A simple mark is one of
the characters “(”, “)”, “{”, “}”, “I”, 17, ", “”. A compound mark is a series

o1

of mark characters, where a mark character is one of “ Q% &*-+=|..7/<>".

“<>7) “4447, “|->” ete are all possible Spice marks, even though they have
no predefined meaning; they are reserved for future expansion.

Because of the use of “<” and “>” in the XML-like syntax, there are special
rules for tokens starting with them, allowing the XML-like syntax to be a little
more compact: leading sequences “</>”, “</”, “><” are broken down into
their component single-character marks.

20.3 comments

A comment is either the character “#” followed by all characters up to a newline
or end-of file, or the mark “/*” followed by any series of characters excluding
“*¥/” and then by “*/”.

20.4 literals

There are four kinds of literal in Spice: numeric literals, string literals, character
literals, and regular-expression literals. The numeric literals may be decorated
with units.

20.4.1 numeric and unit literals

A numeric literal represents an integer or floating-point number, possibly with
units, possibly in a radix other than the default 10. Within a numeric literal,
underbar characters may be present; they are immediately discarded, being
there only for presentation (eg to make 7_476_294 readable).

plain integer literals

A plain integer literal is a series of decimal digits. It represents the obvious
number in radix 10. There is no limit to the number of digits permitted, and
the correct integer value is preserved; Spice will use values of the BigINNum type
if necessary.

radix-specified integer literals

A radix-specified integer literal consists of a radix specifier, which is a series of
decimal digits followed by the letter x (in either case), followed by a series of
letters and digits. The letters must be consistent with the radix, in that if the
radix is k then no letter past a 4+ (k - 10) is permitted; if the radix is 10 or

52

less, any letters terminate the numeric part of the literal. The special case 0x
can be used in place of 16x.

integer literals with units

A plain integer literal, or a radix-specified integer literal with radix 10 or less,
may be immediately followed by a unit name, which is a series of letters. The
integer value represents a value in those units. Thus 45cm, 19mile, and 6sec-
onds are all legal, assuming that those units have been declared.

The value denoted by nU, where n is the number and U the units, is the
measure value with n as its magnitude and the unit named by U as its unit.

plain floating literals

A floating literal is a series of decimal digits, a decimal point, and another series
of decimal digits; it represents the “obvious” floating-point number. It may be
followed by an exponent specifier, which is the letter e, optionally followed by
a sign (+ or -), followed by a plain integer literal.

radix-specified floating literals

A radix-specified floating literal is a radix specifier followed by a series of let-
ters and digits, a decimal point, a series of letters and digits, and an optional
exponent specifier.

The radix specifier gives the radix of the floating point number but not the
exponent. If the radix is 10 or less, then letters terminate the numeric part of
the literal. If the radix is more than 10, the sign in any exponent specifier is
not optional.

floating literals with units

A floating literal with radix 10 or less may be followed by a unit name, as for
integer literals with units.

20.4.2 string literals

A string literal is a character sequence starting and ending with the double-quote
character “. The characters between the quotes are any characters except quotes
(any flavour), newlines, control characters, or backslashes except as permitted
by escape sequences. These escape sequences are shared with character literals
and Spice-style regular expressions, see below.

53

e \n — a newline
e \f— a form feed

e \v — a vertical tab

\r — a return

\b — a backspace

\t — a horizontal tab

e \s — a space

\\ — a backslash

\” — a double quote

\’ — a single quote

e \‘ — areverse quote

\&stuff; — an entity reference; stuff should be an allowable HTML entity
reference, and the escape sequence denotes that character.

\L\L AL \E L V¥ \%, \? — these characters stand for themselves, even
if they occur in an regular expression; they are said to be protected.

\ (Expression) — this is an interpolation, where the value of the expression
is inserted into the string.

Any other backslash sequence \X is reserved.

A string with an interpolation'is not a literal constant; it may evaluate to
a different string value each time the literal is executed. The expression is
evaluated and each of its multiple values converted to a collection of characters
inserted into the string.

e character values are inserted as themselves

e string values are inserted as their component characters

e integer values are treated as the Unicode characters with the corresponding
values

lInterpolation has not been tested in the current Spice implementations.

54

20.4.3 character literals

A character literal has the same syntax as a string literal, except that the
delimiters are the single quote ’ instead of the double quote.

A character literal denotes the multiple values formed by all its constituent
characters. Thus ’ ’ denotes no values, ’x’ denotes the single character x, and
’spoo’ denotes the characters s, p, o, o.

20.4.4 regular expression literals

Spice has two regular expression syntaxes: a traditional syntax and a native
syntax. The traditional syntax is based on existing regular-expression notations
with little modification, and the native syntax is designed to mesh cleanly with
the string syntax. Regular expressions are a late addition to Spice, and many
details have not been settled, pending experimental implementation.

A traditional regular expression literal starts with the sequence // and then
is a sequence of characters terminated by a closing /. The sequence cannot
include any unprotected /. The exact permitted syntax of the sequence is
under discussion, but we expect to conform as far as is possible with the syntax
used by the Java regex package.

A native regular expression (NRE) starts with the sequence /* and then is a
sequence of characters terminated by a closing ”’; the sequence cannot include
an unprotected quotes. Within a native regular expression, all the usual string
escapes apply with the same meaning, and protected characters stand for them-
selves and have no meta-meaning.

Our proposal is that the characters ?|*{}[]% are special [that is, do not stand
for themselves] within NREs. % is the marker character and the rest are meta-
characters.

e character classes, [XYZ]: the square brackets enclose compact character-
class expressions.

e grouping, {E}: braces are grouping brackets which have no effect on back-
references.

o repetition, E*: suffix * is the Kleene star.
e wildcard, 7: matches any character.
e alternation, E|F: matches either E or F.
Other syntactic jobs are performed by sequences introduced by the marker char-

acter. They are expected to be less frequent and so a larger overhead to use
them is acceptable.

95

Chapter 21

top-level syntax

A Spice program is composed of a collection of packages. A package consists
of a header, which identifies the package and what it relies on, and its body,
which is a series of definitions possibly interspersed with executions. Definitions
define variables, procedures, classes, enumerations, and units; executions are
expressions that perform some run-time activity.

21.1 programs

defl. Program ::=
[(Spice)] (Package* | PackageBody)

def2. Spice ::=
’spice’ String (’,’ (Name ’:’ Expr))x*

The String identifies the version of Spice that the writer assumed when the
package was written; it is a dot-separated sequences of integers or names (eg
“1.0” or “5.beta”). The Name-Expr pairs define settings for compiler prefer-
ences; each Expr must be evaluable at compile-time.

The spice preamble is intended for future expansion.

21.2 modifiers

Modifiers are annotations to declarations. They allow a declaration to be
accompanied by arbitrary information. Modifiers can appear in two different
positions, marked modifiers and unmarked modifiers; marked modifiers can dec-
orate declarations not introduced by define (eg, var and slot), and thus need
a more restricted syntax.

56

def3. OpenModifier ::=

MarkedModifier Modifierx*

def4. Modifier ::=
MarkedModifier
| »[’ Name [(MarkedArgument)]#k >, *]?

def5. MarkedModifier ::=
’public’
| ’private’
| 'protected’

def6. MarkedArgument ::=
Literal
| >’ Expression ’)’

Modifiers are discussed in the sections that require them, except we shall men-
tion here some common important modifiers@

e public: the identifier(s) are put into the public interface of this package,
ie, they can be used in packages that import this one.

e private: the identifier(s) are not put into the public interface of this
package; they cannot be referred to outside it at all. private is the default,
except for identifiers declared in public packages, as below.

e protected: protected identifiers are public but can only be referred to
in other packages using the alias::name notation; see also protected
import.

e facet(Names): puts the declared identifier into the specified facets in-
stead of public.

21.3 packages

def7. Package ::=
MarkedModifier ’package’ PackageName Facets PackageBody

def8. PackageName ::=
Word++ ’.°

def9. Facets ::=
[(’facet’ Name++ ’,’)]

A package name is a sequence of dot-separated identifiers. The last name in the
sequence is the leafname of the package; apart from in package and import
constructs, packages are referred to only by their leafname or an alias for it.

57

Top-level identifiers declared in a public package are public by default. Top-
level identifiers declared in a private package are private by default. If the
package is not declared public or private, it defaults to private.

Each package has several facets, which are named external interfaces; they are
declared by the optional facet part of the package declaration. Every package
has at least two facets, public and private, but private cannot normally be
seen by importing packages.

defl0. PackageBody ::=

Import** ’;’ Bundlexx ’;’

defll. Bundle ::=

Definition+ Expr*

A package body consists of its import declarations followed by its own defi-
nitions. All the names exported by the packages which have been imported
are available in all the bundles of the package. Each bundle is a sequence of
definitions, possibly followed by some expressions; each Bundle is as long as
possible. The names declared by a Bundle are visible throughout that bundle;
declarations need not lexically preceed their use.

Expressions are evaluated when the package is loaded.
defl2. Definition ::=

ProcedureDef
| VarDef

| ClassDef

| UnitDef

| EnumDef

A definition is a procedure, class, unit, enumeration, or variable definition.

21.4 imports

defl13. Import ::=
MarkedModifier
’import’
OpenModifier
[(Alias ’=7)]
PackageName
[(facet’ (Namexx ’,’))]
[(’from’ Expr)]

defl4. Alias ::=

Name

An import definition identifies a package to be imported and possibly a lo-
cation to import it from; that location is given as a String-valued expression

58

representing a URL. The name can be given directly or by the evaluation of an
expression.

If the modifier public is given, then all the identifiers in the imported package’s
public facet are added to this package’s public interface. This allows packages
to act as “collectors” for definitions from several other places.

An imported identifier x can be referred to as leafname::x, where leafname is
the leafname of the package (if Alias= is omitted) or the alias name (if Alias=

is given). Unless the modifier protected is given, it may also be referred to as
X.

If two (or more) packages with the same leafname are imported, at least one
of them must be given an alias. If two (or more) packages export the same
identifier x, then x must be referred to using the alias::x notation.

If facet is present, only the names in the specified facets are imported.

21.5 procedure definitions

The full power of a procedure definition is available through define options,
which allow generics, methods, plain functions, and initialisers to be declared.

defl5. ProcedureDef ::=
FullProcedureDef
| CompactDef

defl16. FullProcedureDef ::=
’define’
Modifierx*
(’method’ | ’function’ | ’generic’ | ’init’ | ’specific’)
LC:7)]
Header
[(’returns’ Type)]
[(’extends’ CommaExpr)]
[(’super’ Header)]
ProcedureBody
’enddefine’

defl7. CompactDef ::=
’def’ Header ’=>’ Expr

A procedure declared by def is monomorphic; it has a single definition and
cannot be redeclared.

A procedure declared by generic is a polymorphic procedure; the generic
definition gives its most general argument types and its default body.

A procedure declared by specific is a dynamic overloading of the named generic

59

procedure (which must exist and be visible).

If a generic, specific, or method definition appears within a class, it is given
an implicit first argument called this whose type is that class, unless the plain
modifier has been supplied. Outside a class, plain does nothing. function and
def never supply a this.

A procedure declared with init is an initialiser: it is used to fill in the fields of
freshly-constructed objects.

init procedures may only be declared within classes. A name used for a init
procedure cannot be used as the name of an ordinary procedure, nor for init
procedures in a different (visiable) class.

The Header defines the procedure argument’s names and types, the procedure
name itself, and the “expected shape” of calls to the procedure. returns gives
the type of the value(s) returned by a procedure; if omitted, a return type is
inferred from the body of the procedure.

defl8. Header ::=

CallShape
| Arg ’->’ CallShape
| CallShape ’:=’ Arg

The allowed Modifiers include public, protected, and private.

If the updater argument is given, this definition defines the updater of the named
procedure, which must be declared in this package and have a compatible Call-
Shape.

defl9. CallShape ::=
PrefixShape
| DottedShape
| InfixShape

def20. PrefixShape ::=
NameA Arglist

def21. DottedShape ::=
ArgB . NameA [(Arglist)]

def22. InfixShape ::=
ArghA @ NameA [(ArgB)]

There are three different CallShapes; the conventional prefix form f(x), the
method-oriented form x.f(a), and the infix-oriented form x @f y. NameA is
the name of the procedure being defined in all cases. The arguments are given
by the optional Arglist for the prefix form, by the Arglist and NameB for the
method form, and by ArgA and ArgB for the infix form; ArgA and ArgB
are both Args, see below.

A method is implicitly in method form, with this. assumed as the first argu-

60

ment unless overridden explicitly. For init it is permitted to omit the NameA;
in this case, the initialiser is that called by expressions of the form new C when
C is the name of the enclosing class.
def23. Arglist ::=
) (: Args ;))

def24. Args ::=

Argxx 7,7
def25. Arg ::=
Name

| Name ’:’ Type
| Name ’:-’ Type
| Name ’==’ Expr
| Name ’...°

An Arglist is just a comma-separated list of Args. An Arg is a Name,
optionally followed by a Type introduced by : or :-, or optionally followed by
a value introduced by “=="; or by ..., making it an indefinite argument, bound
to an array of all the extra arguments to the procedure. The arguments are
declared as local variablesof the procedure. At most one indefinite argument
is allowed, but it may appear anywhere in the argument list.

If the :Type form is used, the argument takes part in polymorphic dispatch.
Otherwise it does not.

== Expr is equivalent to : T where T is a type whose only value is the value
of Expr, which is evaluated at compile-time.

def26. ProcedureBody ::=
StatementSeq
| ArglList ’=>’ ProcedureBody
| Arg ’=>’ ProcedureBody

A procedure body is introduced by => or as and ends with enddefine. If the
body is empty, the arrow may be omitted. If the body has the form A=>B,
the procedure is curried; the body is itself a function expression.

21.5.1 multiple definition

A generic procedure may have many different definitions, with the rest being
given as specifics or methods. The different definitions may have different
numbers of arguments (up to any indefinite arguments) and no two definitions
can have the same sequence of types for their arguments.

Furthermore, for any pair of definitions with signatures (the type-sequence of

LAll argument identifiers are immutable, ie, cannot be assigned to, but if they are data-
structures, their components can be changed.

61

its arguments) Ty and T, there must be a definition with type-sequence T3
where the ith element of T3 is a super-type of the ith elements of T; and T,
(note that T3 might be equal to one of Ty or Ts).

A call of such a polymorphic method will execute the most specific instance of
it, the one whose formal arguments are as specific as possible while matching
the actual arguments. A procedure with K arguments does not match a call
with N /== K arguments, unless it has an indefinite argument and N>K.

In particular, methods can be redeclared in classes, when they over-ride the
definitions?in their parents.

21.5.2 super and extends

An overloaded procedure may wish to invoke the “next most general” definition
to complete (or start) its work. The identifier super is bound to that next most
general definition. When there is ambiguity about that, it is resolved by the
super clause®of the function, which takes the form of a function call where the
operands are all type names; super is bound to the version of the function that
takes those types as its argument.

To avoid ambiguities, any Spice generic function, when called, must have enough
definitions that this is never ambiguous.

An initialiser in a class C with parent class(es) A (B...) is required to invoke
initialisers of all of those classes. This is done in the extends clause*of the
initialiser; this clause is a comma-separated list of initialiser calls, where each
called procedure must be an initialiser of a parent class and each parent class
must have at least one initialiser called.

21.6 variable definitions

A variable declaration introduces one or more identifiers, may give their initial
value, and may give their type.

def27. VarDef ::=
MarkedModifier
(’val’ | ’var’)
NameDecl
[(’:=’ Expr)]

2If a method has definitions of different arities, all definitions with indefinite arguments are,
for the purposes of dispatch, extended to the same length by adding additional penultimate
arguments of type Any.

3This use of super has not been tested in the fire of the current Spice implementation.

4Similarly, this use of extends has not been tried in practice.

62

def28. NameDecl ::=
(OneDecl | ’(’ OneDecl++ 7, 7)?)

def29. OneDecl ::=
Name [(’:’ Type | 7...7)]

The Modifier may include public, protected, and private. A var may have
modifier readonly, in which case it cannot be updated outside of its defining
package; vals can never be assigned to. All the names declared in a single val
or var declaration share the same Modifier.

The NameDecl may initialise one or more names to the value(s) of an Expr;
if the Expr is omitted, they are initialised to the default value of their type; if
no type is specified, they are given type Any.

A NameDecl will usually contain a single OneDecl, but it may contain several,
in which case the Expr must be present and they are initialised from it as for
assignment. The ... form is permitted for at most one OneDecl; it bundles all
the (remaining) values from the Expr into an array which is assigned to the
Name.

It is forbidden for OneDecls to be typed if the entire NameDecl is typed, and
vice versa.

When a var or val appears at top-level, or within a class, it defines a permanent
variable that comes into existance when the package is loaded and goes away
only when no references to it remain.

When a var or val appears within a procedure, it defines a local variable; a new
location is allocated each time the declaration is executed. This location does
not share with any other location. It persists as long as there are any references
to it, which means that if it is not captured by any lambda-expression or hole-
expression referring to it it may be disposed of when its scope is left (if not
sooner).

21.7 class definitions

A Class defines a shape shared by a collection of objects which are its instances.
Every Class is itself an object, and has a particular instance called its prototyp-
ical instance.

63

def30. ClassDef ::=
’define’
Modifier
’class’
Name
[(’extends’ CommaExpr)]
ClassElement**
SEMI
’enddefine’

The Name is defined to be a constant bound to the class object, and is suitable
for use as a type name.

A class may be qualified as public, protected, private, array®, and abstract.
If it is qualified array, its instances are array-type objects, and can be indexed
with integers. A public class has its methods and functions (but not its
slots) declared public by default. A class qualified abstract cannot have
direct instances; trying to new it will fail.

If the extends clause is present, its CommaExpr must be a comma-separated
sequence of names of other classes®, and this class inherits all of their slots.
(Slots that are inherited twice along different routes of course only count once
in the new class.)

def31. ClassElement ::=
Definition
| Statement
| SlotDecl

The elements of a class are normal definitions and expressions, and its slots.
Definitions within a class acts exactly like definitions outside a class — they
declare top-level permanent identifiers. Within a class, method definitions by
default give their implicit this argument that class as their type.

def32. SlotDecl ::=
(’slot’ | ’shared’)
Name
[(’:? Type)l
[(’:=’ Expr)]
[(’implements’ Name2)]

Slots are declared by slot and shared declarations. Each slot declaration
arranges that objects of this type have a slot in them, suitable for storing values
of the given Type, and defines a procedure Namel of one argument which has
the class as its type and whose action is to deliver the value of its slot; that
procedure also has an updater which alters the value of that slot.

If implements Name?2 is specified, then Name2 must be a generic procedure,

5The array modifier is not implemented by the current Spice compiler.
8The current Spice compiler only implements single inheritance.

64

and the slot declaration provides an overloading of that procedure for arguments
of the current class.

A shared’declaration does not allocate any slots in the object, but makes a
procedure which accesses (and updates) a single shared location.

If a slot or shared identifier is qualified readonly®, then the procedure that it
exports has no updater, although the locally-visible version does.

When an object of this type is constructed, the Exprs of its slots are run to
get the initial values for those slots.

A class definition for Spoo allows the expression E is Spoo as a test for the
value E being an instance of Spoo (or a subtype).

"Not implemented in the current Spice compiler.
8Not implemented in the current Spice compiler.

65

Chapter 22

small syntax

Most of the rest of the syntax of Spice is in terms of expressions. Spice expres-
sions denote tuples of values; we say thay are multiple valued. Spice expressions
may be evaluated in two modes; value mode, when they are evaluated for their
value and wupdate mode, when they are evaluated to update some location or
data structure.

Unless otherwise specified, an expression is illegal in update mode. All function
calls and operator applications are legal there; every procedure P can have an
updater U, which is the procedure that is called when a call of P appears as
the target of an assignment.

22.1 expressions

A Statement is an expression. The value of a sequence of Statements is the
multiple value produced by concatenating the multiple values of its consitiuent
statements.
def33. Statement ::=
CommaExpr++ ’,’ SEMI

def34. StatementSeq ::=
Statement*

66

def35. Expr ::=
Name
| Hole
| Literal
| Expr ...’
| PreOp Expr
| Expr PostOp
| Expr InOp Expr
| Expr AssignOp Expr
| 7(7 EXPI‘ ;)7
| Expr .’ DotExpr [(Expr)]
| Expr @’ DotExpr [(Expr)]
| Expr ’[’ Expr ’]1’
| LambdaExpr
| new’ Name [(’(’ Expr ’)’)]
| ’once’ Expr
| ’{’ CommaExpr ’}’
| QuoteExpr
| LikeXMLExpr
| IfExpr
| RepeatExpr
| ForExpr
| SwitchExpr

Operator expressions are disambiguated by the “usual” precedence rules. Here,
Expr is an expression that cannot contain top-level commas.

def36. CommaExpr ::=
Expr++ ’,°

22.1.1 name

A Name is either a simple identifier, or an imported identifier short::id, where
short is the short name of a package and id is the name of the identifier within
it.

22.1.2 hole

A Hole is a “virtual operand” used when making partial applications. Thus the
expression 7 4 1 is a function that adds 1 to things. The expression 72 - 71
is reverse subtract; the arguments to a partial application are numbered 1..IN,
left-to-right.

def37. Hole ::=
’?? [(Integer)]

In an expression with several hole operands (to the same operation), either all

67

the holes are tagged, or none are (and they are all the same argument).

The notion of “partial applications” above is generalised for the special syntactic
operators and, or, ||, and &&.

22.1.3 literal

Literals may be symbols, strings, characters, numbers, or reserved literals. Sym-
bols, strings, numbers, and reserved literals are themselves lexical items.

def38. Literal ::=
Stringliteral
| NumberLiteral
| CharacterLiteral

22.1.4 explosions
The value of the expression E... is the explosion of the value of E, ie all the
components of all the component of E.

In update mode (ie as the target of an assignment) E must be an updatable
expression; the value assigned to it is an array constructed of all the source
values.

22.1.5 prefix operators

The value of a prefix expression is found by applying the procedure bound to
the prefix operator to the value delivered by the operand, ezcept for the special
operator once, which arranges that its operand is evaluated at most once.
22.1.6 postfix operators

The value of a postfix expression is found by applying the procedure bound to
the postfix operator to the value delivered by the operand.

def39. PostOp ::=

LexicalPostfix0Operator

[Note that @ can serve as a infix or postfix call marker.]

22.1.7 infix operators

def40. InOp ::=

LexicalInfixOperator

68

The logical operators and and or, and the relational operators ==, <=, >=,
<, >, '=, /==, ==, /== are special in that they must always appear with
left and right operands that each evaluate to exactly one value.

Further, the relational operators are continued relationals; if R and S are rela-
tional operators, the expression a R b S c is shorthand fora R band b S c,
except that b is only evaluated once.

The special infix operators and, or, ||, and && are special: they only evaluate
their right operand if necessary.

22.1.8 assignment operators

The assignment operator := evaluates its left operand (the target) in update
mode with its right operand being the source; all the source values must be
consumed by the target.

The assignment operator “->” evaluates its right operand (the target) in update
mode, with the source being its left operand; any excess values are retained as
the value of the assignment expression.

The assignment operators =: and <- have the same meaning as those of their
reversed forms, with the roles of left and right operand exchanged.

The source delivers some sequence of values; the target is a sequence of update-
able expressions. If the sequence is a single procedure call, its updater is invoked
and all the values (:= and =:) are, or a single value (->, <-) is, passed to it.
Otherwise, At most one target is allowed to be a procedure call with an updater
which takes an indefinite number of assigned values. (Otherwise, in (f(), g())
= (1,2,3), where f and g both have indefinite updaters, there would be no way
to tell how the values were to be distributed between f and g.)

Assignments are done right-to-left; each assignment target takes the appropriate
number of values from the right-hand end of the value sequence and the rest of
the value sequence is handed to the remaining targets. If the assignment target
is an identifier, one value is assigned into it. If it is a procedure call, its updater
is invoked, passing it the appropriate number of values.

22.1.9 Dbracketed expressions

The expression (E) has the same value that E does.

22.1.10 call expressions

The expression x.f is a call of f with argument(s) x, as are the expressions f(x)
and x @f. The expression x.f(y) is a call of f with arguments (x,y), as is x @f

69

y.

The arguments are evaluated left to right; the function is evaluated either before
or after the operands. This document does not specify which.

When a call appears as the target of an assignment, eg f(x)=E, it is equivalent
to the expression (f.updater)(x)(E)!; that is, the updater function specialises
itself on the target arguments [allowing it to be overloaded on those arguments]
and delivers a function which consumes the assigned values [and which may be
separately overloaded on those values].

def4l. DotExpr ::=
Name
|) (; EXPI‘ J))
| 'new’
The expression permitted after a dot or @ may be a Name, an arbitrary ex-

pression in brackets, or the reserved word new (which allows it to be used
infix).

22.1.11 sequence expressions

The expression {E} is a sequence expression; it creates a new sequence by
evaluating its operand and piling all the results into the new sequence.

22.1.12 index expressions

The value of the expression a[i] is that obtained by calling the indez function
associated with the type of a, supplying it with a and i. If a is an array, this
attempts to index the array. If a is a table, it looks i up in that table.

When an index expression is used in update mode, the updater of the associated
index function is called.

22.1.13 lambda expressions

A lambda-expression is an inline procedure definition; it is the procedure taking
the specified arguments and computing the desired result.

def42. LambdaExpr ::=

>(? Args ’=>’ StatementSeq ’)’
| fun’ Args ’=>’ StatementSeq ’endfun’

IThe current Spice implementation uses an earlier definition that has a similar effect in
simple cases, but is inadequate to deal with overloaded functions: (f.updater)(x,E).

70

def43. LambdaExpr ::=
> (? LambdaBody ’)’
| fun’ LambdaBody ’endfun’

def44. LambdaBody ::=
Args ’=>’ LambdaBody
| StatementSeq

22.1.14 quotation expressions

A quotation expression allows Symbol values, and sequences of Symbol values,
to be denoted by an expression.

def45. QuoteExpr ::=
’¢) QuotedItems ’°¢°

def46. QuotedItems ::=
QuotedItemx*

def47. QuotedItem ::=
Word
| {’ QuotedItems ’}’
|) (: EXpI‘ z))
| *A? Word
| YAN) Word
| \\’ Word
| [C\\?)] Literal

A QuotedItem that is a literal or a word denotes the corresponding value;
words are represented as Spice Symbols (interned strings with a type of their
own). An item which is an expression in brackets evaluates to the value of that
expression; the form “"Word is equivalent to (Word), with Word stripped
of any special syntactic properties, and the form ""Word is equivalent to
(Word...). A literal or word prefixed by \ stands for itself.

The form {Q} denotes the sequence formed out of the values denoted by Q.
Thus quotations can express nested sequence structures which are mostly con-
stant.

22.1.15 XML-like expressions

An XML-like expression is a constructor for trees (instances of the built-in class
XMLNode) with a syntax modelled on that of XML, modified to fit into a
programming language.

def48. LikeXMLExpr ::=
LeafyTree
| BranchingTree

71

def49. LeafyTree ::=
’<? TreeHead ’/’ ’>?

def50. BranchingTree ::=

2 < J

TreeHead

) >)

StatementSeq

) <)

) /)

[(TreeHead)]

) > J
An XML-like expression BranchingTree is a sequence of statements enclosed
by fat brackets; tree heads wrapped in “<”-“>” pairs. The closing bracket
starts “</”. As a special case, if the statement sequence is empty, the two fat
brackets can be collapsed together to form a LeafyTree.

def51. TreeHead ::=
TreelLabel TreeAttributex*

def52. TreeLabel ::=

Literal

| Id

| Id ’:> 1Id
| Id 7::7 1Id

| 7(; EXPI‘ ;);

The label of a tree can be a literal or a plain name interpreted as the string
with the same spelling. Otherwise the label is dynamically evaluated. The
form Id:Id is a special expression, meaning the value of the left-hand identifier
concatenated with the spelling of the right. The remaining two forms have the
same meaning as in plain expressions.

def53. TreeAttribute ::=
Name [(’=’ Expr)]

Each tree attribute is a binding of a name to a value. If the value expression is
omitted, the value true is used. The name is not a variable; it means a string
with the same spelling.

Evaluating an XML-like expression constructs an instance of XMLNode with
three access methods: xmlTag, which delivers the tree label; xmlChildren,
which delivers the sequence of values computed by the StatementSeq; and
xmlAttributes, which delivers the sequence of attributes, each attribute being
represented by a value of type Maplet.

Standard procedures (not described here) render XMLNodes into output streams
compatible with the usual XML stream syntax.

72

22.1.16 new expressions

The expresssion new X(A) is a construction expression; X is a constructor
value, and A the arguments to the construction. If the argument (A) is omitted,
it does not mean that X is invoked on no values; instead the constructor function
is delivered, as though one had written

(A... => new X(A...))

If X is a class value, then a new default-initialised instance of that class is
constructed, and handed to the class’s anonymous constructor. If X is a named
constructor, that is, defined as new X in some class C, a new empty instance
of C is constructed and passed to X with arguments A.

22.1.17 if

An if expression expresses a choice. Both verbose and compact if-endif forms
are supported; in the short form, if - endif is replaced by (-), “|” is used in
place of then and else, and “|:” in place of elseif.

An if must have a matching endif, and an unless must have a matching en-
dunless. then and do are equivalent in if and unless expressions. The unless
form inverts the initial test.

def54. IfExpr ::=
LonglfExpr
| ShortIfExpr

def55. ShortIfExpr ::=
) ()
Expr
) |)
CommaExpr
(’|:? Expr ’|’ CommaExpr)*
[(’|” CommaExpr)]
H) H
def56. LongIfExpr ::=
(’if’ | ’unless’)
Expr
Then
StatementSeq
(’elseif’ Expr Then StatementSeq)*
[(’else’ StatementSeq)]
(’endif’ | ’endunless’)

73

def57. Then ::=
’then’
| ’do’?

22.1.18 repeat

A repeat loop repeats statements while (or until) a condition is true. On
each iteratation, Seql is executed, and then Exprl is tested. If it is satisfied
(true for while, falsefor until) then Seq2 is executed and the loop repeats.
Otherwise, the loop terminates and delivers all the values computed by the loop
body.

def58. RepeatExpr ::=
’repeat’
StatementSeql
[(RepeatTest [(’do’ StatementSeq2)])]
’endrepeat’

def59. RepeatTest ::=
(’while’ | ’until’) Exprl [(’then’ Expr2)]

22.1.19 for

A for loop causes a body of code to be repeatedly executed while various condi-
tions are true (or false), and variables are stepped “in parallel” along a sequence
of values. When the loop terminates “naturally” (that is, by exhaustion of one
of the sequences) then a termination clause is executed.

def60. ForExpr ::=
’for’
ForControls
[(’do’ StatementSeq)]
[(’finally’ StatementSeq)]
’endfor’

The controls are separated by j, although that’s optional if the next control is
a while or an until.
def61. ForControls ::=

ForControl
| ForControls ’;’ ForControl
| ForControls ForCondition

A Control is a binding of a variable to values, or an early-exit condition.

def62. ForControl ::=
ForBinding
| ForCondition

74

If the early-exit condition is satisfied (while false or until true), the loop
terminates. If the then (for until) or else (for while) is present, its code is
executed before the loop exits; otherwise the loop’s finally code is executed.

def63. ForCondition ::=
’while’ Expr ’else’ Expr
| until’ Expr ’then’ Expr

A ForBinding binds names to sequences of values.
def64. ForBinding ::=

ForName ’in’ Expr

| ForName ’on’ Expr

| ForName ’from’ Expr

| ForName ’to’ Expr

| ForName ’from’ Expr (’to’ | ’downto’) Expr

def65. ForName ::=
Name [(’:’ Type)]

For-loop identifiers are declared there, are immutable, and are local to the loop.
What is more, a new identifier is bound each time round the loop (this is not-
icable only if the loop body forms closures using lambda-expressions or holes
which involve the identifiers).

The meaning of a ForBindings is that each Name introduced is given suc-
cessive values from its Expr, in parallel (ie on the Nth iteration each Name
has its Nth value), until at least one of the Exprs is exhausted. The notion
of “successive values” is defined by the run-time type of the expression’s value.
It is not defined what happens if that value is modified during the execution of
the loop body.

The in form takes all the values from the range of a collection type (eg all the
characters from a string, all the elements of an array). The on form binds the
identifier to the maplets of a collection, so that for an array or string the maplets
are of the form index ==> element.

The form from E; to E; runs the control variable from the value E; to the
value Eq. If to E is omitted, then the loop is unbounded (it will terminate only
via break or if a parallel iteration terminates). If from E is omitted, the loop
starts at 1. If downto is used instead of to, the loop counts down rather than

up.

22.1.20 switch

def66. SwitchExpr ::=
’switch’ Expr (SCase | SElse) ’endswitch’

def67. SCase ::=
(’case’ Expr)+ ’then’ StatementSeq

75

def68. SElse ::=
’else’ StatementSeq

Each case clause starts with some number of case expressions (or else) and
is followed by the expressions to evaluate when the switch expression takes the
value of one of those labels.

A Spice switch may switch on any values; it is not restricted to integer constants
(although it may be much more efficient on them). In particular, a Spice switch
may switch on strings and symbols.

A switch can have at most one else clause.

The result from a switch is the result from the selected case or else statement
sequence. Thus a switch may deliver multiple values.

22.1.21 var and procedure expressions

A VarDef and a ProcedureDef counts as expressions, but they deliver no
values.

Note that this means that procedure definitions may be nested. A procedure
may access and update the local variables of the procedure that it appears in;
Spice has full lexical scope.

22.2 type expressions

A type expression is an expression. Its semantics is the same as that of
ordinary expressions, but they must deliver values of type Type.

def69. Type ::=
Expr
The language of type expressions is intended to allow the programmer to give
the compiler useful information about the program.

The basic type expression is the name?. A name used as a type expression
should be the name of one of the built-in types or a class. Any is the name of
the universal type, Object is the name of all object types.

If T is a type-expression, then T?? represents the optional type of T; it is the
type of values which may be T or may be the value absent.

If T and U are type-expressions, so is T, U, which represents the type of multiple
values with first component(s) or type T and second component(s) of type U.

If T is a type expression then so is T**, the type of lots of multiple values all
of type T.

20nly names are legal type-expressions in this edition of the Spice compiler.

76

If T is a type-expression, {T} (“array of T”, “row of T”) is the type of arrays
who’s elements are required to be of type T.

7

Chapter 23

implemented but dubious
features

The current Spice implementation includes exception handling in the style of
C++ and Java using throw and try-catch-endtry expressions. We have our
doubts about this form of handling, so we have relegated them to this part of
the manual.

23.1 throw and try expressions

The expression throw E raises an exception with value the value of E. If this
exception is not caught within the program, it is caught by the top-level Spice
environment, which will deal with it in an implementation-specific fashion.

throw may appear as a DotExpr, so E.throw has the same effect as throw
E.

The try expression allows exceptions to be caught and handled.

def70. TryCatchExpr ::=
’try’ StatementSeq CatchSeq ’endtry’

def71. CatchSeq ::=
(’catch’ Arglist [(’as’)] StatementSeq)**

The StatementSeq of the try is evaluated and the try expression resturns its
result if no exception is thrown. If an exception E is thrown, then the catch
body who’s Arglist best matches the thrown value is executed (just as though
the catch blocks were alternative definitions for an overloaded function) and
the reult of the try is the result of that catch block.

If there is no catch (x: Any) catch clause, it is as though the clause catch

78

(x:Any) with throw x had been supplied.

Note that this is not sequential testing. Sequential testing means that you have
to write the general case last, not first, and makes things more order-dependant
than they need be. Making the catch clauses share the semantics of procedure
call makes the language more coherent and offers alternative implementation

tactics.

79

Chapter 24

designed but
unimplemented features

Some features of Spice have been designed but not implemente din the currenct
compilers: unit and enum definitions.

24.1 wunit definitions

A unit definition'informs the compiler about units and their dimensions.

def72. UnitDef ::=
’define’
OpenModifier
(Punit’ | ’units’)
UnitDef++

>
3

’enddefine’

def73. UnitDef ::=
Word [(’=’ Expr)]

The Word of a UnitDef is declared to be legitimate unit names. If the Expr
of a UnitDef is present, it must be an compile-time expression delivering an
anonymous Unit value, which is named by the Word.

for example, we may have define unit mile = inch * 12 * 3 * 1760 end-
define, which defines mile in terms of inch, or define unit length = new
Unit(1,‘length‘) enddefine, which defines a new unit of dimension ‘length‘.

INot implemented by the current Spice compiler.

80

24.2 enumeration definitions

def74. EnumDef ::=
’define’
OpenModifier
’enum’
Name

’=>

Name++

)
H

’enddefine’

An enum declaration for Foo is shorthand for declaring a new class called
Foo extending Enum, which provides two private slots (for the name and the
magnitude of enumeration values) and an instance of this class for each of the
Names. The enumeration values start at 1 and the default value for Foo is an
instance with value 0 and name nullFoo.

Implementors are encouraged to find efficient representations for enumeration
values.

81

Chapter 25

scope rules

The scope rules for Spice define where identifiers are visible. They are intended
to be natural and in most cases are straightforward.

A sequence of forms (eg, a package body, or a non-package) consists of se-
quences of consecutive declarations, bundles, interspersed with non-definition
expressions. All the Definitions in a bundle are mutually in scope. In con-
sequence, there is rarely any need for “forward” declarations. Non-definitions
terminate this mutual scope to allow the rules for interactive execution to be
the same as those for batch compilation.

classes do not introduce new scopes; the declarations within a class put names
into the top-level namespace. The same name cannot legally declared more
than once. (A method definition does not re-declare a name; it attaches addi-
tional definitions to an existing generic procedure.) Class slots must be uniquely
named in a scope.

A procedure definition introduces a new scope; the arguments and the body
share that scope. (Thus is it illegal to have two arguments with the same name,
or an argument to have the same name as a top-level local of the procedure.)
The body of the procedure is bundled in the same way as a package.

A LambdaExpr introduces a new scope. All the names from the surrounding
scope are visible inside the lambda, with the same rights; in particular, it is
permitted to assign to locals of the surrounding context, and for this to “work”:
Spice has full lexical scoping.

A try expression introduces a new scope which extends to the first catch clause
(or to the endtry if there are no explicit catch clauses). A catch clause
introduces a new scope which ends at the next [non-nested!] catch or endtry.

Each of the arms of an if or unless expression have their own scopes. The body
of a repeat loop is a scope. (What’s more, variables declared in the body of a

82

loop are re-declared each time round the loop.)

Each SpiceCase introduces a new scope which ends at the end of its State-
mentSeq.

A for-do statement introduces a new scope. The identifiers declared in a
ForBinding are in scope in any succeeding while or until clause, and in the
loop body, but not in the Expr parts of other ForBindings of this loop. As
for while and until loops, these identifiers are re-declared each time round the
loop.

The right operand of an and or or operator has its own scope. (This odd rule
is because x and ((var y := 42), z) is a legal expression, but then questions
would arise about y’s existence or value if x were false.)

83

Chapter 26

the standard library

Spice has a large library of standard values and procedures.

26.1 generic procedures

x.typeOf: the type of x.

x.printOn(s): send a human-readable representation of x down the
stream s. Characters are sent as-is, integers are printed as their signed
decimal representation [note: there ought to be a way of defining a negative
numeric literal], strings are printed as their sequence of characters, arrays
are printed as {eleml elem?2 ...} and objects are printed as defined
by their overloading of printOn (and Class.printOn(s) does something
sensible).

x.print shorthand for x.printOn(standardOutput)
x.report: shorthand for x.printOn(standardReport)

println(x...): print all the arguments in turn, prefixing all but the
first with a space, and printing a newline after printing all the arguments.

x.copy: make a copy of x. If x is atomic (Small, Symbol, Char, Procedure)
just delivers x. If x is composite object, defaults to making a shallow copy
of x. Overloadable for new types.

x.toString: convert x to a string in the same way that print does.

equals(x, y) the procedure implementing =. Overloadable on new
types, but the programmer has to ensure that the new definition respects
the usual rules for equality (reflexive, transitive, symmetric).

84

e If x and y are both Small, Symbol, Char, or Procedure, equals delivers x
==y (ie identity). If x ==y, equals delivers true.

e If x and y are both objects, by default equals does a slot-by- slot = test on
all the init-slots that x and y have in common. If any of these fail, equals
delivers false; otherwise it delivers true.

e If x and y are both String, equals does the obvious string equality test. If
they are both arrays, equals does the obvious sequence-equality test.

e x.hashCode: a type-specific hashcode for the value x.

e apply(f, x...): called when evaluating f(X) and f is not a function.
Overloadable. On arrays and strings is equivalent to indexing. On tables
is table lookup. Has the obvious updater. Allows objects to represent
functions compactly. Is not implemented.

e x.length: overloadable. Should deliver the “length” of the object. On
strings and arrays has the obvious meaning. On objects delivers the num-
ber of “obvious” slots (see explode). On atomic objects delivers 0.

e x @asType t: t must be a type. The value x is converted to that type in
a type-specific way (asType is overloadable), or an exception is thrown.
x @asType String is equivalent to toString.

26.2 numbers

Spice has several kinds of number!: small integers (Small), big integers (Big-
Int), short and long floating point values (Float, Double), ratios (ie fractions)
(Ratio), and complex numbers (Complex).

The operators +, -, *, /, div, rem, % work more-or-less as you’d expect on
plain numbers (they work on some other values, too, for which see the section
on units). div is integer division; the operands must be integers and the result
is truncated toward 0. rem is integer remainder; the operands must be integers
and the result is the appropriate remainder. / will produce a floating-point
value if the result is not an exact integer.

The operator /: is exact division; its result uses ratios to express non-floating
non-integer components. This is the primary way (the only way, at root) that
ratio values are generated.

The relational operators <=, <, >=, >, ==, /== work as you’d expect. Note
that it’s unwise to use == and /== on floating-point values.

There are also a number of standard functions.

1But only Small and Double are implemented.

85

x.abs and its synonym x.magnitude is the absolute value of x; if x is
not complex, its sign is made positive; if x is complex, it is its magnitude.

x.neg and its equivalent x.negative invert the sign of the value of x.
x.positive returns x if it is a (non-complex) number.

X @min y, x @max y deliver the minimum (maximum) of their argument
values x and y.

x @logToBase y delivers the logarithm of x to the (positive integer) base
y.

x @toPower y delivers x raised to the power y.

x.sqrt is the square root of x. An exception is thrown if the result must
be Complex but this implemention does not support it.

x.round, x.floor, x.ceiling convert the value x to an integer (details to
be added).

X.cos, X.sin, x.tan are the usual trigonometric functions. The argument
is in radians.

x.inRadians takes an angle in degrees x and converts it to radians.
x.inDegrees takes an angle in radians and converts it to degrees.

x.acos, x.asin, x.atan are the usual inverse trigonometric functions.
Note that atan is only suitable for simple programs.

[various complex functions etc to be done]

26.3 enumerations

Enumeration values can be queried for their numeric value and name, and can
be created from numeric values or names. Note that the number of enumeration
values is fixed by the declaration; the constructor delivers existing values, not
fresh ones.

e.index: if e is an enumeration value, its index is its position in the list
in which it was declared.

new E(n): if E is an enumeration type, the nth enumeration value that
it was declared with, or an error is thrown if n is out of range.

e.enumName: if e is an enumeration value, the symbol which names it.

new E(s): if E is an enumeration type, and s is a string or symbol, the
enumeration value of E named by that string or symbol, or an error is
thrown.

86

26.4 values with units

Spice has values with units. Values with units represent lengths, or times, or
other inter-related quantities. All the unit procedures are imported protected
from spice.lang.units.

A unit expresses an amount along a given dimension. A basic dimension is
represented by a symbol naming that dimension. A compound dimension is
the result of a product or quotient of dimensions.

e Unit: the type of units.

e Unit(scale, unitName, dimension): make a new unit object. di-
mension must be a symbol or string; it specifies the dimension of the
unit. (Typical values are length, time, colour.) unitName must be a
symbol or string; it names the unit itself. [It is an error if a unit with that
name already exists.] The scale expresses the scale of this unit in terms of
the “canonical unit” for this kind; a scale of 1 defines the canonical unit.

¢ U @QunitProduct V: U and V must be unit objects. The result is the
product of those units.

e U @QunitQuotient V: U and V must be unit objects. The result is the
quotient of those units.

e U.scale: U must be a Unit object; the result is its scale.
e U.name: U must be a Unitobject; the result it its unit name.
e U.dimension: U must be a Unit object; the result is its dimension.

e x @inUnits y: x must be a numeric value, and y must be a unit name
(symbol or string) or a Unit object (eg from unitNamed). The result is
a unit value with x as its number and the unit (named by) y as its unit.

e n.unitNamed: the Unit value named by n, which must be a string or a
symbol.

e u.number: the number of the value u, which must be a value with units.
e u.unit: the unit of the value u, which must be a value with units.
¢ u.explode: u must be a value with units; exploding it gets the number

and unit, in that order.

The arithmetic operators also work on values with units. There is a minor
complication in that different units of the same kind may be inter-converted.
Multiplication and division also work on Unit objects themselves to produce
new Unit objects; this is intended for use in define unit definitions.

87

u + v, u - v: uand v must be values with the same dimension. The
number with the larger unit is scaled to the size of the smaller, and the
result is the sum (difference) of the numbers, with the smaller unit as its
unit. [ie, adding inches to miles gets a result in inches.]

u * v: if u or v has units, the result has number u.number * v.number
and units u.unit @QunitProduct v.unit.

U * V:if U and V are units or numbers, the result is a new unit which
has dimensions the product of the dimensions of U and V, and number
the product of the numbers of U and V.

u / v: if u or v has units, the result has number u.number / v.number
and units u.unit QunitQuotient v.unit.

U / V:if U and V are units or numbers, the result is a new unit with
dimensions the quotient of the dimensions of U and V, and number the
quotient, of the numbers of U and V.

u < v: equivalent to number(v - u) < 0, and similarly for the other
relational operators.

26.5 strings

Strings are sequences of Unicode characters in canonical form. Strings are im-
mutable. Strings, like arrays, can be indexed using the s[i] notation. The infix
operator ++ concatenates strings (and arrays).

There are a few built-in functions on strings.

s.length is the length in characters of s.

s @indexOf x delivers the index in s of the first occurance of x, which
can be a character or a string. If s does not contain any occurence of
x, indexOf delivers absent. The result has the same base as the string
does.

s @lastIndexOf x is the same as indexOf, except that it searches for
the last occurence of x, not the first.

s @chopAt x, where x is a string or character, delivers two results (be-
fore, after) such that s == (before ++4 x ++ after) and x does not
occur earlier in s.

s @chopAt x, where x is an integer, delivers (after, before) such that
s = before ++ after and after.length == x - s.stringBase.

s @split x delivers an array of strings obtained by repeatedly chopping s
with x.

88

e s.toLower is a copy of s with all upper-case characters replaced by their
lower-case counterparts; s.toUpper is a copy of s with all lower-case
characters replaced by their upper-case counterparts.

26.6 symbols

The symbol literal ‘foo* represents a symbol (a value of type Symbol?) whose
spelling is the string foo. The important difference between symbols and strings
is that there is only one symbol with a given spelling. (You can tell the difference
using the Spice identity operator ==.)

You can index symbols using s[i], but if you do so, you are probably using
symbols for something other than their intended use; supplying the programmer
with an infinite set of mnenomic values.

e s.intern, where s is a string, delivers the symbol whose spelling is s,
making it if necessary.

e s.spelling, where s is a symbol, delivers the string which is the spelling
of s.

e s.explode, where s is a symbol, delivers all the characters of s, rightmost
last.

26.7 booleans

The built-in operators not, and, or on booleans operate as you might expect;
not negates its operand, and is boolean and and or is boolean or, neither of
which evaluate their second operand unless it’s necessary.

26.8 arrays
Array elements can be accessed and updated using the a[i] notation.

e a.length: delivers the length of the array a.

e a @reduceBy (x, p): a must be an array, x some value, and p a dyadic
procedure. The result is obtained by starting with x and repeatedly re-
placing it by the result of p(result,ai) for ai being bound to all the
elements of a in turn.

2Symbols are not currently implemented.

89

e a @join s, a.join: equivalent to a @reduceBy (s, catStringly); with
one argument, s is taken to be the null string “”.

e a @sortInPlaceWith f: sorts the array a according to the comparison
function f. f should accept two arguments (x, y) and deliver true if x
should go before y in the ordering and false otherwise. sortInPlaceWith
is guaranteed to be stable if f is sane.

e a @sortWith f: makes a copy of a and sorts that in place with f, so far
as anyone can tell. (The implementor is at liberty to make a more efficient
version.)

e a.reverse: a copy of a with the elements reversed.

e a.reverseInPlace: reverses the order of the elements of a.

26.9 Dbits

Spice does not have standard operators for bit operations on integer values;
instead, it has standard functions which you call in infix form. This reflects
the designer’s belief that bit operations are simply not used enough to warrent
using up useful symbols for them, at least in their code.

e x@bitNot: the bitwise complement of x and y.

e x @bitAnd y: the bitwise and of x and y.

e x @bitOr y: the bitwise or of x and y.

x @bitXor y: the bitwise exclusive or of x and y.

x @bitClear y: x @bitAnd y.bitNot.

x @bitShl y: x shifted left y places.

x @bitShr y: x shifted right y places. Note: the sign of x is always
preserved for plain (Small or Big) integer values.

26.10 procedures
There are several standard functions on procedures.

e p.updater: if p is a procedure, then delivers its updater (or absent if if
hasn’t got one).

90

e p @apply x: p must be a procedure, and x a collection of values; applies
p to all the values in x, ie, is x.explode.p except that x must be a
compound type.

The different kinds of procedures can be recognised by predicates.

e x.isProcedure is true when x is any kind of procedure, and false oth-
erwise.

x.isMethod is true if x is defined by a method definition, and false
otherwise;

x.isFunction if x is defined by a function definition, and false otherwise;

x.isConstructor is true when x has been defined with method new,
and false otherwise;

x.isLambda is true when x is the result of a lambda-expression or hole-
expression, and false otherwise.

26.11 dictionaries and tables

The type Lookup is the parent type of a variety of mapping data types; the
simple mapping types map single values to single values, while the compond
mapping types map tuples of values to tuples of values. There are no direct
instances of Lookup. The type Maplet is the type of pairs of (simple) values.
The type Dictionary is an extension of Lookup that maps Symbols to values.

¢ l.length: the number of key-value associations stored in the lookup 1.

l.explode: the values stored in the lookup 1.

l.maplets: the maplets of the lookip 1.

e p @mapOver l: apply the procedure p to each of the key-value pairs in 1
in turn. p will be called with two arguments, being the key and the value.
All the results of p will be returned.

e | @hasKey k: if 1is an instance of an extension of Lookup, hasKey
returns true if k is a key for a non-default value in 1 and false otherwise.

e 1 @fetch k: if 1 is an instance of an extension of Lookup, fetch gets
the value bound to the key k. If no value is bound, some type-specific
computation is performed. fetch has an updater which alters the bound
value, or creates a binding if none already exists.

e 1 @apply k: if 1 is an instance of an extension of Lookup, applying it
runs fetch.

91

m.key: the key part of m, ie, the value which would be looked up.

e m.value: the value part of m, ie, the value that would be returned when
looking up the key part.

e Dictionary(): constructs an empty Dictionary object with default value
absent. A Dictionary is an extension of Lookup.

e Dictionary(d): constructs an empty Dictionary with default value d.

e Dictionary(d, ki, Vi, ..., kn, vp): constructs a Dictionary with de-
fault value d and bindings which bind k; to v;. If several k; are equal, the
last one wins. All the k; must be Symbols.

e Table: an extension of Lookup with constructors in the same style as
Dictionary. A Table can have key arguments of any type; they are
compared using == (and hashed using hashCode, qv).

e FatTable: an compound mapping extension of Lookup. FatTable has
similar constructors to Dictionary, except that the keys and values must
all be arrays; all the keys must have the same length, and all the values
must have the same length. A FatTable maps tuples of values to tuples
of values.

o f @fetch (ki, ..., ky,): if fis a FatTable, look up the value(s) specified
by the sequence of keys k;, which must be the same length as the key
arrays used in the constructor of f. Deliver the associated multiple values.
The updater of fetch will store multiple values into f.

e Maplet: a type expressing a single binding of a key to a value.

e k ==> v: a Maplet mapping k to v.

26.12 input and output

Spice includes some simple I/O operations in its core; the type Pathname, the
type File, and the type Stream.

e s.parsePath: s must be a string or symbol. It is parsed into a Path-
name, or an exception thrown if it is illegal in some way. (See below for
the syntax of pathnames).

¢ p.pathScheme, p.pathRoot, p.pathDirs, p.pathName, p.pathSuffix,
and p.pathType: the corresponding components of the pathname. If the
component was omitted in the originating string, the result is absent.

e p @openln: p must be a pathname (or string or symbol, which is imme-
diatley parsed into a pathname). The external entity named by the path
is opened for input. openln delivers a File object.

92

p @openOut: p must be a pathname (or string or symbol, which is
immediatley parsed into a pathname). The external entity named by the
path is opened for output. openQut delivers a File object.

e f.openedOn: if fis a file, then the pathname it was opened on.

e f.close: f must be a file; if it is not closed, it is hereby closed, committing
all writes (if open for output).

e f @QreadInto (b, w, 1): f must be a file open for input. readInto reads
the next 1 bytes (or fewer) into the buffer b, which must be a byte array,
starting at position w. An exception is thrown if w or w-+1 would be
outside the bounds of b. The number of bytes actually read is returned
as the result.

o f @QwriteFrom (b, w, 1): f must be a file open for output. 1 bytes from
the byte array b are written, starting at offset w. An exception is thrown
if w or w+1 would be outside the bounds of b.

e f.inFrom: fis a file open for input, or a pathname (which is immediately
openln’ed) or a string (treated as a pathname). The result is an byte
InStream on the file.

e f.outTo: fis a file open for output, or a pathname (which is immediately
openOut’ed), or a string (treated as a pathname). The result is an byte
OutStream on the file.

e s.next: s must be an InStream; the result is the next object from s, or
absent if the file has been exhausted. next has an updater which puts
objects back onto the stream. Arbitrarily many objects can be put back,
and they need not correspond to objects originally present in the stream.

e s @out x: s must be an OutStream and x an object of the appropriate
type; that object is appended to the stream.

e s.streamPFile: if s is a stream based on a file, delivers that file; otherwise
an exception is thrown.

26.12.1 pathname syntax and accessors

A pathname has several components. The basic elements are Words which,
within this section, are sequences of characters not otherwise reserved to the
pathname syntax.

In this section, the identifier p is presumed to contain a Pathname value.

93

def75. Pathname ::=
[(Scheme)]
[(Root)]
[(Directories)]
[(Name)]
[(Suffix)]
[(Type)]

def76. Scheme ::=
Word ’:’

The Scheme of a pathname directs how the components are to be interpreted.
The standard schemes are file, http, ftp, and socket.

p.pathScheme is a Symbol.

def77. Root ::=
>//’ Dotted

The Root identifies where the pathname is anchored. For an http or net path-
name, the Root is the IP address where the named entity is located. For a file
scheme, the Unit identifies some root in the filing system in an implementation-
specific way.

p-prathRoot is an array of Symbol values, one for each word-part of the Dot~
ted.

def78. Directories ::=
[(°/?)] (Dotted ’/’)++

The Directories identify some place within the Root where an entity is found,
by giving a sequence of Dotteds. For a file scheme, thet are the names of
filing-system directories. For an http scheme, they are successive components
of the directory part of the URL. For a socket scheme, they identify the port
number to be used for the socket; typically there is but one Dotted and it
names an IP service.

p-pathDirectories is an array of Symbols, each symbol being the spelling of
a Dotted.

def79. Name ::=
Word

The Name is the leafname of the entity being described.

p-pathName is a Symbol.

def80. Suffix ::=
.7 Word

The Suffix is the suffix part of the entity name.
p-pathSuffix is a Symbol.

94

def81. Type ::=
’;? Word

The Type is the type of the entity. When a pathname is being used to create
an object, is specifies the type of object to create. When it is being used to
access an existing object, the object should be of a compatible type.

p-pathType is a Symbol.

def82. Dotted ::=
Word++ .’

26.13 types

The standard types are

¢ Lookup, the parent type of data dictionaries.
e Maplet, a helper type for data dictionaries.
e Table, the type of tables.

e FatTable, the type of compound tables.

e Small, the type of small integers.

e Number, the type of all numbers — integers, floats, rationals (when im-
plemented), complexes (ditto).

¢ Complex, the type of complex values.

e Ratio, the type of ratios.

e BiglInt, the type of big integers.

e Float, the type of all floating-point numbers.
e String, the type of strings.

e Procedure, the type of all procedures.

e Bool, the type of booleans.

e Char, the type of characters.

e Any, the type of anything whatsoever.

e Object, the type of all objects (ie things defined by classes).
e Date, the type of dates.

e Unit, the type of units.

¢ Pathname, the type of pathname objects used to represent URLs (and
local file names, etc).

95

Chapter 27
glossary

e absent. The “missing” value.
e Any. The universal type; all values are compatible with Any.

e class. A value representing a template for a collection of other values
called its instances.

e explode. (a) the name of a procedure which explodes its single argument.
(b) to take a value and deliver all of its consituent values.

e enum. An abbreviated class definition which describes a new class and
all of its values.

e hole. The marker ? in an expression, representing a parameter position
for an implicit lambda-expression wrapped round the smallest enclosing
application.

e initialiser. A procedure declared with define init which initialises its
first argument (usually called this) according to the values of its remaining
instances.

e lambda expression. An expression describing a procedure by giving its
arguments and body.

e method. A procedure expected to be called using dot-notation and
defined within a class. Methods have a usually-implicit first argument
usually called this.

e measure. A value consisting of a number and a unit, meaning that many
of that unit.

e multiple values. A Spice expression can evaluate to zero or more values,
and how many values is determined at run-time, not compile-time. Thus a

96

function call, or a loop, may deliver several results, which may be assigned
or embedded into a larger expression.

new. Syntactic form for building instances of a class.

package. A named collection of definitions and executable expressions;
the unit of encapsulation.

predicate. A procedure of one argument that returns a single Bool
value.

procedure. A piece of code invoked from elsewhere to perform some
specified task. A procedure takes some number of arguments, performs
some action, and delivers some number of results.

slot. (a) A named location within (instances of) a class. (b) the procedure
which gives access to such a location.

super. Used in method calls to invoke the “next more general” method.

unit. The value used in a measure to specify the units of that measure,
eg inches, seconds, x’s, and so on.

updater. The part of a procedure that implements its behaviour when
it is called as the target of an assignment.

97

Chapter 28

syntactic summary

This section gathers together all the syntax from the rest of the document.

defl. Program ::=
[(Spice)] (Package* | PackageBody)

def2. Spice ::=
’spice’ String (’,’ (Name ’:’ Expr))x*
def3. OpenModifier ::=

MarkedModifier Modifierx*

def4. Modifier ::=
MarkedModifier
| »[’ Name [(MarkedArgument)]*x ’>,’> *]°

def5. MarkedModifier ::=
’public’
| ’private’
| ’protected’

def6. MarkedArgument ::=

Literal
| »(’ Expression ’)’

def7. Package ::=
MarkedModifier ’package’ PackageName Facets PackageBody

def8. PackageName ::=
Word++ .’

def9. Facets ::=
[(’facet’ Name++ ’,’)]

98

defl0. PackageBody ::=
Import** ’;’ Bundlexx ’;’

defll. Bundle ::=

Definition+ Expr*

defl2. Definition ::=
ProcedureDef
| VarDef
| ClassDef
| UnitDef
| EnumDef

defl3. Import ::=
MarkedModifier
’import’
OpenModifier
[(Alias ’=7)]
PackageName
[(*facet’ (Namexx ’,’))]
[(’from’ Expr)]

defl4. Alias ::=

Name

defl5. ProcedureDef ::=
FullProcedureDef
| CompactDef

defl16. FullProcedureDef ::=
’define’
Modifierx*
(’method’ | ’function’ | ’generic’ | ’init’ | ’specific’)
LC:2)]
Header
[(’returns’ Type)]
[(’extends’ CommaExpr)]
[(’super’ Header)]
ProcedureBody
’enddefine’

defl7. CompactDef ::=
’def’ Header ’=>’ Expr

defl8. Header ::=

CallShape
| Arg >->’ CallShape
| CallShape ’:=’ Arg

99

defl19. CallShape ::=
PrefixShape
| DottedShape
| InfixShape

def20. PrefixShape ::=
NameA Arglist

def21. DottedShape ::=
ArgB . NameA [(Arglist)]

def22. InfixShape ::=
ArgA @ NameA [(ArgB)]

def23. Arglist ::=
7(7 Args J))

def24. Args ::=

Arg** J,)

def25. Arg ::=
Name
| Name ’:’ Type
| Name ’:-’ Type
| Name ’==’ Expr
| Name °...°

def26. ProcedureBody ::=
StatementSeq
| Arglist ’=>’ ProcedureBody
| Arg ’=>’ ProcedureBody

def27. VarDef ::=
MarkedModifier
(’val’ | ’var’)
NameDecl
[(’:=" Expr)]

def28. NameDecl ::=
(OneDecl | ’(’ OneDecl++ ’,’ 7)7)

def29. OneDecl ::=
Name [(’:’ Type | ’...7)]

100

def30. ClassDef ::=
’define’
Modifier
’class’
Name
[(’extends’ CommaExpr)]
ClassElement**
SEMI
’enddefine’

def31. ClassElement ::=
Definition
| Statement
| SlotDecl

def32. SlotDecl ::=
(’slot’ | ’shared’)
Name
[(’:? Type)]
[(’:=’ Expr)]
[(’implements’ Name2)]

def33. Statement ::=
CommaExpr++ ’,’ SEMI

def34. StatementSeq ::=
Statement*

101

def35. Expr ::=
Name
| Hole
| Literal
| Expr ...’
| PreOp Expr
| Expr PostOp
| Expr InOp Expr
| Expr AssignOp Expr
| 7(7 EXPI‘ ;)7
| Expr .’ DotExpr [(Expr)]
| Expr @’ DotExpr [(Expr)]
| Expr ’[’ Expr ’]1’
| LambdaExpr
| new’ Name [(’(’ Expr ’)’)]
| ’once’ Expr
| ’{’ CommaExpr ’}’
| QuoteExpr
| LikeXMLExpr
| IfExpr
| RepeatExpr
| ForExpr
| SwitchExpr

def36. CommaExpr ::=
Expr++ ’,’

def37. Hole ::=
’?7> [(Integer)]

def38. Literal ::=
Stringliteral
| NumberLiteral
| CharacterLiteral

def39. PostOp ::=

LexicalPostfix0Operator

def40. InOp ::=

LexicalInfixOperator

def41. DotExpr ::=
Name
| (2 Expr 1)
| ‘new’
def42. LambdaExpr ::=
>(> Args ’=>’ StatementSeq ’)’
| fun’ Args ’=>’ StatementSeq ’endfun’

102

def43. LambdaExpr ::=
> (? LambdaBody ’)’
| fun’ LambdaBody ’endfun’

def44. LambdaBody ::=
Args ’=>’ LambdaBody
| StatementSeq

def45. QuoteExpr ::=
77 QuotedItems ’°¢°

def46. QuotedlItems ::=
QuotedItemx*

defd47. QuotedItem ::=
Word
| 7{’ QuotedItems ’}’
|) (; EXpI‘ ;))
| *~? Word
| ?AN Word
| *\\’ Word
| [C°\\?)] Literal
def48. LikeXMLExpr ::=
LeafyTree
| BranchingTree

def49. LeafyTree ::=
’<? TreeHead ’/’ ’>’

def50. BranchingTree ::=

) < J

TreeHead

) >)

StatementSeq

b <)

7/7

[(TreeHead)]

b >)

def51. TreeHead ::=
TreelLabel TreeAttribute*

def52. TreeLabel ::=

Literal

| Id

| Id ’:7 1d
| Id ’::’ Id
|)(; EXPI‘ ;))

103

def53. TreeAttribute ::=
Name [(’=’ Expr)]

def54. IfExpr ::=
LongIfExpr
| ShortIfExpr

def55. ShortIfExpr ::=
) ()
Expr
7P
CommaExpr
(’|:? Expr ’|’ CommaExpr)*
[(ﬂ’ CommaExpr)]
7)7
def56. LongIfExpr ::=
(’if’ | ’unless’)
Expr
Then
StatementSeq
(’elseif’ Expr Then StatementSeq) *
[(’else’ StatementSeq)]
(’endif’ | ’endunless’)

def57. Then ::=
’then’
| ’do?

def58. RepeatExpr ::=
’repeat’
StatementSeql
[(RepeatTest [(’do’ StatementSeq2)])]
’endrepeat’

def59. RepeatTest ::=
(’while’ | ’until’) Exprl [(’then’ Expr2)]

def60. ForExpr ::=
’for’
ForControls
[(’do’ StatementSeq)]
[(’finally’ StatementSeq)]
’endfor’

def61. ForControls ::=
ForControl
| ForControls ’;’ ForControl
| ForControls ForCondition

104

def62. ForControl ::=
ForBinding
| ForCondition

def63. ForCondition ::=
’while’ Expr ’else’ Expr
| until’ Expr ’then’ Expr

def64. ForBinding ::=
ForName ’in’ Expr
| ForName ’on’ Expr
| ForName ’from’ Expr
| ForName ’to’ Expr
| ForName ’from’ Expr (’to’ | ’downto’) Expr

def65. ForName ::=
Name [(’:’ Type)]

def66. SwitchExpr ::=
’switch’ Expr (SCase | SElse) ’endswitch’

def67. SCase ::=
(’case’ Expr)+ ’then’ StatementSeq

def68. SElse ::=
’else’ StatementSeq

def69. Type ::=
Expr

def70. TryCatchExpr ::=
’try’ StatementSeq CatchSeq ’endtry’

def71. CatchSeq ::=
(’catch’ Arglist [(’as’)] StatementSeq) **

def72. UnitDef ::=
’define’
OpenModifier
(Punit’ | ’units’)
UnitDef++

>
’

’enddefine’

def73. UnitDef ::=
Word [(’=’ Expr)]

105

def74. EnumDef ::=
’define’
OpenModifier
’enum’
Name

’=>

Name++

>
H

’enddefine’

def75. Pathname ::=
[(Scheme)]
[(Root)]
[(Directories)]
[(Name)]
[(Suffix)]
[(Type)]

def76. Scheme ::=
Word ’:?

def77. Root ::=
’//’ Dotted

def78. Directories ::=
[(’/?)] (Dotted ’/7?)++

def79. Name ::=
Word

def80. Suffix ::=
7.7 Word

def81. Type ::=
’;? Word

def82. Dotted ::=
Word++ ’.?

106

