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Abstract

Numerous replica placement algorithms have been
proposed in the literature for use in content delivery
networks. However, little has been done to compare
the various placement algorithms against each other
and against caching. This paper debates whether we
need replica placement algorithms in content deliv-
ery networks or not.

The paper uses extensive evaluation of algorithms,
systems and web workloads to answer this question.
We conclude that a simple delayed-LRU caching
scheme outperforms, or at least performs as well
as the best replica placement algorithms. As LRU
caching is less complex than most replica place-
ment algorithms, caching is clearly the preferred
option. However, we believe that replica place-
ment algorithms will be necessary once properties
such as availability, reliability, performance and
bounded update propagation will have to be guar-
anteed by content delivery networks.

1 Introduction

Content delivery networks (CDN) such as Akamai
[1] and Digital Island [4] are nowadays used by
many web sites as they effectively reduce the client-
perceived latency and balance load. They accom-
plish this by serving content from a dedicated, dis-
tributed infrastructure located around the world and
close to clients. One of the foremost problems in
CDNs is to decide where to place site contents in
the CDN infrastructure. The algorithms used so

far can be categorized into two high-level groups;
caching algorithms and replica placement algo-
rithms (RPA). Caching is generally a completely
distributed algorithm that evaluates its placement
after each single access, while an RPA is evalu-
ated with the frequency of hours or days and can
thus be much more elaborate and even centralized.
The replica placement problem is an instance of the
classical file allocation problem (FAP) [5], in which
only algorithms that allow replicas to be created are
considered. There have been a plethora of proposed
RPAs [6, 7, 8, 9, 11, 12, 13, 16, 17, 20] (see [10] for
an extensive analysis) for possible use in CDNs, but
no direct comparison between them or with caching
has been performed. The questions we would like
to answer is how do the various RPAs compare, and
are they any better than simple caching?

In this paper, we quantitatively study previously
proposed RPAs to discover under what system con-
ditions and performance metrics, if any, RPAs out-
perform caching. The algorithms considered are
previously proposed algorithms specifically target-
ing CDNs and some other algorithms from other
systems that we believe could be useful in this con-
text. In order to describe the algorithms concisely,
we use the replica placement framework presented
in [10] and show how local caching algorithms map
into the framework as an RPA that is decentralized
and evaluated after each single access. We evalu-
ate the performance of these algorithms by simu-
lating the produced placements’ impact on the sys-
tem’s client-perceived latency, both as an average
over all accesses and as a threshold metric. This is
performed using a Internet-like network topology



and a trace taken from a large web server.

We find that taking the number of accesses into
account when making a decision with an RPA
improves performance substantially, and that the
greedy heuristic [16] overall provides the best re-
sults for a system without any capacity constraints.
The RPAs taking storage constraints into consider-
ation outperform all RPAs that do not, questioning
the usefulness of RPAs without storage constraints
in CDNs. We find that the fast, decentralized Pop-
ularity algorithm [9] and the Greedy Ranking algo-
rithm taking storage into consideration [9] produce
the best placements.

When comparing the best RPAs against caching in
the same location in the network, we first find that
RPAs outperform a simple LRU caching algorithm.
The reason for this is the assumption that RPAs
know where the closest object of a replica is lo-
cated. This assumption can be made (up to some
system scale) as these algorithms are only evaluated
infrequently, e.g., once a day. We then propose to
evaluate the caching algorithm with the same low
frequency in order for caching to benefit from the
same perfect closest replica knowledge. By eval-
uating a simple LRU caching algorithm as infre-
quently as RPAs, caching outperforms or performs
as well as the best RPAs.

Based upon our experimental results, we conclude
that RPAs are not needed for the systems we con-
sidered, as a simple caching algorithm can be made
to perform as well, if not better than, the best RPAs.
However, we believe that RPAs will become useful
once availability, reliability and update-propagation
latency guarantees have to be provided in a CDN.
It is also an open question if our results extend to
bandwidth and load constrained systems.

The rest of the paper is organized as follows. In
Section 2 we describe the system model and all the
placement algorithms that we examine. Section 3
describes our experimental methodology. The core
of the paper is Section 4 that reports on experimen-
tal results. We then discuss possible fruitful future
directions of RPA research in Section 5 and finally,
in Section 6, the paper is concluded.

2 Assumptions and Algorithms

We start by providing the system model and the as-
sumptions we make in Section 2.1. In Section 2.2,
we define the replica placement problem and the al-
gorithms we choose to compare, and how caching
can be viewed as an RPA.

2.1 System Model

The system considered in this paper is a data repos-
itory consisting of a set of N storage nodes, here-
after just called nodes, interconnected with some
network. On these nodes, replicas of objects (K)
are stored representing data aggregates such as en-
tire web-sites, directories, or single documents. In
the system, clients (C) generate read accesses to the
objects located on the servers. The overall goal of
the replica placement problem that we study in this
paper is to decide the location of object replicas in
the system so as to minimize the client-perceived
latency given an existing infrastructure. We will ex-
amine both average latency metrics and threshold-
based QoS metrics.

2.2 Replica Placement Algorithms

We use the classification framework introduced in
[10] to describe RPAs concisely and pin-point their
differences. This framework is summarized in this
Section and the RPAs we consider are mapped into
it.

An algorithm in this paper consists of a problem
definition and a heuristic. The problem definition
consists of a cost function that has to be minimized
or maximized under some constraints. The prob-
lem definitions we are interested in for use in CDNs
can be divided into two main categories, depend-
ing on whether they consider accesses to objects or
not. The problem definitions within both these cat-
egories can be further classified into two groups,
according to whether they consider a single object
or multiple objects at a time. A single-object prob-
lem definition places objects independently of each
other.



Table 1 lists the problem definitions that are con-
sidered in this study. They are all problem defini-
tions that have been used in the CDN literature. For
a full list of replica placement problem definitions
for possible use in CDNs, we refer to [10]. The
variables are defined as follows:

Reads (readsik � 0) : The number of read ac-
cesses by a client i to an object k per time unit.

Distance (distij � 0) : The distance between a
client i and a node j represented with a metric
such as network latency, number of network
hops, or total link “cost”.

Object Size (sizek > 0) : The size of object k in
bytes.

Access Time (acctimejk � 0) : A time-stamp of
the last time object k was accessed at node j.

Placement Matrix (xjk 2 f0; 1g) : Indicates
whether node j stores object k. This is un-
known and will contain the result of the place-
ment.

Routing Matrix (yijk 2 f0; 1g) : Indicates
whether client i sends requests for object k to
node j. This is unknown and will contain the
result of the optimization. For the algorithms
in this paper, it is enough to find out either x
or y as they can be deduced from each other.

The two constraints considered in the CDN
literature are the number-of-replica constraint
(
P

j2N xjk � P; 8k) that limits the number of
replicas placed, and the storage capacity constraint
(
P

k2K sizek � xjk � Sj; 8j) that places an upper
bound on the storage capacity of the node.

The heuristics used to achieve the goal set out by
the problem definition can be described using three
primitives: metric scope, approximation method
and cost function simplification. Metric scope is
the set of clients, nodes, objects that are considered
when making a placement decision. The heuristic
can specify this scope anywhere from considering
zero to all. If, for example, only one node is con-
sidered, the heuristic is decentralized and has to be

run everywhere, but if all nodes are considered, it
is centralized. If the object scope is local, only ob-
jects stored locally or accessed locally will be con-
sidered.

An approximation method is the technique used to
make the placement decision. The ones considered
in this paper are ranking, improvement, and La-
grangian relaxation. Ranking starts with the com-
putation of the cost impact of all possible combina-
tions (within the metric scope) of placing one extra
object on one node; sorts these costs and selects the
best one that does not violate any constraints. If a
constraint is violated, is tries the next placement in
the list. This is repeated until no more objects can
be placed. A greedy ranking heuristic recomputes
the cost function after each object is placed. The
specific improvement heuristic used in this paper is
the 2-distance improvement heuristic [3]. It starts
with an initial placement. This placement could be
random or seeded by another heuristic. It then ran-
domly picks one object and puts it on another node,
making sure that the constraints are still satisfied.
If this placement has a better cost it keeps it, other-
wise it reverts back to the previous one. This pro-
cess is then repeated a predefined number of times.
Lagrangian relaxation [19] is a method that relaxes
the constraints of the original problem by moving
them into the cost function, which makes the new
problem easier to solve.

On top of this, an algorithm can also modify
(usually simplify) the cost function that the orig-
inal problem definition specified. For exam-
ple, the problem definition might specify the cost
function

P
i2C

P
j2N readsik � distij � yijk. But

a heuristic might disregard the distance and use
just
P

i2C

P
j2N readsik � yijk. It might work well

anyway.

Table 2 lists the heuristics we examine in this pa-
per. A short description of each of them follows.
Greedy Global [9, 16] is a centralized heuristic that
uses greedy ranking of global data in the system.
Ranking Local [9, 12] is a decentralized ranking
heuristics that just uses the data available in each
node. Popularity [9] is the same as ranking local
with the exception that it always only considers the
number of accesses as the ranking criteria. Rank-



ID Cost function References

Group 1: Does not consider any object accesses.
Single Object

maxdist maxi2C;j2N distij � yijk [6, 7, 8]
dist

P
i2C

P
j2N

distij � yijk [6, 8]
Group 2: Considers read accesses to objects.

Single Object
so readdist

P
i2C

P
j2N

readsik � distij � yijk [6, 8, 13, 16, 17]
Multiple Objects

mo readdist
P

i2C

P
j2N

P
k2K

readsik � distij � yijk [9, 11]

Table 1: The problem definitions that have been proposed in the CDN literature and investigated in this
paper.

ing Dist [12] is the same as popularity except that it
uses distance as the cost function. Hotspot [16] is a
centralized ranking heuristic that only considers ac-
cesses from clients located within a specified radius
around each node. Fan-Out [8, 17] places objects
at the nodes with the highest fan-out, irrespective
of the actual cost function. Swap [3] is the central-
ized 2-dist improvement heuristic described previ-
ously. Greedy+ (called l-Greedy in [8]) seeds the
Swap heuristic with the result of the Greedy Global
heuristic. Lagrangian [3, 19] is the relaxation tech-
nique described previously, and Lagrangian+ is the
Swap heuristic seeded with that result.

In this paper, we use plain LRU caching as a repre-
sentative from the caching domain. Caching maps
nicely into the framework as can be seen in Table 2.
The key difference that is missing from the Table
is that caching is evaluated after each single access,
while an RPA is usually evaluated much less fre-
quently.

The possible constraints column in Table 2 lists
what constraints are possible together with a heuris-
tic. Note, that this is also dictated by the cost func-
tion in the problem definition. The ones that do
not consider object accesses, either in their problem
definition or heuristic, place every single object in
the same nodes as the placement is independent of
any object property. Thus, all single object prob-
lem definitions cannot take a storage constraint into
consideration as it is intra-object dependent, and lo-
cal heuristics cannot guarantee a number-of-replica
constraint as it has an intra-node dependency.

3 Experimental Methodology

To compare the RPAs, we evaluate them using
trace-driven simulations. We measure the perfor-
mance impact of their placements on a real Internet
topology for a web-server workload, that are ex-
plained in Section 3.1. We also describe the sys-
tem performance metrics that we use to compare
the algorithms in Section 3.2, and the tool we used
to generate the placements of all these algorithms,
in Section 3.3.

3.1 Web Workloads and Topology

We use the WorldCup98 web logs [2] (day 50 to
59). To reduce the client population to a tractable
size, we clustered all encountered client IP ad-
dresses according to the Autonomous System (AS)
they belong to using BGP prefixes [18]. This clus-
tering preserves the topological locality and reduces
the number of clients from 2,770,107 to 5,399.
These clusters represent both the clients in the sys-
tem and the nodes on which objects may be placed.
To generate systems with less nodes than the num-
ber in the log (e.g., 300), we choose the desired
number of nodes in a way that preserves the original
access distribution from [2]. Each URL is treated
as a separate object. There are 34,000 objects in
the WorlCup98 log and they are reduced to 10,000
by random selection. We assume that objects are
of uniform size, thus we do not evaluate the algo-
rithms effectiveness on variable size objects.



Metric Scope Cost Function Possible
Heuristic Approximation Method Client Node Object Simplification Constraints

Greedy Global [9, 16] Greedy ranking all all all - P,SC
Ranking Local [9, 12] Ranking local one local - SC
Popularity [9] Ranking local one local readsik SC
Ranking Dist [12] Ranking local one local distij SC
Hotspot [16] Ranking vicinity all all readsik P,SC
Fan-Out [8, 17] Ranking indep all indep fanoutj P
Swap [3] Improvement all all all - P,SC
Greedy+ [8] Greedy ranking + Improvement all all all - P,SC
Lagrangian [3, 19] Lagrangian all all all - P,SC
Lagrangian+ [3, 19] Lagrangian + Improvement all all all - P,SC
LRU Caching Ranking local one local acctimejk SC

Table 2: The heuristics examined in this paper. “Vicinity” means a number of clients within some radius of
the node. The possible constraints column lists the constraints that a heuristic can consider.

We derive the distance matrix distij using the AS
level topology that we generate by processing BGP
reports [18]. In an ideal world, distij would rep-
resent the average latency between nodes i to j.
However, this is impossible to measure, unless one
happens to be on that specific routing path. So,
we obtain latency approximations by measuring the
number of AS-level hops between two nodes by
constructing an AS graph and use Dijkstra’s short-
est path algorithm between all pairs of AS in this
graph. It has been shown that AS-level hops is
a fair approximation of actual latencies on the In-
ternet [15]. To turn these hop numbers into laten-
cies with some variation (as the actual latencies un-
doubtedly have), we use the formula Latency =

j50 � (hops +�)j ms, where � is a random value
between �0:5 and +0:5.

3.2 Performance Metrics

As we often compare algorithms with different cost
functions and constraints, a comparison of min-
imized cost function values would often not be
meaningful. Instead, we compare RPAs on what
their impact is on the perceived performance of the
CDN system itself. In this paper, we use two sys-
tem performance metrics: one based on the average
client-perceived latency, and the other one is a QoS-
metric based on a client-perceived latency thresh-
old. The latter metric is useful due to the fact that
for example, service level agreements (SLA) used

in CDNs might be in the form the Xth percentile
of requests have a response latency below Y msec.
Performance above some threshold is unacceptable
by the users. In this study, instead of fixing this
threshold to one number, we display graphs from
which the result X of any threshold Y can be deter-
mined. This way the reader can choose any thresh-
old deemed interesting. The evaluation in Sec-
tion 4 refers to the Cumulative Distribution Func-
tion (CDF) of the client-perceived latency, given the
produced placements. The larger this percentile for
a given threshold, the better the algorithm is for this
system and workload.

3.3 Algorithm Implementations

The placements of all the algorithms in this study
were produced by Coeus [10]. This tool takes the
problem definitions and heuristic primitives from
Section 2.2 and produces the placement for that al-
gorithm. In this way, it can run any previously pub-
lished CDN algorithm and many variations thereof.
We decided not to run any new algorithms, because
we believe that the point of diminishing returns
have already been reached for RPAs when used in
the context of today’s CDNs. Coeus uses existing
algorithms and/or implementations of them when
available. The placements produced by Coeus have
been validated against existing implementations of
algorithms when possible. All algorithms in this
paper make decisions about placements using pre-



Heuristic Computation No. Messages Message Size

Greedy Global O(RCNK) O(N) O(NK + CK)

Ranking Local O(CK) 0 0
Popularity O(CNK) O(N) O(CK)

Ranking Dist O(CN) 1 O(CN)

Hotspot O(CNK) O(N) O(CK)

Fan-Out O(N) 1 O(N)

Swap O(IswapCNK) O(N) O(NK + CK)

Lagrangian O(IlagrRCNK) O(N) O(NK + CK)

LRU Caching O(1) 0 0

Table 3: The various decision costs of the algorithms evaluated in this paper. C is the number of clients, N
the number of nodes, K the number of objects, and R is the number of object replicas allocated every time
the algorithm is executed. Iswap and Ilagr are the number of iterations Swap and Lagrangian relaxation are
run for.

viously observed data, i.e. they do not know the
future. The RPAs are run once every day unless
otherwise specified, and we assume that they pro-
duce their placements instantaneously. The latter
assumption has little impact on the results as the
workload we study is quite stable.

Here are some details about the specific parameters
of algorithms. The vicinity of the Hotspot algo-
rithm is defined to be any client within 50 ms. Swap
iterates for 5000 iterations and only generates fea-
sible solutions. Lagrangian relaxation iterates for
500 iterations.

The decision costs of the algorithms are shown in
Table 3. If the cost function is dist or maxdist,
K = 1, as all objects are placed in the same way
and only the placement of one object has to be cal-
culated. We assume that the distance matrix and the
fan-out vector change infrequently. Thus this infor-
mation only needs to be fetched once. This can be
seen in Table 3 for Ranking Dist and Fan-Out. The
computation cost of Lagrangian relaxation is only
valid for the so readdist problem formulation.
To get the decision cost of a combined heuristic
such as Greedy+, add the computation costs of the
two heuristics and form the union of the number of
messages cost and the union of the message sizes.

4 Experimental Results

In this Section, we show the results for the World-
Cup98 workload. We start by identifying the best
RPA without any infrastructure constraints in Sec-
tion 4.1. In Section 4.2, we examine RPAs with
storage constraints to identify the best ones. The
best algorithms are then compared against caching
in Section 4.3. In Section 4.4, we show that by
simply evaluating the caching algorithm less fre-
quently, caching outperforms even the best RPAs
for CDNs.

4.1 Infinite Capacity

In this Section we study the performance of RPAs
on a system with infinite capacity. The algorithms
in this case can allocate as many objects to a node
as they want and are only constrained by a num-
ber of replica constraint. We only report the re-
sults for 16 replicas for each object, as the results
are similar for values between 4 and 64 replicas.
We examine all the heuristics from Table 2 that can
take a P constraint applied to the problem formula-
tions so readdist, dist, and maxdist from
Table 1. The reason that mo readdist is not in-
cluded is that it produces a placement identical to
so readdist for a P constraint as there are no
constraints or dependencies between objects.

Figure 1 lists the average client-perceived la-
tencies for various heuristics applied to the
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Heuristic so readdist dist maxdist

Greedy Global 30.2 40.5 71.6
Hotspot 47.1 47.1 47.1
Fan-Out 52.2 52.2 52.2
Swap 43.6 49.1 78.3
Lagrangian 30.4 40.9 -
Random 78.9 78.9 78.9
Greedy+ 30.0 40.5 44.4
Lagrangian+ 30.4 40.9 -

Figure 1: The graphs show the client-perceived latencies for various algorithms when the system has no
infrastructure constraints. The table shows the average client-perceived latencies (in ms.) for the same
system. We do not have an implementation of Lagrangian relaxation for maxdist.

so readdist, dist, and maxdist problem
definitions, and the results of the threshold-based
QoS-metric. If we start by comparing prob-
lem definitions against each other, we see that
so readdist provides better results than dist
which is better than maxdist for both the average
latency and the threshold-based metric. This is be-
cause some clients generate far more accesses than
others. When the threshold is above approximately
150 ms, the cost function does not matter much.
But for thresholds under 150 ms and for average la-
tency values, so readdist is the preferred cost
function. Thus, for the rest of the paper, we will not
show any further results for dist and maxdist.

Focusing only on so readdist, we would like
to know what heuristic provides the best results.
The first observation to make is that adding a Swap

heuristic to Greedy and Lagrangian only improves
the results marginally, if at all, from plain Greedy
and Lagrangian. Note that this can be hard to see in
the graph, as the results for Greedy, Greedy+, La-
grangian and Lagrangian+ nearly completely over-
lap each other. The table with the average latencies
shows the small differences between them more
clearly. Among the single heuristics, Greedy and
Lagrangian produce the best placements over all the
performance metrics. Greedy is preferred, as it has
the lowest decision cost of the two according to Ta-
ble 3.

4.2 Finite Storage Capacity

In this Section, we compare RPAs with and
without storage constraints. This corresponds to



0

20

40

60

80

100

0 50 100 150 200 250

C
lie

nt
 P

er
ce

iv
ed

 L
at

en
cy

 C
D

F
 (

%
)

Latency (ms)

Storage Capacity = 1.25%, Nodes = 300, Objects = 10000

Greedy
Hotspot
Fanout

Swap
Lagrangian

Random
Greedy-mo

Swap-mo
Popularity

0

20

40

60

80

100

0 50 100 150 200 250

C
lie

nt
 P

er
ce

iv
ed

 L
at

en
cy

 C
D

F
 (

%
)

Latency (ms)

Storage Capacity = 2.5%, Nodes = 300, Objects = 10000

Greedy
Hotspot
Fanout

Swap
Lagrangian

Random
Greedy-mo

Swap-mo
Popularity

0

20

40

60

80

100

0 50 100 150 200 250

C
lie

nt
 P

er
ce

iv
ed

 L
at

en
cy

 C
D

F
 (

%
)

Latency (ms)

Storage Capacity = 5%, Nodes = 300, Objects = 10000

Greedy
Hotspot
Fanout

Swap
Lagrangian

Random
Greedy-mo

Swap-mo
Popularity
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Greedy Global 47.4 38.0 30.7
Hotspot 49.6 47.4 47.1
Fan-Out 56.5 56.1 52.2
Swap 47.5 37.9 37.9
Lagrangian 48.1 38.7 31.0
Random 110.2 91.9 79.9
Greedy-mo 44.2 32.8 25.6
Swap-mo 64.8 60.1 57.0
Popularity 42.6 30.5 22.1

Figure 2: The client-perceived latencies for various algorithms when the system has storage constraints.
The table shows the average client perceived latencies in ms.

so readdistwith a number of replica constraint
and mo readdist with a storage capacity con-
straint, respectively. In using an so readdist
algorithm in a system with storage constraints,
we assume the following. Each object in a
so readdist algorithm has a replication factor
equal to dN � S=Ke (S being the storage capac-
ity of each node). This assures that all RPAs al-
locate roughly the same amount of object replicas.
When a so readdist algorithm has decided on
a placement and there are more objects allocated to
a node than there is storage capacity, only the most
frequently accessed objects on that node will be al-
located up to the storage capacity constraint. The
rest are dropped.

Figure 2 shows the average client-perceived la-
tency and the threshold-based results for nodes with
storage capacities of 1.25%, 2.5% and 5% of all

the objects in the system. Here, Greedy-mo and
Swap-mo are the Greedy and Swap heuristics for
mo readdist, i.e. they do take storage con-
straints into consideration. Popularity is a local al-
gorithm that also takes storage constraints into con-
sideration. We will not show any results for Rank-
ing Local since it provides similar results as Popu-
larity [9].

Starting with the system that can store 5% of the ob-
jects, we can see from Figure 2 that overall the de-
centralized Popularity algorithm performs the best
followed by Greedy-mo. This is true both for the
average metric and the threshold-based one. For
S = 1:25% and S = 2:5%, Popularity is not as
good as a number of other algorithms when the
threshold is between 75 ms and 225 ms. This
is because Popularity only optimizes accesses that
hit locally, thus the step around 25 ms. The



so readdist algorithms (Greedy, Hotspot, Fan-
out, Swap, and Lagrangian) perform significantly
worse than Popularity up until you get to approx-
imately S = 40% (not shown), when it does not
matter much what algorithm you choose, since ev-
ery node can store 40% of the objects. The place-
ments of swap-mo can be significantly improved by
executing more iterations. However, the decision
cost will be far higher than for Greedy-mo.

In summary: there does not seem to be any rea-
son to use the best so readdist algorithms as
they are outperformed by Popularity and Greedy-
mo even when there is plenty of storage space. Pop-
ularity is the best algorithm when considering av-
erage latencies and for thresholds under approxi-
mately 75 ms. What is even better is that it is the
fastest if we exclude Fan-Out that does not perform
well. In the next section, the two best RPAs, Popu-
larity and Greedy-mo, are compared to caching.

4.3 Comparison against Caching

Generally, it is assumed that since an RPA is eval-
uated as infrequently as e.g., once a day, each node
knows where the closest replica of each object it
is not storing is located. This information could
probably be dispersed in the system at little cost
since it would be done infrequently. In this sec-
tion, we will assume that this information can be
dispersed without any cost. On the other hand, for
local caching that potentially changes its placement
after each single access, this is prohibitively expen-
sive. Thus, we will assume that a node using a
caching algorithm will not know where the closest
copy of an object it is not storing is located. At a
miss, it will have to go to some origin node to fetch
the object. We assume that this origin node is lo-
cated 200 ms away in the network. This 200 ms
latency can be seen as a knee in Figure 3, and the
results for another origin node latency could easily
be estimated by moving this knee. For comparison
reasons, we also show the results for an Cooper-
ative caching scheme [21] using plain, local LRU
that knows at no cost where the closest replica of
each object is. This scheme is denoted “optimal
LRU cooperative caching” in the figure.

Figure 3 shows the results for Caching, Greedy-
mo and Popularity. The point to make from these
graphs is that regular local caching does not per-
form well at all if looking at averages (not shown
in the Figure) and for latency thresholds above 50
ms. This is because caching has to pay the heavy
penalty of going to the origin server as it does not
have any knowledge of where the closest replica
is. For thresholds under 50 ms, it produces place-
ments nearly as good as the best RPA Popularity.
As expected, as the storage capacity increases the
difference between caching and the two RPAs dis-
appears. This means that if we believe that storage
is going to be ample, caching will be just as good
as the best RPAs.

Could we now make caching perform well even for
low storage constraints? That is what we will ex-
amine in the next section.

4.4 Impact of Evaluation Interval

A lot of research has gone into cooperative caching
and the field has been at the point of diminishing
returns for quite a while. These schemes all tried
to reach the performance of the optimal LRU coop-
erative caching curve in Figure 3 by evaluating the
caching algorithm after each single access and at
regular time intervals communicating information
regarding the location of the nearest replicas. What
if we instead take our regular LRU caching algo-
rithm and run it infrequently and only communi-
cate closest replica information at these evaluation
points? Thus, in between these evaluation points
there will be no changes to the cached contents. In
Section 2.2, we identified that LRU caching is in
essence a completely decentralized RPA, run after
each access that uses ranking of access times as its
approximation method and has a storage constraint.
If we take this RPA (which, if it is run after each
single access is called LRU caching) and run it e.g.,
once a day, it should be possible to communicate
the locations of the closest copy of an object to the
nodes, just as it is possible for the other RPAs. The
overhead and amount of information sent is going
to be the same as for any other RPA. Thus, we gain
the information of where the closest replica of an
object is located at the cost of only being able to
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Figure 3: Comparison of caching, Greedy-mo, Popularity and optimal LRU cooperative caching for various
storage constraints.

evaluate and change the contents of the node infre-
quently. We are going to refer to this algorithm as
delayed caching.

Figure 4 shows the results for Popularity and LRU
caching when the evaluation interval is varied be-
tween 1 access, for caching, to 10,000 seconds
(roughly 3 hours). As can be seen from the Fig-
ure, delayed caching is better or as good as Popu-
larity when looking at averages (not shown in the
Figure). For the threshold based metric, delayed
caching is worse when the threshold is lower than
50 ms, but better above that threshold. The reason
for this is that delayed caching stores some infre-
quently accessed objects because it only looks at
the access time. This is bad from a local perspec-
tive, but good from a global perspective as some
infrequently accessed objects will be spread around
the system. As we would expect, the greater the
storage capacity, the less the difference between the
two schemes. When comparing caching and Popu-
larity, where both have no knowledge of where the
closest replica is (Caching and Popularity- in the
graph), Popularity performs better.

To conclude this section; with simple caching we
can achieve, on the average, a better or as good
a placement as the best RPAs if we just increase
the evaluation interval from the usual one access to
hours or even days. By doing this, it is possible to
use the same mechanisms that RPAs use to infre-
quently disseminate information about the location

of other objects. Thus, there seem to be no need to
use an RPA under the conditions and in the system
we have considered, as delayed caching is just as
good.

5 Discussion and Open Questions

While we showed that there is little use of current
RPAs in today’s CDNs, as caching is as good if not
better, we do believe that there is a need for RPAs
in future CDNs. When a CDN has to provide some
level of performance, reliability or availability guar-
antees, there will be a need for RPAs to achieve this
goal, as regular caching cannot provide any useful
guarantees for these metrics. However, as far as we
know, there has been little work within the field of
CDNs towards this.

Moreover, RPAs might be useful when CDNs al-
low users and content providers to write to objects.
There are several algorithms for limiting the perfor-
mance penalty for writes to caches, such as write-
invalidate and write-update. However, it is unclear
how well they would work in a CDN. If CDNs start
to provide update guarantees in the form of “all
your replicas of the object will be consistent within
x seconds of a write”, RPAs should be useful as
caching would not be able to provide such guaran-
tees. But, to the best of our knowledge, there are no
CDN RPAs out there that provide such guarantees.
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Figure 4: Comparison of caching and Popularity for various evaluation intervals (in seconds). Caching
without a number after it is regular caching evaluated after each single access. Popularity- is the Popularity
algorithm without any knowledge of the location of closest replicas.

A final open question is if our results are still valid
on a system with nodal bandwidth or load con-
straints, or a system with network link capacity con-
straints. There are some algorithms that consider
this [20, 14], but it is unclear how much of a per-
formance benefit, if any, compared to caching they
provide.

6 Conclusions

In this paper, we compare the benefits of caching
with replica placement algorithms (RPA) when
used in content delivery networks (CDN). First,
we identify what RPAs provide the best client-
perceived latency improvements. We find that tak-
ing object accesses into account usually makes a big
difference. We find that the decentralized Popular-
ity algorithm [9] and the storage constrained, multi-
object Greedy algorithm [9] overall work the best
across a number of performance metrics. Popular-
ity is generally preferable as it is much less compu-
tationally expensive.

When we compare caching to Popularity and the
above Greedy algorithm, we find that when there
is plenty of storage, caching is as good, if not bet-
ter, than the best RPA. However, caching performs
much worse than the RPAs when there is a lim-
ited amount of storage. This is mainly due to the

fact that RPAs are only evaluated infrequently, e.g.,
once a day, and thus it is possible to communicate
information about where a node can fetch from the
closest replica of an object. As caching changes
its stored content frequently, this is not possible for
a local cache, and it has to go to the origin server
that is usually located at quite some distance. How-
ever, by only evaluating the caching algorithm as
infrequently as the RPAs, we can communicate the
knowledge about the closest copy of an object in
the same way as with an RPA. In this way, simple
caching generally performs better than an RPA even
for storage constrained systems.

While we conclude this paper by stating that there
seems to be no need for RPAs in the CDN we stud-
ied, we believe that they will be useful, once CDNs
start to provide consistency, performance, availabil-
ity, and reliability guarantees. However, for CDNs
little research has been done in that space. It is also
an open question how our results extends to band-
width and load constrained CDNs.
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