

A Framework for Evaluating Replica
Placement Algorithms

Magnus Karlsson, Christos Karamanolis, Mallik Mahalingam
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-219
August 8th , 2002*

E-mail: karlsson@hpl.hp.com

replica
placement
algorithms,
content
delivery
networks,
evaluation
framework,
file allocation
problem

This paper introduces a framework for evaluating replica placement
algorithms (RPA) for content delivery networks (CDN) as well as
RPAs from other fields that might be applicable to current or future
CDNs. First, the framework classifies and qualitatively compares
RPAs using a generic set of primitives that capture problem
definitions and heuristics. Second, it provides estimates for the
decision times of RPAs using an analytic model. To achieve
accuracy, the model takes into account disk accesses and message
sizes, in addition to computational complexity and message
numbers that have been considered traditionally. Third, it uses the
"goodness" of produced placements to compare RPAs even when
they have different problem definitions. Based on these evaluations,
we identify open issues and potential areas for future research.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1

A Framework for Evaluating
Replica Placement Algorithms

Magnus Karlsson, Christos Karamanolis and Mallik Mahalingam
HP Laboratories

1501 Page Mill Road, Palo Alto, CA 94304, U.S.A.
Contact Author E-mail: karlsson@hpl.hp.com

Abstract— This paper introduces a framework for eval-
uating replica placement algorithms (RPA) for content de-
livery networks (CDN) as well as RPAs from other fields
that might be applicable to current or future CDNs. First,
the framework classifies and qualitatively compares RPAs
using a generic set of primitives that capture problem defi-
nitions and heuristics. Second, it provides estimates for the
decision times of RPAs using an analytic model. To achieve
accuracy, the model takes into account disk accesses and
message sizes, in addition to computational complexity and
message numbers that have been considered traditionally.
Third, it uses the “goodness” of produced placements to
compare RPAs even when they have different problem defi-
nitions. Based on these evaluations, we identify open issues
and potential areas for future research.

Index Terms— Replica Placement Algorithms, Content
Delivery Networks, Evaluation Framework.

I. INTRODUCTION

The design of replica placement algorithms (RPA) is
one of the foremost problems in Content Delivery Net-
works (CDN), such as Akamai [1] and Digital Island [2].
These algorithms decide what data to replicate on what
storage nodes, in order to achieve improved performance1

with low infrastructure cost. A number of RPAs have been
proposed in the CDN literature, but until now there has
been no systematic way to classify and compare them.
Moreover, most RPAs are concerned with read-only data
and target simple performance metrics. In an earlier paper,
we reported that simple caching schemes outperform the
best RPAs, if no hard performance guarantees are required
[3]. Future CDNs are expected to support modifications,
consistency, and various QoS guarantees. Using RPAs is
probably the only way to meet such requirements. Thus,
RPAs for next-generation CDNs is an issue that needs to
be investigated.
�
Performance could be, for example, latency, throughput or avail-

ability.

The replica placement problem has also been studied
extensively in several other distributed computing fields,
including the file assignment problem [4], distributed
databases [5] and data management [6], to mention a few.
These fields require RPAs that may consider writes, con-
sistency, availability, strict and compounded guarantees,
update propagation bounds, etc. Several questions are
raised as a consequence: how are all these approaches re-
lated to each other; how can one systematically represent
and evaluate algorithms for use in CDNs; what RPAs from
other fields can CDNs use; which areas provide opportu-
nities for future research.

In this paper, we propose a framework for comparing
and evaluating replica placement algorithms for CDNs.
Our framework defines an RPA as a problem definition
and a heuristic. The problem definition consists of a cost
function to be minimized under some constraints. The
heuristic is used to produce near-optimal solutions for the
resulting problem, which is usually NP-complete.

Section II introduces a set of primitives to describe
RPAs from multiple disciplines. Using these primitives
serves three purposes. First, it clarifies the fundamental
differences between existing algorithms. Second, it sim-
plifies comparing new algorithms with the prior art. Third,
given a problem definition, it identifies heuristics that have
been used for that problem.

We find that many potential future problems in CDNs
have solutions in other fields. However, section III shows
that existing algorithms do not support the scales of
CDNs. We propose an analytic approach for estimating
the decision time of algorithms. Traditionally, only com-
putation and message complexities have been considered.
We show that message sizes and disk access times due to
memory constraints also need to be taken into account to
provide accurate estimates. RPAs that could be of use in
future CDNs, usually scale even worse than today’s CDN
RPAs. This highlights the need for research in scalable al-
gorithms that solve more complex replica placement prob-

2

lems in CDNs.
Section IV compares algorithms based on how “good”

the produced placement is. A problem with the exist-
ing CDN literature is that algorithms are compared using
minimized cost function values. Thus, comparison of al-
gorithms with different problem definitions is impossible
even when they target the same goal and system. One way
to circumvent this problem is to compare their respective
impact on the system performance or cost. In particular,
we developed Coeus, an RPA generator that can produce
the placement of most RPAs described in our framework
to facilitate comparisons against the prior art. The power
of this method is illustrated by comparing a number of
algorithms never compared before, as they have diverse
problem definitions. Finally, we present related work in
Section V and conclude in Section VI.

II. REPLICA PLACEMENT ALGORITHMS

Replica placement is typically formulated as a problem
definition that approximates the overall goal (performance
or cost improvement), the workload and the target sys-
tem. These problems are usually NP-complete. Thus,
they usually require heuristics to find approximate solu-
tions within feasible time. In this paper, by algorithm we
refer to a heuristic applied to a specific problem definition.

To limit the scope of this paper, we do not consider al-
gorithms that aim solely at improving the availability or
reliability of the system, nor algorithms dealing only with
migration. We only consider RPAs that are applicable to
general or tree topologies, as we are interested in Internet-
like topologies.

A. System Model and Goal

The system considered in this paper is a data reposi-
tory consisting of a set of nodes interconnected with links.
Nodes store objects that represent data, such as files, web-
sites or volumes. Clients connect to the nodes to access
the objects stored there.

The goal of the replica placement problem is to decide
the location of object replicas in the system, in order to
either maximize the client perceived performance given
an existing infrastructure, or minimize the infrastructure’s
cost given a specified system performance. This system
goal is abstracted into a problem definition that is used as
an optimization goal.

B. Problem Definition Framework

The replica placement problem can be formally stated
as follows. The system consists of a set of clients

�
, nodes

�
, objects � , and links � . If there is a physical commu-

nication channel between two nodes, a link is added be-
tween these nodes. Each client ��� � is assigned to a node� � � for each object 	
��� , incurring a specific cost ac-
cording to a cost function. For example, such a function
may reflect the average latency for clients accessing ob-
jects in the system’s nodes. An extensive sample of cost
functions is shown in Table I.

This problem formulation is augmented with a number
of constraints. The binary variable ��
���� indicates whether
client � sends its requests for object 	 to node

�
; ����� indi-

cates whether node
�

stores object 	 . The following four
constraints are present in most problem definitions (the
numbers refer to the equations below): (1) states that each
client can only send requests for an object to exactly one
node; (2) states that only nodes that store the object can re-
spond to requests for it; (3) and (4) imply that objects and
requests cannot be split. Optional additional constraints
are described later in this section. The basic problem is
thus to find a solution of either minimum or maximum
cost that satisfies constraints (1) – (4).�

����� ��
�������� ���!�	 (1)

��
����#"$�%���& '�(! � !�	 (2)

�����#�*),+%!��.- � !�	 (3)

��
����#�*),+%!��.-/ '�(! � !�	 (4)

The cost functions of existing RPAs, as shown in Table
I, use the following parameters:

Reads (021,354�6,
7�) : The rate of read accesses by a client
� to an object 	 . This might also be reflected as the
probability of an access to an object (8:9;021�3�456�
7�2<>=)
within ? time units.

Writes (@A0��B?C1D6,
7�) : The rate of write accesses by a
client � to an object 	 .

Distance (42�>6,?
E�) : The distance between a client � and
a node

�
, represented with a metric such as net-

work latency or link “cost”. For update propaga-
tion costs, some algorithms use the minimum span-
ning tree distance between a node

�
and all the other

nodes with a copy of object 	 , denoted FG6�?>��� .
Storage Cost (6DH(���) : The cost of storing object 	 at

node
�
. The storage cost might reflect the size of the

object, the throughput of the node, or the fact that a
copy of the object is residing at a specific node, also
called replication cost.

Object Size (6��JI51,�) : The size of object 	 in bytes.
Access Time (3�HKH�?L�BFG1M���) : A time-stamp indicating

the last time object 	 was accessed at node
�
.

Hit Ratio (NO0
��) : Hit ratio of any cache on the path
from � to

�
.

3

In the literature, a number of additional constraint prim-
itives might be added to constraints (1) – (4) of the prob-
lem definition:

Storage Capacity (PRQ) :SUTDV�WYX�Z>[]\ TA^�_�`�T:a PbQ `�cedgf . An upper bound on
the storage capacity of a node.

Load Capacity (h�Q) :Sji V�k S T,V�Wml;n \,o5p�X i Trqts n ZBuv\,X i T�wx^gy i `�Tza h�Q `2cdgf
. An upper bound on the load, characterized as

the rate of requests a node can serve.
Node Bandwidth Capacity ({}|) :S i V�k}SUT,V�W l;n \,o5p�X i Trqts n ZBuv\,X i T�w~^ X,ZJ[]\ T�^�y i `�Tma

{�| `�c�d%f . A constraint on the maximum rate of
bytes a node can transmit.

Link Capacity (Q�h) :S i V�k}SUT,V�Wml;n \,o5p�X i Trqts n ZBuv\,X i T�wR^ X,ZJ[]\ T#^�y5�� i T a
Q�h � c�d�� . A bandwidth constraint on the link be-
tween two nodes.

y%�� i T����
, if client

Z
uses link

�
to

access object � , otherwise it is zero. Some problem
definitions separate reads, writes and object repli-
cations. The notations for those are

yO�i � T for read
accesses,

y��i � T for writes, and
y%�i � T for objects being

replicated.
Number of Replicas (�) :

SG`�V�� _�`�T�a � c�d � . A con-
straint limiting the number of replicas placed.

Origin copy (�#Q) :
_%`�T ���

for given
f

and � . Speci-
fies the location of the original copy of an object.

Delay (�) : Specifies the desired maximum response
time for requests in the system. Its mathematical
definition is found in [7].

Availability (���) : Specifies the desired minimum
availability of objects in the system. Its mathemati-
cal definitions are found in [7], [8].

Table I maps replica placement problem definitions
from many disparate fields into the proposed cost-function
primitives and constraints. The table lists only problem
definitions that we believe might be useful in a CDN. A
more comprehensive list can be found in [40]. The prob-
lem definitions have been broken down into three main
groups. The Group 1 ignores client accesses; the Group
2 only accounts for read accesses; the Group 3 consid-
ers both read and write accesses, including consistency
requirements. These groups are further divided into four
categories according to whether a problem definition takes
into account single or multiple objects, and whether it
considers storage costs. Single-object formulations can-
not handle intra-object constraints, such as storage con-
straints, but they are easier to solve.

The drawback of the problem definitions in Group 1 is
that they place the � replicas of every object, in the same
� nodes. Clearly, this is not practical, when many objects

are placed in the system. However, they are useful as a
substitute of Group 2 problem definitions, if the objects
are accessed uniformly by all the clients in the system and
the utilization of all nodes in the system is not a require-
ment. In this case, Group 1 algorithms can be orders of
magnitude faster than the ones for Group 2, because the
placement is decided once and it applies to all objects.

Almost all problem definitions proposed in the litera-
ture for use in CDNs fall under Group 2. They are ap-
plicable to read-only and read-mostly workloads. Prob-
lem definitions (3), (5), (6), (8) and (9) have all been
used in CDNs. The two main differences between them
are whether they consider single or multiple objects, and
whether they consider storage costs or not. The cost func-
tion in (7) also captures the impact of allocating large
objects and could possibly be used when the object size
is highly variable. (4) has been proposed for allocating
caches. Its distance parameter consists of the distance be-
tween the client and the cache, plus the distance between
the cache and the node for all cache misses. In a CDN
problem definition, the distance is measured between the
client and the closest node that has a copy of the object.

In the context of CDNs, storage costs (
XD� `�T

) could be
used in order to minimize the amount of changes to the
previous placement. As far as we know, there has been
no evaluation in a CDN, of the benefits of taking this into
consideration. Another open question is whether storage,
load, nodal bandwidth and link capacity constraints need
to be considered. If so, are there any scalable good heuris-
tics for such problem definitions? There is also little re-
search in CDN algorithms that enforce QoS guarantees,
such as client perceived latency.

Considering the impact of writes, in addition to that of
reads, is important, if content providers and applications
are able to modify documents in a CDN. This is the main
characteristic of Group 3, which contains problem defini-
tions that could be of interest to future CDNs. These prob-
lem definitions represent the consistency protocol in many
different ways. For most of them, the cost is the number of
writes times the distance between the client and the clos-
est node that has the object, plus the cost of distributing
these updates to the other replicas of the object. In (10),
(12), (17), (18) and (19), the updates are distributed in the
system using a minimum spanning tree. In (11) and (14),
one update message is sent from the writer to each other
copy. In (15) and (16), it is not specified how updates are
propagated. (18) and (21) also consider the cost of ex-
changing information and (20) considers channel cost.

The other main difference among the above definitions
is that (12), (17), (18) and (21) minimize the maximum
link congestion, while the rest minimize the average client

4

TABLE I
THE PROBLEM DEFINITIONS USED BY ALL THE HEURISTICS DEALT WITH IN THIS PAPER. THE CONSTRAINTS COLUMN SHOWS THE

CONSTRAINTS THAT HAVE BEEN USED IN THE LITERATURE IN CONJUNCTION WITH A SPECIFIC COST FUNCTION, NOT ALL POSSIBLE

ONES. THE VARIOUS COMPONENTS OF THE COST FUNCTION MIGHT BE WEIGHTED. HOWEVER, THESE ARE NOT SHOWN IN THE TABLE.

COST FUNCTION CONSTRAINTS REFERENCES

Group 1: Does not consider any object accesses.
Single Object

(1) �����,�7���2� (�K¡�¢�£;¤L¥¦� �§L¨ � L© ª [9], [10], [11]
(2) « �7��� « (�K¡ ¢�£¬¤L¥­� ~§C¨ � L© ª [9], [11]

Group 2: Considers only read accesses to objects.
Single Object

(3) « �7��� « (�K¡x®�¯(° ¢,¤v�±©�§v¢�£¬¤L¥ � §C¨M� >© ª�²B³'´µ²B¶¸· [9], [11], [12], [13],
[14], [15]

(4) « �7��� « (�K¡x®�¯(° ¢,¤ �±© §�¹»º ® � §v¢�£¬¤L¥ � �¼ ¹¦½¿¾�º ® � MÀ §K¹7¢�£¬¤L¥ � �¼ ¢�£¬¤C¥ >ÁLÀ­À ª [16], [17]
Multiple Objects

(5) « �7��� « (�K¡ « ©(��Â ®�¯(° ¢,¤ �±© §C¢�£¬¤L¥­� ~§C¨ � >© ÃO´e²­Äb´ [18], [19]
(6) « �7��� « (�K¡ « ©(��Â ª ¹ ®�¯(° ¢,¤ �±© À¦Å §C¢�£;¤L¥¦� �§L¨ � L© ÃO´µ²B¶¸· [20], [21]
(7) « �7��� « (�K¡ « ©(��Â�®�¯(° ¢,¤ �±© §C¢�£¬¤L¥­� ~§(¤C£ÇÆ ¯ © §C¨ � >© ÃO´ [22]

Single Object + Storage Cost
(8) « �7��� « (�K¡ ¹Ç¤CÈ >© §LÉ L© ¼ ¢�£¬¤L¥ � § ®�¯(° ¢,¤ �±© §C¨ � >© À ³�´µ²J¶�· [13], [23], [24], [25]

Multiple Objects + Storage Cost
(9) « �7��� « (�K¡ « ©(��Â ¹Ç¤CÈ >© §vÉ L© ¼ ¢�£¬¤L¥­� �§ ®�¯v° ¢,¤ �±© §v¨ � >© À - [24]

Group 3: Considers both read and write accesses with update propagation.
Single Object

(10) « �7��� « (�K¡x®�¯(° ¢,¤ �±© §v¢�£¬¤L¥­� �§C¨ � >© ¼}Ê ® £7¥ ¯ ¤ �±© §K¹7¢�£¬¤L¥­� ¼�Ë ¤L¥ L© À §L¨ � L© ª [26], [27], [28]
(11) « �7��� « (�K¡ ¹ ®�¯(° ¢,¤ �±© §v¢�£¬¤L¥ � �¼�Ê ® £»¥ ¯ ¤ �±© §�¹7¢�£¬¤L¥ � �¼ «jÌ ��¡�� Ì�ÍÎ ¢�£¬¤L¥ Ì §vÉ Ì © À­À §v¨ � >© ª [29]
(12) �����,ÏÐ�KÑ « �7�K� ¹ ®M¯v° ¢,¤v�Ð©Ò§C¨,Ó�ÔÏ�© ¼}Ê ® £7¥ ¯ ¤v�Ð©~§L¨DÕ�ÔÏ�© À­Ö ´e³ Ï - [6]

Single Object + Storage Cost
(13) « �7��� « (�K¡ ®�¯(° ¢,¤ �±© §v¢�£¬¤L¥­� �§C¨ � >© ¼}Ê ® £7¥ ¯ ¤ �±© §K¹7¢�£¬¤L¥­� ¼�Ë ¤L¥ L© À §L¨ � L© ¼« v��¡ ¤CÈ >© §CÉ >©

ª [30], [31], [32]

(14) « �7��� « (�K¡ ¹ ®�¯(° ¢,¤ �±© §v¢�£¬¤L¥­� ¼�Ê ® £»¥ ¯ ¤ �±© §�¹7¢�£¬¤L¥­� ¼ « Ì ��¡�� Ì�ÍÎ ¢�£¬¤L¥» Ì §vÉ Ì © À­À §v¨ � >© ¼« v��¡ ¤CÈ >© §CÉ >©
ª [33]

(15) « v��¡ ¹ « �»�K�]� � ÍÎ �®�¯v° ¢,¤ �±© §L¢�£;¤L¥¦� ~§L¨ � L© À]¼ ¹Ç¤vÈ L© ¼}×KØ ¢ ° ¥ ¯ ÈLÙM¤L¥ >© À §LÉ L© - [34]
(16) « �7��� « (�K¡x®�¯(° ¢,¤ �±© §v¢�£¬¤L¥ � §C¨ � >© ¼}Ê ® £7¥ ¯ ¤ �±© § ×KØ ¢ ° ¥ ¯ ¢�£¬¤L¥ � § °�Ú�° £ÇÛ °�Ü £ÇÛÐ£7¥¦¨ � >© §CÉ >© ¼« v��¡ ¤CÈ >© §CÉ >©

ÝeÞ
[8]

(17) �����,ÏÐ�KÑ¸¹ « �7�K� ¹ ®M¯v° ¢,¤v�Ð©Ò§C¨ Ó�ÔÏ�© ¼}Ê ® £7¥ ¯ ¤v�Ð©~§L¨ Õ�ÔÏ�© À]¼ « (�K¡ ¤vÈ¦ L©µ§C¨,ß >Ï�© À­Ö ´e³ Ï - [32]
(18) ����� ÏÐ�KÑ ¹¬« �7�K� ¹ ®M¯v° ¢,¤ �Ð© §C¨,Ó�ÔÏ�© ¼}Ê ® £7¥ ¯ ¤ �Ð© §L¨DÕ�ÔÏ�© À]¼ « (�K¡ ¤vÈ L© §C¨ ß >Ï�© ¼ £»à�á.Ù ¯ É�ÈLº ° à�â ¯ Ï�© À­Ö ´e³ãÏ - [35]

Multiple Objects + Storage Cost
(19) « v��¡ « ©���Â « �»�K�¸®�¯(° ¢,¤ �±© §C¢�£¬¤L¥­� ~§C¨ � >© ¼�Ê ® £7¥ ¯ ¤ �±© §�¹7¢�£¬¤L¥­� ¼�Ë ¤L¥ L© À §v¨ � L© ¼« v��¡ « ©���Â ¤CÈ >© §CÉ >©

SC [36], [37], [38]

(20) « �7��� « ÏÐ�KÑ « ©(��Â ÈCº ° à2à ¯ Û È>ÙK¤L¥ Ï §L¨�ä�ÔÏ�© ¼ « (�K¡ « ©��KÂ ¤CÈ L© §(¤v£ÇÆ ¯ © §LÉ L© ´e³¿²Jåx² ÝeÞ [7]
(21) �����,ÏÐ�KÑ¸¹ « ©(��Â « �»�K� ¹ ®�¯(° ¢,¤v�±©�§v¨ Ó�ÔÏ�© ¼}Ê ® £7¥ ¯ ¤v�Ð©�§C¨ Õ�ÔÏ�© À­¼ « (�K¡ ¤vÈ¦ L©µ§C¨,ß >Ï�© ¼£»à�á.Ù ¯ É�ÈLº ° à2â ¯ Ï�© À­Ö ´e³ãÏ

SC [39]

access latency or other client-perceived costs. Minimizing
the link congestion would be useful, if bandwidth is scarce
in the CDN.

Note, that none of these problem definitions considers
load or nodal bandwidth constraints and only (19) and
(21) consider storage constraints. If these constraints are
shown to be important, then there are open research issues
in this space. Another interesting question is how these
problem definitions can be extended with constraints that
bound the update propagation time, an important property

of a CDN. Some of the problem definitions consider client
perceived latency and availability guarantees. However,
as we will see later in the paper, the corresponding heuris-
tics proposed in the literature are not scalable. Thus, there
are more research opportunities in designing scalable al-
gorithms.

5

C. Heuristic Primitives

The NP-complete problem defined in the previous sec-
tion is solved using heuristics.2 We have found that
heuristics can be characterized along three axes: metric
scope, approximation method and cost function simplifi-
cation.

Metric Scope. It refers to the clients, nodes, objects
and links that are considered when placing objects. The
chosen scope affects the techniques used. For example, if
only one node is considered, the heuristic is decentralized
and it is independently executed on every single node in
the system. On the other hand, if all nodes are considered,
it is executed in a centralized way. If only local object
knowledge is specified, then only the objects stored in the
local node or objects that have been referenced by the lo-
cal node are considered.

Approximation Method. It is the technique used to
make the placement decisions. The methods used in the
heuristics are:

Ranking (æ�ç±è�é¦ê5ëBì~í,î]ï2ð,ð,ñ2òOó). Compute the cost im-
pact of all possible combinations (within the met-
ric scope) of placing one extra object on one node.
Sort these costs and select the best one that does not
violate any constraints. If a constraint is violated,
try the next placement in the list. A greedy rank-
ing heuristic [41] recomputes the cost function after
each object is placed. Ranking is a generic approxi-
mation method and can be used for all problem def-
initions.

Fixed Threshold (ô�ç;õCöOï�ðD÷Döãø�é;ñ%ó). An object is placed
at a specific node, if the cost function is above or
below a specified threshold. This approximation
method is usually independent of the problem defi-
nition.

Improvement (ù�ç;úGð�õCöãø�ñ�ó). These methods try to im-
prove on a solution by introducing small changes.
The ú -distance improvement heuristic [42] evalu-
ates permutations of the solution where at most ú
bits in the decision variables are changed. There are
numerous other interchange methods, many of them
referenced in [42]. The improvement methods are
independent of the problem definition.

Relaxation Techniques (æ�ð]ç;úGð�õvöOø�ñ%ó). Encompass a
number of techniques. Lagrangian relaxation [43]
relaxes the constraints of the problem definition by
moving them into the cost function. Linear relax-
ation [43] relaxes the integer constraints of the orig-
inal problem. It is thus possible to use fast linear op-
timization techniques, instead of slow integer ones.û

For briefness in this paper, heuristic refers to traditional heuristics
as well as approximation algorithms.

These algorithms have to be designed specifically
for a problem definition.

Dynamic Programming (üþý). This method saves in-
termediate results to avoid recalculation [41]. Rules
can be applied in order to merge intermediate re-
sults. This method is specific to the problem defini-
tion.

Parametric Pruning (ý#ý). It is a technique specific to
the problem definition, that prunes irrelevant por-
tions of the search space based on a conservative
estimate of the optimal cost [43].

Hierarchical (ÿ). All the aforementioned approxima-
tion methods can be used in a hierarchical fashion.
For example, ranking can be used on each node at
the leaf level. The results from the ranking are then
aggregated by the nodes on the next higher level that
perform another ranking using this aggregated data,
and so on up to the root node [21].

Multi-phase (� ç;úGð�õvöOø�ñ����vúGð�õCöãø.ñ����	�
�
�±ó). Some of
the techniques described above can be combined in
certain ways. For example, greedy ranking can be
followed by an improvement heuristic [11], [21].
Multi-phase techniques can also be combined with
hierarchal methods [21].

Cost Function Simplification. It is made to the orig-
inal cost function of the problem definition. For exam-
ple, the problem definition might specify the cost func-
tion �
���������	��� ï2ð�ê�ñ5÷ �
��� ñ]ë>÷�õ ��� � ò ����� . But for example,
the Hotspot heuristic (see Table II) disregards the distance
and uses just � ����� � �	��� ï2ð�ê�ñ5÷ �
��� ò ����� . The simplified
cost function might work well anyway.

Table II lists previously proposed heuristics for replica
placement problems, mapped into our framework. The ta-
ble serves two main purposes. The first is to qualitatively
compare existing heuristics from the literature. The main
observation is that problem definitions from Groups 1 and
2 have been used in combination with generic heuristics,
while this is not the case with Group 3 (with the exception
of problem definition (15)). Another observation is that
many of the proposed ranking heuristics are quite similar
or even the same. The second purpose of the table is that
new heuristics can be crisply described and reported. Note
that the table and the primitives only give a high-level
view of the heuristics; in order to faithfully implement
one of them, the source reference has to be consulted.
A plethora of caching algorithms other than basic LRU
are not included due to space constraints. The excluded
caching algorithms differs in their cost function simplifi-
cations and their metric scopes if cooperative caching is
used.

Some heuristics in Table II have two approximation

6

TABLE II
EXISTING HEURISTICS MAPPED INTO OUR FRAMEWORK. A “?” MEANS THAT IT IS NOT CLEAR FROM THE PAPER WHAT THIS ENTRY IS.

“CHILD” MEANS THAT THE METRIC SCOPE IS THE CHILDREN OF A NODE IN THE TOPOLOGICAL TREE. “VICINITY” MEANS A NUMBER

OF ENTITIES CLOSE TO A NODE (SEE THE CORRESPONDING PAPER FOR DETAILS). THE PROBLEM DEFINITION COLUMN LISTS THE

PROBLEM DEFINITIONS THAT A HEURISTIC HAS BEEN APPLIED TO IN THE LITERATURE.

Metric Scope Cost Function Problem
Heuristic Approximation Method Client Node Object Simplification Definition

Ranking heuristics
Greedy Global [18], [14] R(greedy) all all all - 3,5
Ranking Local [18], [20] R(plain) local one local - 5,6
Popularity [18] R(plain) local one local �����! �"$#&% 5
Hotspot [14] R(plain) vicinity all all ������ �"'#&% 3
Fan-Out Based [11], [15] R(plain) indep all indep (*)�+�,$-�. / 1,2,3
Ranking Dist [20] R(plain) local one local 	01"32 # 4 6
LRU Caching R(plain) local one local �!565627098:� 46% Group 2
Improvement Heuristics and Combinations
2-distance [34], [13] I(2-dist) all all all - 3,8,15
l-Greedy [11] M(R(greedy),I(m-dist)) all all all - 1,2
Hierarchical [19], [21] H M(R(plain),I(2-dist)) child child child 	01"32 # 4 ;<�='> #9? 4 	0�"32 # 4 5,6

Threshold Heuristics
RaDaR [44], [45] Place: T(������ �"'#&%'@�A #
B	CED # 46%EFHG) local two local ? ?

Delete: T(A #
BICED # 43%EJLK) local one local ? ?
Awerbuch FAP [36], [38] Reads: T(�����! �"$#&%MFHG) all all all �N���! �"'#&% 19

Writes: R(plain) all all all A #9BIOQPR#&SUT7PRV 	0�"32 # 4 19
Dist Awerbuch [36], [38] Reads: T(�����! �"$#&%MFHG) local vicinity local �N���! �"'#&% 19

Writes: R(plain) local writers local A #9BIOQPR#&SUT7PRV 	0�"32 # 4 19
Edge Strategy [35] Reads: T(������ �"'#&%MWHG) local two local - 18

Writes: T(XY��0
27��"�#&%ZWHG) local two local - 18
Other Heuristics (all problem definition specific)
Min k-Center [10], [11] PP all all indep 	01"32 # 4 1
Tree-based [24], [30],
[16], [12], [14], [26]

DP all all all - 3,4,8,9,
10,11,13

Linear [22] RE(linear) all all all - 3,5,7,8,9
Linear+Imp [8] M(RE(linear),I(drop),I(add/drop)) all all all - 16
Lagrangian [33] RE(lagrangian) all all all - 3,5,14
Lagrangian+Imp [7] M(RE(lagrangian),I(add/drop)) all all all - 20

methods, because they were designed to be on-line algo-
rithms. The classical definition of an on-line algorithm
is that the guarantees that come with it are valid in a set-
ting where future accesses are not known. Conversely, an
off-line algorithm’s guarantees are only valid for settings
where the future is known. Most on-line algorithms are
designed to be invoked as frequently as after each single
access. Thus, they cannot generally afford to re-evaluate
the whole placement at every single invocation. A fast ex-
ecution time can be accomplished, for example, by hav-
ing one heuristic for placing an object and another one
for deleting an object. For the algorithms that do not
have an explicit delete heuristic (typically, off-line algo-
rithms), object deletion is implicit—the heuristic decides
about object placement and nodes that are not included
in the placement, delete the object if they have it. In the
evaluation in Section IV, we consider all algorithms in

the on-line setting, as it is more realistic, even though any
original off-line guarantees are lost.

III. DECISION TIME

Decision time is the time required for an algorithm to
make a placement decision for all the objects in a spe-
cific system. When the algorithm is distributed, this is the
maximum completion time among all nodes in the system.
Previously, only computation time and the time due to the
number of messages sent have been considered, when es-
timating decision times. In this section, we advocate that
message sizes and disk accesses also have to be taken into
account to provide a good estimate. We develop an ana-
lytic model that, using the primitives of the previous sec-
tion, estimates the decision time of many algorithms ac-
cording to the following formula:

7

[]\&^6\`_ acb1^6dfehg*[ib1^6dfeNj klanm�oEpiqardrs1tng3[]drs1tujLklvi\U^w\�xyv]z ^Rb1{ z|q`g3[drs1tRe*} j kl~��3��q
���'� klv]�R����xy~L�R�Nqfg'ac�6��s���g*[i�6�&s���e�} k9�Q�1����q

The first component of the total decision time is the
computation time (Comp). It is the computational com-
plexity of the algorithm times the average time it takes to
perform one iteration or calculation (���R�3�����1�r�R�3�n�), when
the data are in the main memory. The message cost (Msg)
is the time spent on sending and receiving messages. It
does not include message transfer times, as we assume
asynchronous message passing. That is, useful computa-
tions can be scheduled while messages are in transit. The
message cost consists of two components: one that is pro-
portional to the number of messages (�����w�����r���w� , where
�r���w� is the time for sending and receiving a zero-length
message), and one that is proportional to the size of the
transmitted data. The latter is the total size of the data
needed to make a decision minus the local data-set on the
node (r¡9�3¡Y¢£ �¤ �*�R¥ ¤) times � ���w�w�!¦ , the time spent per byte
of transmitted data. The disk cost (Disk) is the time re-
quired for accessing data on the disk, when the data do
not fit in the node’s main memory. It is the amount of
memory required to make the decision minus the effective
amount of memory in the node (u§�¨6©�¢«ª). This is mul-
tiplied by the number of times this data are reused before
the decision is made (��¬�­ �w®) and the time it takes to read
one byte of data from the disk (�Y¬'­ �6®*�!¦).

We use this analytic model to estimate the decision
times of RPAs without having to build and test the actual
algorithms in a real or emulated environment. This ap-
proach is particularly important when the target systems
are large and when new algorithms are designed and need
to be evaluated quickly.

A. Accuracy of the Analytic Model

In this section, we compare the decision times esti-
mated using the proposed analytic model with the times
of actual algorithm executions, for systems of relatively
small size. The model provides sufficiently accurate
estimates for approximate comparisons. Moreover, we
demonstrate that computation, message and disk costs
have all to be taken into account in order to provide a good
estimate.

We have developed a tool called Coeus, that gener-
ates and evaluates RPAs. It implements most of the prob-
lem definitions and heuristics described in the previous
sections. Using Coeus, we can execute RPAs for differ-
ent system sizes, and measure the actual decision times of
those algorithms.

Table III shows the values of the various parameters of
the analytic model. The parameters in the top two rows

are measured by means of actual RPA implementations in
Coeus. The presented values were obtained on a work-
station with a 552MHz PA8600 processor and 512MB of
memory. The entire data set was kept in memory for the
�r�R�3�n� measurements. For �u¬�­ �6®3��¦ , the data set was larger
than the available memory. �Y���w� and � ���w�w�!¦ were cho-
sen so that a node receives ¯	°]± 10KB messages per sec-
ond, a value typical for static web serving. In the case of
Ranking (R) and Improvement (I) approximation meth-
ods, these values are applicable to all possible heuristics.
In the case of Lagrangian relaxation, the values are ap-
plicable only to the specific problem definition used; new
measurements are required for other problem definitions.

The other parameters are calculated analytically. The
computational complexities (���R�3�n�) in Table III are de-
duced by studying the C-code of the implementations or
by getting the computational complexities from the origi-
nal papers. ²!³�¬�­ �R¡ and ²!¤ ¥$�'§ in the equations are the number
of iterations that the two approximation methods execute.
 c¡9�3¡ is calculated by adding up the number of variables the
node requires to make a decision, assuming 8 byte vari-
ables. �¤ �*�R¥ ¤ is calculated in the same way, but only for
data gathered at the local node.

The accuracy of the analytic model in predicting the
decision times is evaluated for six heuristics applied to
problem definition (3). We compared the decision times
estimated by the analytic model using the parameter val-
ues of Table III, versus the actual decision times observed
for the actual execution of the algorithms in Coeus. For
the comparisons, we used systems of 10 different sizes:
from 1,000 up to 10,000 (in increments of 1,000) clients
and nodes. Problem definition (3) considers only a single
object at a time. The comparisons show that the model
error is under 34% for our test cases, as shown in Figure
1. The larger errors occur for smaller systems, mainly be-
cause the data start to fit into the processor caches. We
have also validated heuristics for problem definitions (1),
(2), (5), (7), (8) and (9) showing errors of similar scale as
shown for (3).

Greedy Hotspot Fan−Out Swap l−Greedy Lagrangian
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
e

la
tiv

e
 E

rr
o

r

The relative error of the analytical model

Fig. 1. The relative error (´ [�R� { zµx¶[e �w� � ´ · [�w� { z) of the analytic
model for six heuristics and various systems.

8

TABLE III
THE PARAMETERS FOR THE DECISION TIME MODEL. ¸ , ¹ , AND º REPRESENT THE METRIC SCOPE OF CLIENTS, NODES AND OBJECTS,

RESPECTIVELY. » IS THE NUMBER OF REPLICAS PLACED BY THE NODE THAT MAKES THE DECISION EACH TIME IT RUNS THE

ALGORITHM. ¼�½3¾�¿7À AND ¼�½6Á7Â ARE 1 IF THE HEURISTIC USES THE DISTANCE AND DEMAND MATRIX, RESPECTIVELY.

Parameter Value Parameter Value Parameter ValueÃ Âr¿1Ä Å�Æ�Ç�È s
Ã Âr¿�Ä�É�Ê Å�Æ�Ç�Ë s

Ã ½3¾�¿�ÌRÉ*Ê Å*Æ�ÇiË sÃiÍ1Î ÂfÉ R() Å�Æ Ç�Ë s
ÃiÍ�Î Â�É I(2-dist) Å�Æ Ç�Ï s

ÃiÍ�Î Â�É Re(Lagr) ÅNÐ ÑnÒNÅ*Æ ÇiË sÓ
256 MB ¸ Âr¿�Ä ¹ÕÔ Å ¸ Í�Î Â�É R(greedy) ¸h¹Ö»hº¸ Í1Î ÂfÉ R(plain) ¸h¹Öº ¸ Í�Î Â�É I(2-dist) ×'Ø�½3¾�¿7À7¸h¹:º ¸ Í�Î Â�É Re(Lagr) ×�Ù Ú*Ä6Û�¸h¹Ö»hºÜ ÛRÁ�Ý R(greedy) Þ�ß9¹à¸n¼�½3¾�¿7À]áâ¸n¼�½3Á�Âäã Ü ÛRÁ�Ý R(plain) Þ�ß9¹à¸n¼�½3¾�¿7À]áâ¸n¼�½3Á�Âäã Ü ÛRÁ�Ý I(2-dist) Þ�ß9¹à¸n¼�½6¾�¿7Àåáæ¸n¼�½6Á7ÂMãÜ ÛRÁ�Ý Re(Lagr) Þ�ß9¹à¸çáçè�¸Há�éI¹àã ¸c½3¾�¿�Ì R(greedy) »hº ¸c½3¾�¿�Ì R(plain) º

¸c½6¾&¿7Ì I(2-dist) ºëê ×'Ø�½6¾&¿�À ¸c½3¾�¿�Ì Re(Lagr) ºÖ×�Ù Ú*Ä3Û

Our model can be used to provide sufficiently pre-
cise decision time estimates, in two cases. First, when a
new algorithm is proposed that uses a problem-definition-
independent approximation method, its decision time can
be estimated using the model with pre-computed parame-
ter values from a table such as Table III. Thus, these al-
gorithms do not have to be implemented in order to eval-
uate the decision time. Second, when a heuristic with a
problem-definition-specific approximation method is pro-
posed, it will have to be implemented first in a tool such
as Coeus. Using small-scale executions, the parameter
values of the model can be measured and then the model
can be used to estimate the decision times for large-scale
(and therefore infeasible to emulate) deployments.

B. Decision Time of Existing Heuristics

This section discusses the decision times of some algo-
rithms that have been proposed in the literature, using the
analytic model introduced in the previous section. Figure
2 depicts the decision times for six representative heuris-
tics from Table II optimizing problem definition (3) with
a number of replica constraint. The numbers of nodes and
clients are ì	íiî and ì	í�ï respectively for the two graphs,
and the number of objects is ì	í ï . There are three main
conclusions to be drawn. First, some heuristics are domi-
nated by computation cost, some by one of the two mes-
sage costs, and others by disk cost, signifying the impor-
tance to take all four factors into account. For example,
someone looking only at the computation time for the
greedy heuristic, in a system with ì	í]ï nodes, might con-
clude that it is feasible, while it will in fact take several
weeks longer due to disk accesses on our system. With
our model, disk accesses are correctly estimated to be the
dominant decision time factor. The dominant factor for a
heuristic may change for different system sizes and prob-
lem definitions (see, for example, the cost of greedy in the
two graphs). Second, the difference between the decision
times of various heuristics is very large (orders of mag-

nitude). Third, even at the relatively small scale studied
here, some heuristics are infeasible as they take weeks to
terminate.

Figure 3 shows the decision costs of a system with
ì	í�ð clients and nodes and ì	í]ñ objects, a moderately-sized
global storage repository such as OceanStore [46]. Due
to the system’s size, we cannot measure the ò variables
as in Figure 2. Instead, we assume that ò�ó�ô�õ9öR÷ùøúì	í�ñ is
enough when seeded with a placement from some other
heuristic. We believe that using Swap on its own at such
scales is not meaningful. In the case of the Lagrangian re-
laxation algorithm, we assume that it terminates after 300
iterations.

For such scales, not a single existing heuristic is feasi-
ble. Fan-Out has a feasible decision time, but as it places
all objects in the same nodes, it is not practical when ì	í`ñ
objects are considered. There are two main observations
to take away from this figure. First, only a heuristic with a
low metric scope can be feasible at these scales. Second,
in order to be able to solve the replica placement problem
for systems of this size, there is a need to aggregate data
(clients, nodes, objects, and links) down to a point where
the scale of the problem becomes manageable with low
metric scope heuristics.

Greedy Hotspot Fan−Out l−Greedy Lagrangian
0

1 s

11 days

32 years

32,000 y

Lo
ga

rit
hm

ic
 d

ec
is

io
n

tim
e

Clients = Nodes = 106. Objects = 108

Computation
No Messages
Message Size
Disk

Fig. 3. The decision costs for five heuristics at OceanStore scales.

IV. GOODNESS OF PLACEMENT

In the literature, the goodness of a heuristic in solving
a specific problem definition is evaluated using, for exam-
ple, competitive ratios or minimized cost function values.

9

Greedy Hotspot Fan−Out Swap l−Greedy Lagrangian
0

1 ms

1 s

15 min

11 days

L
o

g
a

ri
th

m
ic

 d
e

ci
si

o
n

 t
im

e
Clients = Nodes = 103. Objects = 104

Greedy Hotspot Fan−Out Swap l−Greedy Lagrangian
0

1 ms

1 s

15 min

11 days

Lo
ga

rit
hm

ic
 d

ec
is

io
n

tim
e

Clients = Nodes = 104. Objects = 104

Computation
No Messages
Message Size
Disk

Fig. 2. The decision costs for some existing heuristics at medium scales. At the scale of the left diagram, there is no disk access time because
all the data fits in memory. û$ü�ý6þ&ÿ���� �����

and û
	 ����
�� ���
�
.

However, in CDNs (and many other fields), algorithms
have been proposed that use different problem definitions
for the same system and goal. Thus, the goodness of the
placements of these algorithms cannot be compared us-
ing the aforementioned methods, even though they should
be compared as they target the same system and goal. To
tackle this problem, we propose to quantitatively evaluate
an algorithm’s impact on the performance or cost of the
system it is intended to be used in. In other words, we
evaluate the achieved system performance or cost due to
the placement produced by various RPAs, and not how far
from the optimal cost function value a solution is. This is
useful even in the context of a single problem definition as
shown in [47], as it reflects how well the problem defini-
tion corresponds to the system and goal. We will focus on
the evaluation of system performance, as the evaluation of
money cost is straight-forward.

When comparing the placement produced by algo-
rithms with different problem definitions, it is important
to factor in the penalty of not meeting certain constraints
or taking certain parameters into account. When the per-
formance impact of a placement is measured on an ac-
tual system, such factors are automatically reflected on
the result. However, when the performance is evaluated
using analytic models or simulators, the constraint viola-
tions and parameter exclusions with their associated costs
have to be explicitly included in the model.

The proposed goodness evaluation approach is illus-
trated by comparing a number of RPAs for use in CDNs,
that have never been compared before. This is not in-
tended to be an exhaustive comparison of algorithms, just
an example of the approach. We base our evaluation on
system simulation.

A. Experimental Methodology

Three ingredients are required to compare the goodness
of the performance-based placement of different RPAs: a
performance metric, a representative workload, and the
produced placements. The placements of the RPAs are
produced by Coeus, described in Section III-B. The
other two issues are discussed in the following paragraphs.

The performance metric to be used depends on what the
system is used for. For a CDN, we use a client perceived
latency threshold as the performance metric. The evalua-
tion refers to the Cumulative Distribution Function (CDF)
of the latency to access objects, given the produced place-
ments. The larger the ratio of access under the threshold,
the better.

We use the World Cup 1998 web logs [48] to generate
a realistic workload for a CDN. To reduce the client pop-
ulation to a tractable size for our evaluations, we used the
logs of days 50 to 59 and clustered all encountered client
IP addresses according to the Autonomous System (AS)
they belong to.3 This clustering preserves the topological
locality of clients and reduces the number of clients from
2.6M to 5.4K. These clusters represent both the clients in
the system and the nodes on which objects may be placed.
Matrix ������������� is obtained by counting the number of re-
quests each such cluster generates. To simulate systems
with less than 5.4K nodes, we choose the desired num-
ber of nodes in a way that preserves the original access
distribution from [48]. Each URL is treated as a sepa-
rate object. There are 38K objects in the 10 days of the
WorldCup98 log that we studied, which are reduced to
10K objects by random selection.

In an ideal world, matrix ������� �! would represent the av-
erage latency between nodes � and " . However, this is
impossible to measure, unless one happens to be on the
specific routing paths. So, we obtain latency approxima-
tions by counting the number of AS-level hops between
two nodes. It has been shown that this is a fair approx-
imation of actual latencies on the Internet [50]. To turn
these hop numbers into latencies with some variation (as
the actual latencies undoubtedly have), we use the formula# ������$�%'&)(+* ,.-0/�13254'67�98;:=<>*@?A� , where : is a random
value in BDCE-GFH,�F�F@8I-GFH,KJ .

B. Evaluation Example

To illustrate our systems-centric approach in evaluating
RPAs, we address two questions. First, if there is, for ourL

This clustering is similar to that of [49], but results in fewer and
therefore coarser clusters.

10

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

C
D

F
(%

)

Latency (ms)

Nodes = 300, Objects = 10000, Storage = 5MB

Greedy-so
Greedy-mo
Greedy-rds
Popularity

Reads/Size
Random

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

C
D

F
(%

)

Latency (ms)

Nodes = 300, Objects = 10000, Storage = 25MB

Greedy-so
Greedy-mo
Greedy-rds
Popularity

Reads/Size
Random

Storage Capacity
Algorithm 5MB 25MB
Greedy-so 18.3 12.0
Greedy-mo 13.8 10.6
Greedy-rds 76,206 41,671
Popularity 11.6 10.4
Reads/Size 10.7 10.3
Random 39.5 27.0

Fig. 4. The cumulative distribution function of the client perceived latencies for various algorithms and the respective minimized cost function
(in millions) in the table to the right.

system, any point in taking object size into consideration
in an RPA. Second, if that is the case, what is currently the
best way to represent the object size in an RPA. This is not
intended to be a thorough evaluation of the topic, just an
illustration of the benefits of this evaluation method.

Figure 4 illustrates the cumulative distribution func-
tion of the client-perceived latency for a system with 300
nodes and 10,000 objects in the two leftmost figures, and
the respective minimized cost function values in the table
to the right. In the Figures, Greedy-so refers to prob-
lem definition (3), with a M constraint combined with the
greedy global heuristic. Thus, this algorithm does not take
storage constraints under consideration. If too many ob-
jects are allocated to a node, the node will only store the
objects that have been accessed most frequently and drop
the rest. This is the penalty we assigned for ignoring stor-
age constraints in the RPA. Greedy-mo and Greedy-
rds refer to the same heuristic as the previous algorithm
but the problem definitions are (5) and (7) respectively,
with a storage constraint. Popularity from Table II is
a decentralized ranking heuristic that only considers reads
and a storage constraint. Reads/Size is the same, ex-
cept that the cost function is N�O�P�Q�R@S�T.U.R�VXWYO�T .

There are three main points to take away from Figure 4.
First, the minimized cost function values and the results
from the CDF graphs differ substantially. Depending on
the latency threshold, the relative goodness between algo-
rithms varies a lot. Based on the cost function values, one
might think that Greedy-so is substantially worse than
Popularity. But for thresholds above 100 ms for the
25MB storage capacity case, this is not so. The minimized
cost function values only show how well a specific heuris-
tic minimizes a cost function, not what performance ben-
efits an RPA would provide in a system. Second, overall,
the decentralized Popularity and the Reads/Size
algorithms are the best. Third, algorithm Greedy-rds
does not work well for our workload and system.

V. RELATED WORK

Despite the importance of the replica placement prob-
lem and its practical implications, little has been done to
compare the various approaches and their applicability to
different system models. A survey of the file assignment
problem by Dowdy et al. [4] was published in 1982. How-
ever, it focuses mostly on problem definitions and their
classification and comparison on a feature-by-feature ba-
sis. Levin and Morgan [5] introduced a framework for
replica placement problems, in the context of distributed
databases. They categorize algorithms according to three
parameters: whether the workload is static or dynamic; if
the information used is partial or complete; whether the
problem includes placement of just data or also of pro-
grams and computation. Levin and Morgan’s work can be
seen as a higher-level classification to our framework.

VI. CONCLUSIONS

This paper introduces a framework for the classification
and evaluation of existing and new replica placement al-
gorithms (RPA). It considers RPAs developed specifically
for CDNs, as well as RPAs from other fields that may be
applicable to existing or future CDNs. More specifically,
the framework can be used in three ways:
Z It identifies the qualitative differences of RPAs us-

ing a canonical set of primitives that reflect problem
definitions and heuristics.

Z It uses an analytic model for estimating the decision
times of RPAs in large systems. The model takes into
account not only computational complexity and mes-
sage numbers but also disk accesses (due to memory
constraints) and message sizes to produce good esti-
mates.

Z It allows the comparison of RPAs with different
problem definitions, based on the “goodness” of the
produced placements.

Using the proposed framework, the paper shows that:
(1) Most existing algorithms for CDNs do not scale for

11

systems with more than [>\�] nodes. (2) Algorithms from
other fields, such as the file allocation problem, could be
applicable to future CDNs, since they take under consid-
eration issues such as writes, update propagation and QoS
guarantees (latency and availability); however, they scale
even worse that existing CDN algorithms. (3) The eval-
uation of placement goodness using system performance
metrics (e.g., client-perceived latency) results in more re-
alistic and systems-specific comparisons of algorithms,
than comparison of minimized cost-function values.

Based on the evaluation of existing approaches, the pa-
per identifies several areas for future research. These
include the design of algorithms for systems with con-
strained resources as well as algorithms that optimize or
trade-off multiple goals at the same time. Algorithms
that can guarantee QoS properties such as bounded up-
date propagation times and maximum client perceived la-
tency will be very important for future CDNs. Finally, we
believe that more effort should be put into decentralized
algorithms and decentralized aggregation schemes to ad-
dress the scalability problem of existing RPAs.

To the best of our knowledge, this is the first attempt to
analyze RPAs within CDNs and across a wide spectrum of
fields. The aim of this work is to provide a reference point
for anyone that wishes to understand, compare and eval-
uate an instance of the replica placement problem within
existing and future CDNs.

REFERENCES

[1] Akamai, Cambridge, MA, USA, http://www.akamai.com.
[2] Digital Island, http://www.digitalisland.com.
[3] M. Karlsson and M. Mahalingam, “Do We Need Replica Place-

ment Algorithms in Content Delivery Networks?,” in Proceed-
ings of the International Workshop on Web Content Caching and
Distribution (WCW), August 2002.

[4] L. W. Dowdy and D. V. Foster, “Comparative Models of the File
Assignment Problem,” ACM Computer Surveys, vol. 14, no. 2,
pp. 287–313, 1982.

[5] D. Levin and H. Morgan, “Optimizing Distributed Data Bases –
A Framework for Research,” in Proceedings of the AFIPS 1975
NCC, 1975, pp. 473–478.

[6] B. Maggs, F. Meyer auf der Heide, B. Vöcking, and M. West-
ermann, “Exploiting Locality for Data Management in Systems
of Limited Bandwidth,” in Proceedings of the Symposium on
Foundations of Computer Science, October 1997, pp. 284–293.

[7] S. Mahmoud and J. Riordon, “Optimal Allocation of Resources
in Distributed Information Networks,” ACM Transactions on
Database Systems, vol. 1, no. 1, pp. 66–78, March 1976.

[8] R. Tewari and N. Adam, “Distributed File Allocation with Con-
sistency Constraints,” in Proceedings of the International Con-
ference on Distributed Computing Systems, 1992, pp. 408–415.

[9] S. Hakimi, “Optimum Location of Switching Centers and the
Absolute Centers and Medians of a Graph,” Operations Re-
search, vol. 12, pp. 450–459, 1964.

[10] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, “On the
Placement of Internet Instrumentation,” in Proceedings of IEEE
INFOCOM, March 2000, pp. 295–304.

[11] S. Jamin, C. Jiu, A. Kurc, D. Raz, and Y. Shavitt, “Constrained
Mirror Placement on the Internet,” in Proceedings of IEEE IN-
FOCOM, April 2001, pp. 31–40.

[12] B. Li, M. Golin, G. Italiano, and X. Deng, “The Optimal Place-
ment of Web Proxies in the Internet,” in Proceedings of IEEE
INFOCOM, March 1999, pp. 1282–1290.

[13] M. Korupolu and C. Plaxton, “Analysis of a Local Search Heuris-
tic for Facility Location Problems,” Journal of Algorithms, vol.
37, no. 1, pp. 146–188, October 2000.

[14] L. Qiu, V. Padmanabhan, and G. Voelker, “On the Placement of
Web Server Replicas,” in Proceedings of IEEE INFOCOM, April
2001, pp. 1587–1596.

[15] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-Informed
Internet Replica Placement,” Computer Communications, vol.
25, no. 4, pp. 384–392, March 2002.

[16] P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Prob-
lem,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp.
568–582, October 2000.

[17] M. O’Kelly, “The Location of Interacting Hub Facilities,” Trans-
portation Science, vol. 20, pp. 92–106, 1986.

[18] J. Kangasharju, J. Roberts, and K. Ross, “Object Replication
Strategies in Content Distribution Networks,” Computer Com-
munications, vol. 25, no. 4, pp. 367–383, March 2002.

[19] M. Korupolu, G. Plaxton, and R. Rajaraman, “Placement Algo-
rithms for Hierarchical Cooperative Caching,” Journal of Algo-
rithms, vol. 38, no. 1, pp. 260–302, January 2001.

[20] A. Leff, J. Wolf, and P. Yu, “Replication Algorithms in a Re-
mote Caching Architecture,” IEEE Transactions on Parallel and
Distributed Systems, vol. 4, no. 11, pp. 1185–1204, November
1993.

[21] A. Venkataramanj, P. Weidmann, and M. Dahlin, “Bandwidth
Constrained Placement in a WAN,” in ACM Symposium on Prin-
ciples of Distributed Computing (PODC’01), August 2001.

[22] I. Baev and R. Rajaraman, “Approximation Algorithms for Data
Placement in Arbitrary Networks,” in Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms,, January
2001, pp. 661–670.

[23] M. Balinski, “Integer Programming: Methods, Uses, Computa-
tion,” Management Science, vol. 12, pp. 253–313, 1965.

[24] I. Cidon, S. Kutten, and R. Soffer, “Optimal Allocation of Elec-
tronic Content,” in Proceedings of IEEE INFOCOM, April 2001,
pp. 1773–1780.

[25] J. Kurose and R. Simha, “A Microeconomic Approach to Op-
timal Resource Allocation in Distributed Computer Systems,”
IEEE Transactions on Computers, vol. 38, no. 5, pp. 705–717,
May 1989.

[26] O. Wolfson and A. Milo, “The Multicast Policy and Its Rela-
tionship of Replicated Data Placement,” ACM Transactions on
Database Systems, vol. 16, no. 1, pp. 181–205, March 1991.

[27] O. Wolfson and S. Jajodia, “Distributed algorithms for dynamic
replication of data,” in Proc. ACM PODS’92, Symposium on
Principles of Database Systems, June 1992, pp. 149–163.

[28] O. Wolfson, S. Jajodia, and Y. Huang, “An Adaptive Data Repli-
cation Algorithm,” ACM Transactions on Database Systems, vol.
22, no. 2, pp. 255–314, 1997.

[29] S. Cook, J. Pachl, and I. Pressman, “The optimal location of
replicas in a network using a READ-ONE-WRITE-ALL policy,”
Distributed Computing, vol. 15, no. 1, pp. 57–66, 2002.

[30] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal Placement
of Replicas in Trees with Read, Write, and Storage Costs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 12, no. 6,
pp. 628–637, June 2001.

12

[31] C. Krick, H. Räcke, and M. Westermann, “Approximation Algo-
rithms for Data Management in Networks,” in Proceedings of the
Symposium on Parallel Algorithms and Architecture, July 2001,
pp. 237–246.

[32] C. Lund, N. Reingold, J. Westbrook, and D. Yan, “Competitive
On-Line Algorithms for Distributed Data Management,” SIAM
Journal of Computing, vol. 28, no. 3, pp. 1086–1111, May 1999.

[33] M. Fisher and D. Hochbaum, “Database Location in Computer
Networks,” Journal of the ACM, vol. 27, no. 4, pp. 718–735,
October 1980.

[34] K. Chandy and J. Hewes, “File Allocation in Distributed
Systems,” in Proceedings of the International Symposium on
Computer Performance Modeling, Measurement and Evaluation,
March 1976, pp. 10–13.

[35] F. Meyer auf der Heide, B. Vöcking, and M. Westermann, “Prov-
ably Good and Practical Strategies for Non-Uniform Data Man-
agement in Networks,” in Proceedings of the European Sympo-
sium on Algorithms, July 1999, pp. 89–100.

[36] B. Awerbuch, Y. Bartal, and A. Fiat, “Competitive Distributed
File Allocation,” in Proceedings of the ACM Symposium on The-
ory of Computing, 1993, pp. 164–173.

[37] B. Awerbuch, Y. Bartal, and A. Fiat, “Distributed Paging for
General Networks,” Journal of Algorithms, vol. 28, no. 1, pp.
67–104, July 1998.

[38] Y. Bartal, A. Fiat, and Y. Rabani, “Competitive Algorithms for
Distributed Data Management (Extended Abstract),” in Proceed-
ings of the ACM Symposium on Theory of Computing, 1992, pp.
39–50.

[39] F. Meyer auf der Heide, B. Vöcking, and M. Westermann,
“Caching in Networks,” in Proceedings of the 11th ACM-SIAM
Symposium On Discrete Algorithms, January 2000, pp. 430–439.

[40] M. Karlsson, C. Karamanolis, and M. Mahalingam,
“A Framework for Evaluating Replica Placement Algo-
rithms,” Tech. Rep. HPL-2002, HP Laboratories, July 2002,
http://www.hpl.hp.com/personal/Magnus Karlsson.

[41] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algo-
rithms, ISBN: 0-262-03141-8. MIT Press, 1989.

[42] J. Current, M. Daskin, and D. Schilling, “Discrete Network Lo-
cation Models,” in Facility Location Theory: Applications and
Methods, Z. Drezner and H. Hamacher, Eds., 2001, Forthcom-
ing.

[43] V. Vazirani, Approximation Algorithms, ISBN: 3-540-65367-8.
Springer-Verlag, 2001.

[44] M. Rabinovich and A. Aggarwal, “RaDaR: A Scalable Architec-
ture for a Global Web Hosting Service,” in Proceedings of the
8th International World Wide Web Conference, May 1999, pp.
1545–1561.

[45] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal,
“A Dynamic Object Replication and Migration Protocol for an
Internet Hosting Service,” in International Conference on Dis-
tributed Computing Systems, May 1999, pp. 101–113.

[46] J. Kubiatowicz et al., “OceanStore: An Architecture for Global-
Scale Persistent Storage,” in Proceedings of the International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, November 2000, pp. 190–201.

[47] C. Krick, F. Meyer auf der Heide, H. Räcke, B. Vöcking, and
M. Westermann, “Data Management in Networks: Experimental
Evaluation of a Provably Good Strategy,” in Proceedings of the
Symposium on Parallel Algorithms and Architecture, July 1999,
pp. 165–174.

[48] M. Arlitt and T. Jin, “Workload characterization of the 1998
world cup web site,” Tech. Rep. HPL-1999-35R1, HP Laborato-
ries, 1999.

[49] B. Krishnamurthy and J. Wang, “On network-aware clustering
of web clients,” in SIGCOMM, August 2000, pp. 97–110.

[50] K. Obraczka and F. Silvia, “Network Latency Metrics for Server
Proximity,” in Proceedings of the IEEE Globecom, November
2000.

