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Consider the problem of rate-constrained reconstruction of a finite-alphabet discrete memoryless 
signal Xn =(X1,..., Xn), based on a noise-corrupted observation sequence Zn, which is the finite-alphabet 
output of a Discrete Memoryless Channel (DMC) whose input is Xn. Suppose that there is some 
uncertainty in the source distribution, in the channel characteristics, or in both. Equivalently, suppose 
that the distribution of the pairs (X i, Z i),  rather than completely being known, is only known to belong 
to a set ,. Suppose further that  the relevant performance criterion is the probability of excess 
distortion, i.e., letting \hat Xn (Zn) denote the reconstruction, we are interested in the behavior of P? ρ 
(Xn), \hat Xn(Zn)) > d?), where ρ  is a (normalized) block distortion induced by a single-letter distortion 
measure and P?  denotes the probability measure corresponding to the case where (X i, Zi ) ~?, ? ∈ ,.  
Since typically this probability will either not decay at all or do so at an exponential rate, it is the rate 
of this  decay which we focus on. More concretely, for a given rate R ≥ 0 and a family of distortion 
levels {d?} ? ∈ subscript theta, we are interested in families of exponential levels {I?} ?∈subscript theta 
which are achievable in the sense that for large n there exist  rate-R schemes satisfying - 1/n log P ? 
(ρ(Xn), \hat Xn(Zn)) > d?) ≥ I ? for all ? ∈ , . Our main result is a complete “single-letter”  
characterization of achievable levels {I?} ?∈subscript theta  per any given triple (, , R,  {d?}? ∈ 
subscript,). Equipped with this result, we later turn to addressing the question of the “right” choice of 
{I?}?∈subscript , . Relying on methodology recently put forth by Feder and Merhav in the context of 
the composite hypothesis testing problem, we  propose a competitive minimax  approach for the choice 
of these levels and apply our main result for characterizing the associated key quantities. 
Subsequently, we  apply the main result to characterize  optimal performance in a Neyman-Pearson-
like setting, where there are two possible noise-corrupted signals. In this problem, the goal of the 
observer of the noisy signal, rather than having to determine which of the two it is (as in the 
hypothesis testing problem), is to reproduce the underlying clean signal with as high a fidelity as 
possible (e.g., lowest number of symbol errors when distortion measure is Hamming), under the 
assumption that one source is active, while operating at a limited information rate R and subject to a 
constraint on the fidelity of reconstruction when the other source is active. Finally, we apply our result 
to characterize a sufficient condition for the source class,, , to be universally encodable in the sense of 
the existence of schemes attaining the optimal distribution-dependent exponent, simultaneously for all 
sources in the class. This condition was shown in an earlier work to suffice for universality in 
expectation. 
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Abstract

Consider the problem of rate-constrained reconstruction of a finite-alphabet discrete memoryless signal Xn =
(X1, . . . , Xn), based on a noise-corrupted observation sequence Zn, which is the finite-alphabet output of a Discrete
Memoryless Channel (DMC) whose input is Xn. Suppose that there is some uncertainty in the source distribution,
in the channel characteristics, or in both. Equivalently, suppose that the distribution of the pairs (Xi, Zi), rather
than completely being known, is only known to belong to a set Θ. Suppose further that the relevant performance
criterion is the probability of excess distortion, i.e., letting X̂n(Zn) denote the reconstruction, we are interested

in the behavior of Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
, where ρ is a (normalized) block distortion induced by a single-letter

distortion measure and Pθ denotes the probability measure corresponding to the case where (Xi, Zi) ∼ θ, θ ∈ Θ.
Since typically this probability will either not decay at all or do so at an exponential rate, it is the rate of this
decay which we focus on. More concretely, for a given rate R ≥ 0 and a family of distortion levels {dθ}θ∈Θ, we are
interested in families of exponential levels {Iθ}θ∈Θ which are achievable in the sense that for large n there exist

rate-R schemes satisfying − 1
n

log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≥ Iθ for all θ ∈ Θ. Our main result is a complete

“single-letter” characterization of achievable levels {Iθ}θ∈Θ per any given triple (Θ, R, {dθ}θ∈Θ). Equipped with
this result, we later turn to addressing the question of the “right” choice of {Iθ}θ∈Θ. Relying on methodology
recently put forth by Feder and Merhav in the context of the composite hypothesis testing problem, we propose
a competitive minimax approach for the choice of these levels and apply our main result for characterizing the
associated key quantities. Subsequently, we apply the main result to characterize optimal performance in a
Neyman-Pearson-like setting, where there are two possible noise-corrupted signals. In this problem, the goal
of the observer of the noisy signal, rather than having to determine which of the two it is (as in the hypothesis
testing problem), is to reproduce the underlying clean signal with as high a fidelity as possible (e.g., lowest number
of symbol errors when distortion measure is Hamming), under the assumption that one source is active, while
operating at a limited information rate R and subject to a constraint on the fidelity of reconstruction when the
other source is active. Finally, we apply our result to characterize a sufficient condition for the source class, Θ,
to be universally encodable in the sense of the existence of schemes attaining the optimal distribution-dependent
exponent, simultaneously for all sources in the class. This condition was shown in an earlier work to suffice for
universality in expectation.

Key words and phrases: Achievable exponents, Competitive minimax, Compound source, Denoising, Error exponents,

Marton’s exponent, Neyman-Pearson, Noisy source coding, Universal schemes.

1 Introduction

A Limited-Rate Reconstruction of a Noisy Source

Consider a memoryless source {Xk}k≥1, emitting symbols from the finite alphabet X , corrupted by a discrete

memoryless channel (DMC), and let {Zk}k≥1 denote the channel output. The problem of rate-constrained denoising,

∗T. Weissman is with Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA. E-mail:
tsachyw@exch.hpl.hp.com.
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also referred to as noisy source coding, is that of recovering the source sequence {Xk}k≥1 with as high a fidelity as

possible, based on the noisy observation {Zk}k≥1, while operating at a limited information rate.

More concretely, a scheme, or a rate-constrained denoiser, or a block code, of length n is a mapping X̂n : Zn → X̂n,

where Z, X̂ are, respectively, the noisy signal and the reconstruction alphabets. The rate of the scheme is given by
1
n log2 |{X̂n(zn) : zn ∈ Zn}| bits per symbol, | · | denoting cardinality. One natural criterion for evaluating the

performance of a scheme is its expected distortion, as measured by the single-letter distortion measure ρ : X × X̂ →
[0,∞). Letting Sn(R) denote the class of all block codes of length n and rate ≤ R, this gives rise to the problem of

finding

min
X̂n∈Sn(R)

Eρ(Xn, X̂n(Zn)), (1)

where ρ(xn, x̂n) = n−1
∑n

i=1 ρ(xi, x̂i) (the left side of the equality being defined by the right). The value of the

expression in (1) is well known (cf. [Ber71, Section 3.5], [WZ70, Wit80, EG88, Nat93, EC98, WM02b, DW02a] and

references therein) to converge to

D(R) = min Eρ(X, X̂), (2)

the minimum taken over all distributions of the triplet (X,Z, X̂) ∈ X × Z × X̂ such that (X,Z) d= (X1, Z1),

X → Z → X̂ form a Markov chain, and I(Z; X̂) ≤ R (the left side denoting the mutual information between Z and

X̂).

Another natural criterion for assessing the performance of a scheme is the probability of excess distortion. Specif-

ically, given a rate R and a distortion level d ∈ [D(R), ρmax], where ρmax = minx̂∈X̂ maxx∈X ρ(x, x̂), the quantity of

interest is1

P opt
n (R, d)

�
= min

X̂n∈Sn(R)
Pr

(
ρn(Xn, X̂n(Zn)) > d

)
. (3)

As P opt
n (R, d) will typically converge to zero exponentially rapidly, it is the rate of this exponential convergence,

commonly referred to as the “error-exponent”, which is of significance in this setting. The error-exponent for this

problem was recently characterized in [WM02b]. Specifically, it follows as a special case of [WM02b, Theorem 1]

that

I(R − 0, d) ≤ lim inf
n→∞

1
n

log P opt
n (R, d) ≤ lim sup

n→∞
1
n

log P opt
n (R, d) ≤ I(R + 0, d), (4)

with the error-exponent function I(·, ·) explicitly identified, and I(R ± 0, d)
�
= limε↓0 I(R ± ε, d). We shall return to

the function I(·, ·) and elaborate on its detailed form in the sequel.

B Uncertainty in Source and Channel

Inherent in the problem description of the previous subsection is the complete knowledge of the statistics of the

source and the channel. In particular, the optimal schemes attaining the minima in (1) and (3) in general depend, of

course, on the distribution of the process {(Xk, Zk)}k≥1. Suppose now that there is some uncertainty in either the

distribution of the clean source sequence, or the DMC corrupting it, or both. Equivalently, suppose that the joint
1Note that for values of d outside of [D(R), ρmax], the quantity in (3) is not interesting as it is either bounded away from zero

(d < D(R)), or is identically zero for d > ρmax.
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distribution of the i.i.d. pairs (Xk, Zk), rather than completely being known, is only known to belong to a given set

Θ ⊆ M(X × Z), where M(X × Z) denotes the simplex of all probability distributions on X × Z.

Unfortunately, as was recently shown in [DW02a] (and as we shall elaborate on in subsection D below), for a

given Θ there will, in general, not exist a (sequence of) scheme(s asymptotically) attaining (1) for all sources in Θ

while being independent of the active source θ ∈ Θ. Letting Eθ denote expectation under the source corresponding

to θ ∈ Θ and D(θ,R) the associated distortion-rate function defined in (2), a seemingly plausible goal to strive for,

under the circumstances, is that of minimizing the worst-case excess expected distortion beyond D(θ,R) over all

sources θ ∈ Θ. Mathematically, the problem is that of finding

min
X̂n∈Sn(R)

max
θ∈Θ

[Eθρn(Xn, X̂n(Zn)) − D(θ,R)], (5)

and characterizing the minimax-optimal scheme attaining it. This problem was the main theme of [DW02a], where

the asymptotic value of the expression in (5), termed “the minimax distortion redundancy”, was given a single-letter

characterization and an asymptotically optimal sequence of schemes was identified.

Our goal in this work is to characterize the fundamental performance limitations, for a given class of sources Θ,

when the performance criterion is the probability of excess distortion, rather than the expected distortion criterion

considered in [DW02a].

C Our Setting: Universally Attainable Error Exponents for the Class Θ

As mentioned above, for a general Θ there do not exist schemes which are uniformly optimal in the sense of asymp-

totically attaining D(θ,R) for all θ ∈ Θ. A fortiori, the error exponent associated with (3) will not, in general, be

achievable by a universal scheme for all sources in Θ. We shall introduce, in this context, a notion of achievability.

In the ensuing definition, Pθ denotes the probability measure governing the process {(Xk, Zk)} when θ is the active

source, and {Iθ}θ∈Θ, {dθ}θ∈Θ are arbitrary given families of non-negative reals indexed by the elements of Θ, which

is a given family of distributions on (Xk, Zk).

Definition 1 {Iθ}θ∈Θ will be said to be achievable at rate R for distortion levels {dθ}θ∈Θ, or simply (R, {dθ}θ∈Θ)-

achievable, if for all ε > 0 and sufficiently large n there exists a block-code X̂n(·) of rate ≤ R + ε satisfying

− 1
n

log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≥ Iθ − ε ∀θ ∈ Θ. (6)

{Iθ}θ∈Θ will be said to be maximal at the above given rate and distortion levels if it is achievable and if any other

achievable {Ĩθ}θ∈Θ satisfies Ĩθ < Iθ for some θ ∈ Θ.

Clearly, among achievable {Iθ}θ∈Θ, it is the maximal ones which deserve most of the attention, as for any achievable

{Iθ}θ∈Θ there exists a maximal {Ĩθ}θ∈Θ which is at least as good for all θ ∈ Θ. Note that for the case where Θ = {θ}
is a singleton, the infimum of all Iθ which are achievable at rate R for distortion level dθ is the error exponent

function of (4) corresponding to the source θ (evaluated at R, dθ). Thus, Definition 1 is a generalization of the

notion of an achievable error exponent for the general case of a Θ consisting of more than one source. The sense in

letting the exponential levels associated with the different sources, as well as the corresponding distortion levels, be
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θ-dependent is, loosely speaking, that some sources are harder to recover than others. For one trivial example, it

certainly does not make sense to take, for any θ, Iθ > I(θ,R, d), the right side denoting the optimal error exponent

function appearing in (4) associated with the source θ. Furthermore, as mentioned above and as will be elaborated

on in the sequel, unfortunately, taking {Iθ = I(θ,R, d)}θ∈Θ is also overly ambitious in general. The issue of the

“right” choice of {Iθ}θ∈Θ and {dθ}θ∈Θ for a given family Θ will be dealt with in detail below.

The main result of this work is a characterization of the “achievable region”, as defined by Definition 1, and of

the achieving schemes. More specifically, in Section 3 we shall exhibit an explicit “single-letter” functional of the

source class Θ, the exponential levels {Iθ}θ∈Θ, the distortion levels {dθ}θ∈Θ, and the rate2 R: A(Θ, {Iθ}, {dθ}, R).

In terms of this functional, our main result states essentially that {Iθ}θ∈Θ is achievable at rate R for distortion levels

{dθ}θ∈Θ if and only if A(Θ, {Iθ}, {dθ}, R) ≥ 0. More precisely:

Theorem 1 (a) Direct part: If A(Θ, {Iθ}, {dθ}, R) ≥ 0 then {Iθ}θ∈Θ is achievable at rate R for distortion levels

{dθ}θ∈Θ.

(b) Converse part: If A(Θ, {Iθ}, {dθ}, R) < 0 then, for all ε > 0, {Iθ + ε}θ∈Θ is not achievable at rate R − ε for

distortion levels {dθ}θ∈Θ.

As indicated, we shall dedicate Section 3 primarily to the proof of Theorem 1. In doing that, we will be able, in

particular, to also characterize in Corollary 2 therein the form of a maximal family (recall Definition 1). Also, the

proof of the direct part will be constructive3 in the sense of demonstrating a sequence of schemes satisfying (6).

Equipped with the necessary and sufficient condition for achievability implied by Theorem 1, we shall turn, in

subsequent sections, to exploit its corollaries in several directions.

In Section 4 we shall verify that existing results can be recovered as special cases of Theorem 1. In particular, we

shall see how for the noise-free setting we recover Marton’s error exponent function [Mar74] and, furthermore, the

fact that this error exponent is universally achievable with respect to all sources in the simplex. We shall also verify

that for the non-universal setting, when Θ = {θ} is a singleton, the error exponent of (4) is recovered.

It was mentioned above that while Theorem 1 concerns the achievability of a given set of exponential levels for

a given set of distortion levels at a given rate, it does not address the issue of the “right” choices of these sets of

levels for a given class of sources Θ. In Section 5 we shall propose a competitive minimax approach for the choice of

these levels, relying on methodology recently put forth by Feder and Merhav in [FM02] for the composite hypothesis

testing problem. Roughly, the initial idea is to optimize the worst-case performance over all sources in the class, where

“performance” here is measured by the ratio between the probability of excess distortion of the universal scheme

and that of the optimal distribution-dependent one. Unfortunately, as was mentioned in subsection B, universal

encodability in our noisy setting is the exception, rather than the rule, even for universality in the expectation sense

of [DW02a], a fortiori for the exponential sense under discussion. It would thus, in general, be overly ambitious to

compare the performance of the universal scheme with the optimal distribution-dependent exponent. A compromise
2Here and throughout, to simplify notation, we shall omit the index set subscript when there is no room for ambiguity. Thus, we shall

write, e.g., {Iθ}, {dθ} for {Iθ}θ∈Θ, {dθ}θ∈Θ, respectively.
3Up to type-covering arguments based on random coding considerations.
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is to compare the performance to a discounted version of the optimal distribution-dependent exponent, i.e., the set

of exponential levels {ξI(θ,R, dθ)}, ξ > 0 being the discount factor. In the terminology of Definition 1, {ξI(θ,R, dθ)}
being (R, {dθ})-achievable then guarantees the existence of a scheme which is universal in the sense of having a positive

exponent whenever the optimal distribution-dependent exponent is positive. Thus, given (R, {dθ}), this motivates

choosing {ξ∗I(θ,R, dθ)} for the family of exponential levels, ξ∗ denoting the maximum ξ for which {ξI(θ,R, dθ)}
is (R, {dθ})-achievable. In particular, ξ∗ > 0 guarantees the existence of a universal scheme attaining a positive

exponent for all sources θ ∈ Θ for which I(θ,R, d) > 0. Gratifyingly, Theorem 1 can be applied to obtain a single-

letter expression for ξ∗ (in terms of Θ, R, {dθ}). This, as will be argued, can, in turn, also lead to a guideline for a

sensible requirement on the choice of distortion levels {dθ}, namely, the associated ξ∗ should be positive.

In Section 6 we shall apply Theorem 1 to characterize optimal performance for the following Neyman-Pearson-like

setting: Suppose there are two possible noise-corrupted signals. The goal of the observer of the noisy signal, rather

than having to determine which of the two it is (as in the hypothesis testing problem), is to reproduce the underlying

clean signal with as high a fidelity as possible (e.g., lowest number of symbol errors when distortion measure is

Hamming), while operating at a limited information rate R. Clearly, in general, for a given rate R, there is going to

be a tradeoff between the probability with which a reconstruction at a given fidelity level can be guaranteed under

one source, and the corresponding probability (for a possibly different distortion level) associated with the other

source. It is this tradeoff that Theorem 1 will allow us to characterize. Note that the problem we propose here is

suited better than the hypothesis testing setting to various signal detection applications, where the goal is to recover

an approximate version of the underlying signal rather than to simply determine whether it is one signal or the other.

Paraphrasing from the hypothesis testing terminology, we shall consider first the case of simple hypotheses, moving

on to the most general case of composite vs. composite. For dealing with the latter, we shall, again, combine ideas

which have been recently shown useful for the hypothesis testing framework. More specifically, we shall allow the

constraint on the exponent of the error of the “first kind” to be dependent on θ1 ∈ Θ1, similarly as was motivated

in [LM02] for the composite hypothesis testing problem. The motivation here, as well as a plausible choice for the

constraint function, derive from considerations similar to those discussed above in the competitive minimax context.

Now, subject to a constraint of this type, one can, again, resort to the competitive minimax approach of [FM02]

in order to devise the “right” objective function for minimization. Equipped with these choices for a constraint on

the composite error exponent of the first kind and the objective function associated with Θ2 to be minimized, we

shall proceed to characterize “single-letterly” the performance of the optimal scheme for this problem. It should be

noted that there is an essential difference between the hypothesis testing problem of [LM02] and the one considered

here: in the former there existed a scheme complying with the constraint on the error of the first kind which was

uniformly optimal for all θ2 ∈ Θ2. Therefore, in that setting, there was no issue of the “right” choice of the objective

functional of the composite Θ2 to be minimized. In our problem there will generally, of course, not exist schemes

that are uniformly optimal for all θ2 ∈ Θ2 under the constraint on the error of the first kind4, which is why the

choice of the optimality criterion for the composite Θ2 is an issue.
4Just as there will not exist, in general, schemes which are universally exponentially optimal when there is no constraint on an error

“of the first kind”.
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One of the contributions of [DW02a] was in identifying necessary and sufficient conditions for a class of noisy

sources to be universally encodable in the expectation sense, i.e., in the sense of the existence of a sequence of

schemes with expected distortion asymptotically attaining the distortion-rate function for all sources in the class.

It was shown that a sufficient condition for universal encodability of a source class is that it be identifiable in the

sense that different sources in the class will have different noisy marginal distributions and, furthermore, that there

will exist a variational ball (of positive radius) around each noisy marginal not containing any other noisy marginal.

Equivalently, the condition is that the class of sources be finite, with different noisy marginal distributions for each

of the different sources in the class. In Section 7 we shall apply our results to extend this conclusion and show that

it remains true for universality in the error-exponent sense, at least for certain (in some sense, to be argued, most

natural) families of distortion levels. More specifically, it will be shown that when Θ satisfies this condition then for

any given rate R and η > 0 sufficiently small, Θ is (R, {D(θ,R) + η}θ∈Θ)-universally encodable in the error-exponent

sense, i.e., there exist schemes attaining the optimal distribution-dependent exponent (which will be positive for this

choice of rate and distortion levels), simultaneously for all sources in the class.

D Divergence from Noise-Free Setting

Universal lossy coding (of noise-free sources) with respect to (w.r.t.) the whole simplex of memoryless sources is

known to be feasible in very strong senses. For any given rate there exist schemes that are universal in the sense of:

1. Attaining the distortion-rate function for all sources.

2. Attaining Marton’s [Mar74] optimal error-exponent function for all sources. And, furthermore,

3. Being universal with respect to all distortion levels, i.e., not only can the optimal error-exponent from the

previous item be universally attained for all sources, it can be attained simultaneously for all distortion levels.

One conceptually straightforward approach for a construction of such a scheme, at rate R, is the following: Partition

all source sequences into types. The type covering Lemma [CK81] guarantees the existence of a code-book of size

enR covering all source sequences within a type P with distortion essentially D(P,R), where D(P,R) denotes the

distortion-rate function of the source P . Taking the union of these code-books gives a scheme of rate essentially

R (only polynomial number of types), covering each source sequence xn with distortion essentially no larger than

D(Pxn , R), Pxn denoting the empirical measure induced by xn. Note that the construction of this scheme does not

assume any particular active source, nor is it tuned to any particular distortion level. As for its performance note

that if Xn was generated i.i.d. ∼ Q then, for any d, the probability that the distortion exceed d is essentially upper

bounded by the probability of a type P with D(P,R) > d, namely ≈ exp(−n minP :D(P,R)>d D(P‖Q)), which is

Marton’s optimal lossy source coding exponent for the source Q, at rate R and distortion level d.

In the noisy setting of our present work, the situation is radically different:

1. Expectation-sense Universality: Clearly, except for extremely degenerate situations (involving degenerate dis-

tortion measures), there do not exist schemes which are universal w.r.t. all noisy sources, i.e., w.r.t. the whole
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simplex M(X × Z). This is the first point of divergence between the noise-free and the noisy setting which

was one of the central themes of [DW02a]. The bottom line for this setting is that either the class of sources

for which universality is sought must be significantly smaller than the whole of M(X × Z), or the goal of

universality must be compromised (giving rise to a minimax criterion (5)).

2. Universality in the Error-Exponent sense: A further divergence between the noise-free and noisy settings is

observed when considering error exponents. While, as discussed above, for the noise-free setting there exist

schemes which are universal in both expected and error-exponent sense, for the noisy setting, even the existence

of schemes which are universal in the sense of the previous item does not guarantee existence of universal

schemes in the error-exponent sense.

To get a feel for why this is true, suppose that Θ = {θ(1), θ(2)} consists of two sources differing in their noisy

marginal distributions θ
(1)
Z �= θ

(2)
Z . As is easy to show, there exist schemes which are universal in the expectation

sense for this class. Suppose now that one attempts to construct a universal code for error-exponents. In the

spirit of the construction outlined above for universally attaining Marton’s exponent in the noise-free setting, a

seemingly plausible approach is to partition the set of noisy observation sequences according to types, allotting

each type approximately nR bits. But now arises the question of how to use the nR bits within a given type

P . In the noise-free setting it was very clear: all members of the type can and should be covered with lowest

possible distortion, namely, D(P,R), no matter what the active source may be. As we quantify in this work, in

the noisy setting, the optimal treatment within a type P is very much dependent on whether the active source

is θ(1) or θ(2). In general, within a given type, an optimal bit allotment under one source will necessarily be

sub-optimal for the other. Thus, the essence of the problem is that, for error-exponent performance, all types

must be taken into consideration. Note that for universality in expectation this is not a problem since all one

needs to worry about is the two (different) types θ
(1)
Z , θ

(2)
Z , attaining optimal performance under both sources

by treating noisy sequences of type θ
(1)
Z as if they were emitted from the source θ(1) and those of type θ

(2)
Z as

emitted by θ(2) (essentially forgetting about the remaining types, which are atypical under both sources and,

therefore, inconsequential for an expected performance criterion).

3. Universality w.r.t. the distortion level: As was pointed out in [WM02b], even in the non-universal setting of

error exponents for noisy source coding, the optimal schemes are dependent on the distortion level. The basic

reason is, similarly as was explained in the context of the previous item, that the optimal bit allotment within

a given type does not only depend on the source, but also on the distortion level. Indeed, even when there

is no rate constraint, an optimal filter maximizing the error-exponent for one distortion level may be strictly

sub-optimal for another distortion level.

E Literature Context and Problem Motivation

Shannon’s classical theory of lossy source coding [Sha59, Gal68, Ber71] has been subjected in recent decades to

extensive research and has been advanced in various directions (cf. [Ber98, Kie93] and the many references therein).
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Some of these directions include:

1. Universal lossy source coding (cf., e.g., [Ziv72, NGD75, Ziv80, Ris84, LLZ94, CEG96, YK96] for a representative

sample).

2. Lossy compression of noisy sources (cf. [Ber71, Section 3.5], [WZ70, Wit80, EG88, EC98, WM02b] and refer-

ences therein).

3. Source coding error exponents (cf., e.g., [Mar74, Bla74, Bla76, Bla87, CK81, KN96, Hum81, Jel68, Wyn74,

Mer91, MK01]).

The combination of the first two of the above items, namely, the problem of universal coding of noisy sources

has, prior to this work, been given attention in the recent [DW02a, DW02b] (probabilistic setting) and [WM02a,

Section 5] (individual sequence setting). The combination of the second and third of the above items was addressed

in [WM02b], where some of the potential obstacles in the way of extending the scope to the universal case were

discussed. The present work is the first to address the combination of all three: error exponents for noisy source

coding in the universal setting. In fact, even the special instance of our results to the case of the pure denoising

problem with no rate constraint (i.e., R ≥ log |Z|) appears to be new.

More than in its generalizing and merging of these three domains, the merit of this work (Theorem 1 in particular)

lies in its further characterization, beyond that pertaining to the setting of [DW02a], of the approximation-estimation

tradeoff5 for the noisy source coding problem. As is discussed in [DW02a], in various situations involving statistical

modelling there is a need to balance the tradeoff between taking a rich “reference class” of sources Θ (so as to approx-

imate the “true” data-generating mechanism as closely as possible) and the ability to reach optimum performance

for the various sources in the class. Quantifying the extent to which a source class, Θ, can be universally encoded,

as was done in [DW02a] and as we do in this work, provides one with tools for selecting the most appropriate Θ for

a given problem. This is, in some sense, analogous to the application of the MDL principle, which characterizes fun-

damental limitations on universal noise-free coding (cf. [Ris84, Ris96]) as a model selection rule in various problems

(cf. [BRY98] and references therein).

An additional motivation for studying the fundamental limitations on rate-constrained denoising in the universal

setting is the relatively recent emergence of the compression-based approach to the denoising problem [Nat93, Ris00,

Don02]. In a nutshell, the heuristic underlying this approach is that the noise corrupting the clean signal will

constitute that part of the observed noisy signal which is hardest to compress. Thus, by employing a universal

lossy compression scheme on the noisy signal, it seems plausible to expect that the part of the noisy signal which is

hardest to compress, namely the noise, will be lost. Thus, by appropriately tuning the distortion level according to

the noise level, this heuristic seems to suggest using the lossy output (i.e., the output of the lossy compressor whose

input is the observed noisy signal) for approximating the underlying noise-free signal. This approach was recently

applied to two concrete settings (binary signals corrupted by a BSC and real-valued signals corrupted by additive

Gaussian white noise) and its performance rigorously analyzed in [Don02]. It should be emphasized that there is
5Also referred to as the “under-fitting versus over-fitting dilemma”.
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a conceptual difference between the compression-based approach to denoising and our setting: While in the former

one’s hope is that the rate constraint will facilitate the ultimate goal, which is to denoise (i.e., the rate-constraint is

only used as a tool for coming up with a denoising scheme, it is not a real requirement), in our setting we assume

a veritable constraint on the rate and, subject to such a constraint, our goal is to characterize the fundamental

limitations on denoising performance. Nonetheless, ultimately the right benchmarks for assessing the performance

of any compression-based denoiser are the fundamental limitations characterized in [DW02a] and herein.

Finally, it should be mentioned that the notion of a universally achievable family of exponential levels, as intro-

duced in Definition 1, is not completely new. An analogous notion of a “universally attainable error exponent” was

introduced in [CK81, Definition 5.7] in the context of the compound channel. Unfortunately, the channel coding

analogue of our problem, as considered in [CK81], remained open to this day. Indeed, the problem of determining

universally attainable error exponents for a given compound channel appears today, as it did when [CK81] came

out, to be “very difficult”6. It seems somewhat remarkable, in light of this, that the analogous problem considered

here of determining universally attainable error exponents for the compound noisy source can be completely solved

(Theorem 1).

F Remaining Content

The remainder of this work is organized as follows: In Section 2 we present our notation conventions and recall some

standard facts for later use. Section 3 will be dedicated to the proof of Theorem 1 and some of its implications (e.g.,

the characterization of a maximal family in Corollary 2). In Section 4 we shall make a sanity check and verify that

known results, pertaining to settings contained as special cases of the current problem, are recoverable as corollaries

of Theorem 1. Sections 5, 6 and 7 deal, respectively, with the competitive minimax setting, the Neyman-Pearson

setting, and universality in the error-exponent sense, as elaborated on in subsection C above. Finally, Section 8

summarizes the paper and discusses a direction for related future work.

2 Notation, Conventions, and Preliminaries

For arbitrary finite sets A and B, we let M(A) denote the set of all probability measures on A, M+(A) the set of

probability measures on A which assign positive mass to all a ∈ A, and C(A → B) the set of all stochastic matrices

(or “channels” or “conditional distributions”) from A to B. The variational distance between two elements of M(A),

P and P ′, is defined by dv(P, P ′) = maxs⊂A[P (s) − P ′(s)].

For P ∈ M(A) we let H(P ) denote the entropy of a random variable distributed according to P . For W ∈ C(A →
B) we will write P ×W for the distribution of the pair (A,B) ∈ A×B when A is generated according to P and then

B is taken as the output of the channel W whose input is A. Furthermore, if Q = P × W we will refer to W as the

“channel from A to B induced by Q”. We will also let, in this case, H(W |P ) denote the entropy of B given A, i.e.,

H(W |P ) =
∑
a∈A

P (a)H(W (·|a)).

6A quote taken from [CK81, Pg. 172]. As is well known, even the case where the channel is known has yet to be completely solved.
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Similarly, we will let I(P ;W ) denote the mutual information between A and B. Alternatively, for Q ∈ M(A×B), we

shall sometimes write I(Q) to denote the mutual information between A and B when jointly distributed according

to Q. Logarithms and exponents throughout are assumed to be of base-2, as is assumed to be the case in definitions

of mutual information, entropy, etc.

For P,Q ∈ M(A) we will denote the Kullback-Leibler (informational) divergence by D(P‖Q) and for V,W ∈
C(A → B) we will let

D(V ‖W |P ) =
∑
a∈A

P (a)D(V (·|a)‖W (·|a))

denote the conditional (informational) divergence.

For any an ∈ An we let Pan ∈ M(A) denote the associated empirical measure. For P ∈ M(A) we let Tn
P =

{an ∈ An : Pan = P} denote the type class of P and omit the superscript n from Tn
P when there is no room for

ambiguity. For n ∈ N we let Mn(A), or simply Mn when the alphabet is clear from the context, denote the set of

all P ∈ M(A) for which Tn
P �= ∅. We shall further let, for W ∈ C(A → B) and an ∈ An, Tn

W (an), or simply TW (an),

denote the set of all bn ∈ Bn having conditional type W given an (cf. [CK81, Definition 2.4]). For an ∈ An, bn ∈ Bn

we let Pan,bn ∈ M(A× B) denote the associated joint empirical measure.

Following [CK81], for any P ∈ M(A) we let Tn
[P ]δ

denote the set of all sequences an ∈ An that are P -typical

with constant δ (cf. [CK81, Definition 2.8]). We further let, for any stochastic matrix W ∈ C(A → B) and an ∈ An,

Tn
[W ]δ

(an) denote the set of all bn ∈ Bn that are W -typical under the condition an ∈ An with constant δ (cf. [CK81,

Definition 2.9]). An immediate consequence of the definitions of δ-typical sequences is (cf. [CK81, Lemma 2.10]):

If an ∈ Tn
[P ]δ

and bn ∈ Tn
[W ]δ′

(an) then (an, bn) ∈ Tn
[P×W ]δ+δ′

. (7)

We shall adopt throughout the “delta-convention” used in [CK81]. Namely, we assume a fixed sequence of positive

reals {δn}n≥1 satisfying

δn → 0,
√

nδn → ∞ as n → ∞ (8)

and, for any n, P ∈ M(A), W ∈ C(A → B) and an ∈ An, we write Tn
[P ] (or simply T[P ]) for Tn

[P ]δn
and Tn

[W ](a
n) (or

simply T[W ](an)) for Tn
[W ]δn

(an).

When dealing with expectations of functions or with functionals of random variables, we shall sometimes subscript

the distributions of the associated random variables. Thus, for example, for any f : A → R and P ∈ M(A) we

shall write EP f(A) for the expectation of f(A) when A is distributed according to P . Similarly, we shall write, for

example, HP (f(A)) to denote the entropy of f(A) when A is distributed according to P and, for Q ∈ M(A × B),

HQ(B|A) will denote the conditional entropy of B given A when (A,B) ∼ Q.

In what follows, we assume that X , Z, X̂ are finite alphabets. As previously described, X is where the components

of the clean process take values, Z is where the noisy observations of the clean process take their values, and X̂ is

the reconstruction alphabet. If P ∈ M(X × Z) and V ∈ C(Z → X̂ ), we shall sometimes slightly abuse the notation

defined above by writing P × V to denote the distribution on (X,Z, X̂) ∈ X × Z × X̂ where (X,Z) are generated

according to P and then X̂ is taken as the output of the channel V whose input is Z (so that in this case X → Z → X̂

form a Markov chain). Also, for V ∈ C(X̂ ×Z → X ), U ∈ C(Z → X ) and Q ∈ M(X̂ ×Z), we shall sometimes slightly
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abuse the notation by writing D(V ‖U |Q) for D(V ‖Ũ |Q), where Ũ ∈ C(Y × Z → X ) is the channel which coincides

with U (i.e., the output of the channel Ũ is independent of the Y-valued component of the input). For θ ∈ M(X ×Z)

we shall write θX , θZ , θX|Z to denote the induced Z-marginal, X-marginal, and conditional distribution of X given

Z, respectively. For cases where X = Z we denote the noise-free channel (where Z = X with probability one) by

δZ|X . For P ∈ M(X ), R(P,D) and D(P,R) will denote, respectively, the standard (noise-free) rate distortion and

distortion rate functions associated with the source P (when the reconstruction alphabet is X̂ and w.r.t. the same

distortion measure ρ assumed throughout). Similarly, for θ ∈ M(X × Z), D(θ,R) will denote the distortion rate

function for the noisy source θ, as explained in subsection 1.B.

Throughout we shall adopt the convention that capital letters represent random variables, while the corresponding

lower case letters represent specific sample values. We shall use the notation min, max to generally denote a (not

necessarily attainable) infimum, supremum, respectively. We define log 0 = −∞ (to accommodate cases involving zero

probabilities). Finally, the infimum and the supremum over the empty set are defined by ∞ and −∞, respectively.

3 Characterization of the Achievable Region

In what follows we assume a given family of sources Θ ⊆ M(X ×Z). We define the function F : C(Z → X )×M(Z×
X̂ ) × [0,∞) → [0,∞] by

F (U,Q, d) = min
 V ∈ C(Z × X̂ → X ) :

EQ×V ρ(X, X̂) > d




D (V ‖U |Q) . (9)

For a set of channels indexed by M(Z), {WP }P∈M(Z) ⊆ C(Z → X̂ ), and two sets of positive reals indexed by Θ,

{Iθ}θ∈Θ and {dθ}θ∈Θ, we define

G (Θ, {WP }, {Iθ}, {dθ}) = min
P∈M(Z),θ∈Θ

[
D(P‖θZ) + F (θX|Z , P × WP , dθ) − Iθ

]
(10)

and

A(Θ, {Iθ}, {dθ}, R) = max
{WP }:maxP I(P ;WP )≤R

G (Θ, {WP }, {Iθ}, {dθ}) . (11)

This section is dedicated to the proof of Theorem 1, where the functional A(Θ, {Iθ}, {dθ}, R) appears.

A An Explicit Restatement of Theorem 1

In this subsection we recapitulate Theorem 1 in a somewhat more explicit form for convenience in its proof and its

later application.

Observe that A(Θ, {Iθ}, {dθ}, R) ≥ 0 if and only if there exists a set of channels7 indexed by M(Z), {WP }P∈M(Z) ⊆
C(Z → X̂ ), satisfying both

min
P∈M(Z),θ∈Θ

[
D(P‖θZ) + F (θX|Z , P × WP , dθ) − Iθ

] ≥ 0 (12)

and

max
P∈M(Z)

I(P ;WP ) ≤ R. (13)

7In the sequel we shall omit the index set, writing {WP } for {WP }P∈M(Z).
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In other words, being even more explicit, A(Θ, {Iθ}, {dθ}, R) ≥ 0 if and only if the following holds:

Hypothesis 1 For every P ∈ M(Z) there exists W ∈ C(Z → X̂ ) satisfying both

D(P‖θZ) + F (θX|Z , P × W,dθ) ≥ Iθ ∀θ ∈ Θ (14)

and

I(P ;W ) ≤ R. (15)

Thus, the direct part of Theorem 1 asserts that if Hypothesis 1 holds (equivalently, if (12) and (13) hold for some

{WP }) then {Iθ}θ∈Θ is achievable at rate R for distortion levels {dθ}θ∈Θ. The converse part asserts that if Hypothesis

1 does not hold then, for all ε > 0, {Iθ + ε}θ∈Θ is not achievable at rate R − ε for distortion levels {dθ}θ∈Θ.

Another advantage for the above formulation is in that it conveys the form of a maximal family. Specifically, we

have the following corollary to Theorem 1:

Corollary 2 If {Iθ}θ∈Θ is maximal for (R, {dθ}θ∈Θ) then there exists {WP } with maxP I(P ;WP ) ≤ R such that

Iθ = min
P∈M(Z)

[
D(P‖θZ) + F (θX|Z , P × WP , dθ)

] ∀θ ∈ Θ. (16)

Proof: If {Iθ}θ∈Θ is maximal for (R, {dθ}θ∈Θ) then it is, a fortiori, achievable. Thus, by the direct part of Theorem

1, there exists {WP } with maxP I(P ;WP ) ≤ R and

Iθ ≤ min
P∈M(Z)

[
D(P‖θZ) + F (θX|Z , P × WP , dθ)

] ∀θ ∈ Θ. (17)

In other words, denoting Ĩθ
�
= minP

[
D(P‖θZ) + F (θX|Z , P × WP , dθ)

]
, Iθ ≤ Ĩθ for all θ ∈ Θ. Since trivially, by its

definition, {Ĩθ} satisfies Hypothesis (1), it follows from Theorem 1 that it is (R, {dθ}θ∈Θ)-achievable. Now, if there

existed θ ∈ Θ for which Iθ < Ĩθ, that would have contradicted the maximality of {Iθ}. Thus, Iθ = Ĩθ for all θ ∈ Θ.

�

B Main Idea behind Proof of Theorem 1

In this subsection we give an informal outline of the main proof idea.

The significance of the functional F (U,Q, d) of equation (9) is in that for all zn ∈ Zn, x̂n ∈ X̂n, θ ∈ M(X × Z)

and d ≥ 0,

Pθ (ρ(Xn, x̂n) > d|Zn = zn) ≈ exp
(−nF (θX|Z , Pzn,x̂n , d)

)
. (18)

To get a feeling for why this is so note that, conditioned on Zn = zn and for any x̂n ∈ X̂n, {ρ(Xi, x̂i)} are

distributed, under Pθ, like an arbitrarily varying source with (x̂i, zi)’s serving as states and with distribution8

Lθ(ρ(Xi, x̂i)|Zi = zi). Thus, the exponential price for a fluctuation in the empirical measure of {ρ(Xi, x̂i)} is a

divergence between the measure to which it fluctuates and the true law, θX|Z , averaged over the frequency of the

occurrence of the various “states”, namely, according to Pzn,x̂n . This is what F (θX|Z , Pzn,x̂n , d), as defined in (9), is

doing, taking the minimum of this weighted divergence over all measures under which the distortion exceeds d.
8We let Lθ(ρ(Xi, x̂i)|Zi = zi) denote the law of ρ(Xi, x̂i) conditioned on Zi = zi, when the active source is θ.
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Converse idea: Take any scheme X̂n(·) restricted to rate R. For any type of Z-sequences, TP ⊆ Zn, look at the

empirical measures induced by pairs (zn, X̂n(zn)) for the various zn ∈ TP . Since the number of possible empirical

measures is polynomial in n it follows that there exists at least one joint type TQ ⊆ (Z×X̂ )n (where Q is of the form

P ×W for some channel from Z into X̂ ) such that (zn, X̂n(zn)) ∈ TQ for an exponentially non-negligible portion of

sequences in TP . Since each sequence x̂n ∈ TQX̂
can “cover” no more than ≈ enHQ(Z|X̂), it follows that the number

of distinct code-words must be approximately ≥ |TP |/enHQ(Z|X̂) ≈ enI(Q). Thus, the restricted rate of X̂n(·) implies

essentially that I(Q) = I(P ;W ) ≤ R. From this it follows that, for each type P , there exists an exponentially non-

negligible fraction of sequences zn ∈ TP for which Pθ

(
ρ(Xn, X̂n(zn)) > dθ|Zn = zn

) ∼
> exp

(−nF (θX|Z , P × W,dθ)
)
,

and, consequently,

Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

) ∼
> exp

(−n[D(P‖θZ) + F (θX|Z , P × W,dθ)]
) ∀θ ∈ Θ, (19)

where W is some channel with I(P ;W ) ≤ R. Now, if Hypothesis 1 does not hold this implies the existence of a type

P such that, whenever I(P ;W ) ≤ R,

∃θ ∈ Θ : D(P‖θZ) + F (θX|Z , P × W,dθ) < Iθ.

Combined with (19) this implies the existence of θ ∈ Θ for which Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

) ∼
> exp(−nIθ), essentially

completing the proof of the converse part.

Direct idea: Suppose Hypothesis 1 holds. This implies the existence (cf. subsection A) of {WP }P∈M(Z), WP ∈
C(Z → X̂ ), satisfying both (12) and (13). Now, by type-covering-like arguments one can show that for each

P ∈ Mn(Z) there exists a “code-book”, i.e., a subset of Zn of size ≤ enI(P ;WP ) ≤ enR (the second inequality owing

to (13)) such that for each zn ∈ TP there exists x̂n for which (zn, x̂n) ∈ T[P×WP ]. Letting X̂n(·) be the scheme

corresponding to the union of these code-books over the different types, it is clear that the rate of this scheme is
∼
< enR (as there are only a polynomial number of types) and that for each P ∈ Mn(Z) and zn ∈ TP , (zn, X̂n(zn)) ∈
T[P×WP ]. Thus, by (18), it follows that for all θ ∈ Θ, P ∈ Mn(Z) and zn ∈ TP , Pθ (ρ(Xn, x̂n) > dθ|Zn = zn) ≈
exp

(−nF (θX|Z , P × WP , dθ)
)
. This, in turn, essentially concludes the proof of the direct as it implies that, for all

θ ∈ Θ, Pθ (ρ(Xn, x̂n) > dθ) ≈ exp
(−n minP [D(P‖θZ) + F (θX|Z , P × WP , dθ)]

) ∼
< e−nIθ , where the (approximate)

inequality follows since, by (12), minP [D(P‖θZ) + F (θX|Z , P × WP , dθ)] ≥ Iθ for all θ ∈ Θ.

The next subsection contains the rigorous version of the proof sketched above.

C Proof of Theorem 1

Recall first that the following was established in [WM02b, Section III-B, equations (11)-(22)]: For all zn ∈ Zn,

x̂n ∈ X̂n, θ ∈ M(X × Z), d ≥ 0,

(n+1)−|X||Z||X̂ | exp
(−nFn(θX|Z , Pzn,x̂n , d)

) ≤ Pθ (ρ(Xn, x̂n) > d|Zn = zn) ≤ (n+1)|X ||Z||X̂ | exp
(−nFn(θX|Z , Pzn,x̂n , d)

)
,

(20)

where, for W ∈ C(Z → X ) and Q ∈ Mn(Z × X̂ ), Fn(·, ·, ·) is given by

Fn(W,Q, d) = min
{V ∈C(Z×X̂→X ):EQ×V ρ(X,X̂)>d}∩Cn(Q)

D(V ‖W |Q), (21)
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Cn(Q) denoting the subset of channels V ∈ C(Z × X̂ → X ) for which Q × V ∈ Mn(Z × X̂ × X ).

Proof of Converse Part of Theorem 1: We must prove that if Hypothesis 1 does not hold then for all ε > 0 and

sufficiently large n we have the following: For any scheme X̂n(·) of rate ≤ R − ε there exists a source θ ∈ Θ such

that

− 1
n

log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≤ Iθ + ε. (22)

To this end, suppose that Hypothesis 1 does not hold, i.e., there exists P ∈ M(Z) for which there does not exist

a channel W satisfying both (14) and (15). In other words, there exists P ∈ M(Z) such that for all W satisfying

I(P ;W ) ≤ R,

∃θ ∈ Θ : D(P‖θZ) + F (θX|Z , P × W,dθ) < Iθ. (23)

The continuity properties of the mutual information functional I(·; ·) (cf. [CK81]) imply that for any ε > 0 and

sufficiently large n, by letting P (n) ∈ Mn(Z) be the closest member of Mn(Z) to P (say, under variational norm)

then ∀W : I(P (n);W ) ≤ R − ε equation (23) holds (with P (n) substituted for P ). Furthermore, the continuity

properties of D(·‖·) and those of F (·, ·, dθ) (cf. [WM02b, Appendix C]) imply that (when n is sufficiently large) for

any θ: D(P (n)‖θZ) + F (θX|Z , P (n) × W,dθ) ≤ D(P‖θZ) + F (θX|Z , P × W,dθ) + ε. Thus we have for any ε > 0 and

sufficiently large n the existence of P (n) ∈ Mn(Z) such that

∀W : I(P (n);W ) ≤ R − ε ∃θ ∈ Θ : D(P (n)‖θZ) + F (θX|Z , P (n) × W,dθ) ≤ Iθ + ε. (24)

Fix now ε > 0, n, P (n) ∈ Mn(Z) satisfying (24), and an arbitrary scheme X̂n(·) of rate ≤ R − 2ε. For any zn

the empirical distribution of
(
zn, X̂n(zn)

)
is, by definition, a member of Mn(Z × X̂ ). Consequently, there exists

Q(n) ∈ Mn(Z × X̂ ) such that

Q
(n)
Z = P (n) (25)

and for which S(Q(n))
�
=

{
zn ∈ TP (n) :

(
zn, X̂n(zn)

)
∈ TQ(n)

}
⊆ TP (n) satisfies

∣∣∣S(Q(n))
∣∣∣ ≥ |TP (n) |

|Mn(Z × X̂ )| ≥ (n + 1)−(|Z|+|Z||X̂ |)enH(P (n)) ≥ en(H(P (n))−ε) (26)

(assuming n sufficiently large so that e−nε ≤ (n + 1)−(|Z|+|Z||X̂ |)). On the other hand, it is clear that for every x̂n,

|{zn ∈ S(Q(n)) : X̂n(zn) = x̂n}| ≤ |TV (n)(x̂n)| ≤ exp(nH(V (n)|Px̂n)) = exp(nHQ(n)(Z|X̂)), V (n) ∈ C(X̂ → Z) being

the channel induced by Q(n). Consequently,

exp(n(R − 2ε)) ≥ |{X̂n(zn) : zn ∈ Zn}|
≥ |{X̂n(zn) : zn ∈ S(Q(n))}|

≥ |S(Q(n))|
exp(nHQ(n)(Z|X̂))

≥ exp(n(H(P (n)) − ε))
exp(nHQ(n)(Z|X̂))

= exp(n(I(Q(n)) − ε)). (27)

Thus we have I(P (n);V (n)) = I(Q(n)) ≤ R − ε implying, by (24), the existence of θ ∈ Θ such that

D(P (n)‖θZ) + F (θX|Z , Q(n), dθ) ≤ Iθ + ε. (28)
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Thus, for this θ,

Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≥ (n + 1)−|X||Z||X̂ | ∑

zn∈T
P (n)

exp
(
−n

[
D(P (n)‖θZ) + H(P (n)) + Fn(θX|Z , Pzn,X̂n(zn), dθ)

])

≥ (n + 1)−|X||Z||X̂ | ∑
zn∈S(Q(n))

exp
(
−n

[
D(P (n)‖θZ) + H(P (n)) + Fn(θX|Z , Pzn,X̂n(zn), dθ)

])

= (n + 1)−|X||Z||X̂ ||S(Q(n))| exp
(
−n

[
D(P (n)‖θZ) + H(P (n)) + Fn(θX|Z , Q(n), dθ)

])
≥ exp

(
−n

[
D(P (n)‖θZ) + Fn(θX|Z , Q(n), dθ) + 2ε

])
(29)

≥ exp
(
−n

[
D(P (n)‖θZ) + F (θX|Z , Q(n), dθ) + 3ε

])
≥ exp (−n [Iθ + 4ε]) , (30)

where the first inequality follows from the left inequality in (20), the inequality in (29) follows from (26), the inequality

before last follows by the fact established in [WM02b, Appendix D] that9 |F (W,Q, d) − Fn(W,Q, d)| → 0 uniformly

in (W,Q, d) (and n is assumed sufficiently large so that |F − Fn| ≤ ε). The last inequality follows from (28). Thus,

for the arbitrary ε > 0 we have taken an arbitrary scheme of rate ≤ R − 2ε and established the existence of a θ for

which, by (30), − 1
n log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≤ Iθ + 4ε. This concludes the proof of the converse part.

For the proof of the direct part, we shall employ the following “type-covering” assertion.

Proposition 3 There exists a sequence of positive reals {εn}n≥1 with εn → 0 as n → ∞, depending only on |Z| and

|X̂ |, such that for every n, distribution P ∈ Mn(Z), and stochastic matrix W ∈ C(Z → X̂ ) there exists a mapping

fn
P : Tn

P → X̂n satisfying both

fn
P (zn) ∈ Tn

[W ](z
n) ∀zn ∈ Tn

P (31)

and

|{fn
P (zn) : zn ∈ Tn

P }| ≤ en[I(P ;W )+εn]. (32)

A proof of a slightly stronger version of Proposition 3 can be found in [DW02a] (cf. Proposition 1 and its proof

therein, which is based on a random coding argument).

Proof of Direct Part of Theorem 1: We must show that if Hypothesis 1 holds then for all ε > 0 and sufficiently

large n (dependent on ε) there exists a block-code X̂n(·) of rate ≤ R + ε satisfying

− 1
n

log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≥ Iθ − ε ∀θ ∈ Θ. (33)

To this end, let ε > 0 be fixed. Assume Hypothesis 1 holds and for P ∈ M(Z) let WP denote a channel satisfying

both (14) and (15), namely

D(P‖θZ) + F (θX|Z , P × WP , dθ) ≥ Iθ ∀θ ∈ Θ (34)

and

I(P ;WP ) ≤ R (35)
9More precisely, in [WM02b, Appendix D] it was shown that |F (W, Q, d) − Fn(W, Q, d)| → 0 uniformly in Q for fixed (W, d). The

argument used, however, can actually be shown to imply uniformity in the triple (W, Q, d).
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(in other words, {WP } is the set of channels satisfying (12) and (13)). For a given n we construct a block-code X̂n(·)
as follows: For each P ∈ Mn(Z) let fn

P be a mapping satisfying the assertion of Proposition 3 for the channel WP .

The block-code is constructed via

X̂n(zn) = fn
Pzn ∀zn ∈ Zn, (36)

so that

|{X̂n(zn) : zn ∈ Zn}| =
∑

P∈Mn(Z)

|{X̂n(zn) : zn ∈ TP }| (37)

≤
∑

P∈Mn(Z)

en(I(P ;WP )+εn)

≤ |Mn(Z)|en(R+εn) ≤ en(R+εn+
|Z|
n log(n+1)), (38)

the first inequality owing to Proposition 3 and the second to (35).

For the performance of this scheme we have, for all θ ∈ Θ,

Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≤ (n + 1)|X ||Z||X̂ | ∑

P∈Mn(Z)

∑
zn∈TP

exp
(
−n

[
D(P‖θZ) + H(P ) + Fn(θX|Z , Pzn,X̂n(zn), dθ)

])

≤ (n + 1)|X ||Z||X̂ | ∑
P∈Mn(Z)

exp
(
−n

[
D(P‖θZ) + min

zn∈TP

Fn(θX|Z , Pzn,X̂n(zn), dθ)
])

≤
∑

P∈Mn(Z)

exp
(−n

[
D(P‖θZ) + Fn(θX|Z , P × WP , dθ) − ε − ε

])
(39)

≤ exp (−n [Iθ − 4ε]) , (40)

where the justification for the last chain of inequalities is as follows: The last inequality follows from (34) (which

holds for all P ∈ Mn(Z)) and the fact discussed in the proof of the converse that |Fn −F | → 0 uniformly in the first

two arguments (and n is assumed sufficiently large so that |Fn − F | ≤ ε and |Mn(Z)| ≤ enε). For the inequality

before last we have used the fact that, by construction of the scheme X̂n(·) (via the mappings of Proposition 3),

X̂n(zn) ∈ T[WP ](zn) ∀zn ∈ TP and P ∈ Mn(Z), implying (by equation (7)) that (zn, X̂n(zn)) ∈ T[P×Wp]2δn
∀zn ∈ TP

(δn pertaining to the δ-convention introduced in Section 2). Consequently,

min
zn∈TP

Fn(θX|Z , Pzn,X̂n(zn), dθ) ≥ min
Q∈Mn(Z×X̂ ):TQ⊆T[P×Wp]2δn

Fn(θX|Z , Q, dθ),

the right side being further lower bounded by Fn(θX|Z , P × WP , dθ) − ε for all sufficiently large n (dependent on

ε, yet not on P nor on θ), a consequence of the uniform equicontinuity of the family of functions Fn, which is a

straightforward consequence of the definition of Fn (the proof of this fact is similar to, e.g., that of [CK81, Lemma

5.5]). This completes the justification of the inequality in (39). The inequality before (39) is self-evident and the first

inequality in the above chain follows from (20). To sum up, for the arbitrary ε > 0 and n sufficiently large we have

constructed a block-code of rate ≤ R + ε (recall (38), assuming n is sufficiently large so that εn + |Z|
n log(n + 1) ≤ ε)

with 1
n log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≥ Iθ − 4ε for all θ ∈ Θ. �
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Remark1: The uniform nature (i.e., the fact that n and ε do not depend on θ ∈ Θ) of the achievability notion,

as introduced in Definition 1, may, at first glance, seem somewhat harsh. A seemingly less harsh alternative is to

require, instead of (6), that

lim inf
n→∞

[
− 1

n
log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)]
≥ Iθ ∀θ ∈ Θ. (41)

In our finite-alphabet framework, however, this is inconsequential. The proof of the converse part is readily seen to

carry over to the achievability notion corresponding to (41).

Remark2: It is easy to see how the above proof (and formulation of the theorem) can be extended to accommodate

source-dependent distortion measures. Essentially, the proof carries over by simply subscripting θ to ρ everywhere.

There would only remain some technical issues such as showing that the convergence of Fn(W,Q, d) to F (W,Q, d)

is uniform not only in (W,Q, d) but also in the distortion measure on which these functions implicitly depend. Such

issues would be straightforwardly accounted for under appropriate regularity assumptions on the family of distortion

measures {ρθ}θ∈Θ.

D A Note on Terminology

Let {WP }P∈M(Z) be a set of channels in C(Z → X̂ ), indexed by the elements of M(Z). Given this set, we define a

sequence of schemes as was done in the above proof of the direct part. Specifically, for each n we let X̂n(·) be the

block-code defined as follows: For each P ∈ Mn(Z), letting fn
P be a mapping satisfying the assertion of Proposition

3 for the channel WP , we put X̂n(zn) = fn
Pzn (zn) ∀zn ∈ Zn. Note that, similarly as shown in the proof above (cf.

(38)), the rate of X̂n(·) is ≤ maxP I(P ;WP )+ εn + |Z|
n log(n+1) ≤ maxP I(P ;WP )+ ε for any ε > 0 and sufficiently

large n. In addition, it satisfies (zn, X̂n(zn)) ∈ T[P×Wp]2δn
for all zn ∈ TP and P ∈ Mn(Z). Henceforth we shall

refer to the sequence {X̂n(·)} constructed in this way as the “sequence of schemes induced by {WP }P∈M(Z)” or,

simply, the “scheme induced by {WP }”. Note that the direct part of Theorem 1 was established by considering the

scheme induced by a {WP } satisfying (12) and (13).

4 Known Results as Corollaries

In this section we verify that results pertaining to settings which are special cases of the setting considered in this

work are recoverable from Theorem 1.

A Noise-free Source Coding: Marton’s Exponent

Consider the noise-free setting of source coding, which is formally obtained as a special case of our setting whence

X = Z, and one considers only sources θ with Pθ(X = Z) = 1, or, equivalently, with θZ|X = δZ|X . It is easy to

check from the definition of the function F in equation (9) that

F (δZ|X , Q, d) =
{

0 if EQρ(Z, X̂) > d
∞ otherwise.

(42)
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So, for the single source Θ = {θ}, Hypothesis 1 becomes

∀P ∃W :
{

D(P‖θZ) + F (δZ|X , P × W,dθ) ≥ Iθ

and I(P ;W ) ≤ R
(43)

which, by (42), is equivalent to

{P : EP×W ρ(X, X̂) > dθ ∀W for which I(P ;W ) ≤ R} ⊆ {P : D(P‖θZ) ≥ Iθ}. (44)

Since the set on the left side of (44) is nothing but {P : D(P,R) > dθ}, we finally get that Hypothesis 1 for the

single source in the noise-free setting is

min
{P :D(P,R)>dθ}

D(P‖θZ) ≥ Iθ. (45)

Thus, Theorem 1 tells us that the exponent min{P :D(P,R)>dθ} is achievable at rate R for distortion level dθ, yet

Theorem 1 implies that any Iθ < min{P :D(P,R)>dθ} is not achievable, which is essentially [Mar74, Theorem 1].

For the universal case, let now Θ = M(X ) and, for each P ∈ M(X ), let WP denote the channel achieving D(P,R)

(assume it exists, otherwise take ε-achiever and the following argumentation will carry over). From (42) and the

definition of D(P,R) it follows that

∀P : F (δZ|X , P × WP , d) =
{

0 if D(P,R) > d
∞ otherwise (46)

so, trivially, this choice of {WP } satisfies for any {dθ}θ∈Θ

∀P, θ ∈ Θ D(P‖θ) + F (δZ|X , P × WP , dθ) ≥ min
P ′:D(P ′,R)>dθ

D(P ′‖θ), and I(P ;WP ) ≤ R, (47)

implying that Hypothesis 1 holds for Θ = M(X ), any {dθ}θ∈Θ, R ≥ 0, and {Iθ = minP ′:D(P ′,R)>dθ
D(P ′‖θ)}θ∈M(X ).

On the other hand, according to [Mar74] (and as recovered above), the best attainable exponent even for a single

known source θ at distortion level dθ and rate R is minP ′:D(P ′,R)>dθ
D(P ′‖θZ). Thus, Theorem 1 implies that, for

the case of noise-free source coding, there exists a source code, for any given rate R, which is universally optimal in

the sense of achieving Marton’s exponent for all sources. Indeed, as discussed in [WM02b, Section 4 ], the choice of

{WP } satisfying (47) induces the following conceptually simple source code which universally achieves the optimal

exponent: Take a type-covering code-book for each type of size enR code-words, so that all words of type P are

covered to within distortion D(P,R). The overall rate of this scheme is essentially R, and it is readily verified to

(asymptotically) attain Marton’s optimal exponent, uniformly for all sources. Note further that the construction of

the scheme is independent of the distortion levels, thus it attains the optimal exponent uniformly for all distortion

levels, as well as sources (technically this is evident from the fact that the choice of {WP } is independent of the

distortion levels).

B Non-Universal Noisy Source Coding

Let

I(θ,R, d)
�
= min

P

[
D(P‖θZ) + max

W :I(P ;W )≤R
F (θX|Z , P × W,d)

]
. (48)
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Suppose further that Θ = {θ} consists of a single distribution in M(X × Z). For this case, Hypothesis 1 is readily

verified to assume the form

I(θ,R, dθ) ≥ Iθ. (49)

Thus, by Theorem 1, we get that the optimal exponent for noisy source coding of the single source θ, at rate R, for

distortion level dθ, is the left side of (49). More precisely, denoting

P opt
n (θ,R, d)

�
= min

X̂n(·)∈Sn(R)
Pθ

(
ρ(Xn, X̂n(Zn)) > d

)
,

we get

I(θ,R − 0, d) ≤ lim inf
n→∞

[
− 1

n
log P opt

n (θ,R, d)
]

(50)

≤ lim sup
n→∞

[
− 1

n
log P opt

n (θ,R, d)
]
≤ I(θ,R + 0, d), (51)

where (50) follows by the direct part of Theorem 1 and (51) from its converse part. This result was first obtained in

[WM02b, Section 3 ] (by taking λ = ∞ in Theorem 1 therein). Let us note, for future reference, that at all continuity

points of I(θ, ·, d) (which, by monotonicity, is all points except, possibly, a countable set of points) equations (50)

and (51) imply

lim
n→∞

[
− 1

n
log P opt

n (θ,R, d)
]

= I(θ,R, d). (52)

Comment: The proof of Theorem 1, which utilizes the method of types and Proposition 3, is readily seen to imply

that the convergence in (52) holds uniformly rapidly in (θ,R, d).

5 Competitive Minimax Approach

Let {λθ}θ∈Θ be a family of non-negative reals indexed by Θ and define the associated logarithmic competitive maxi-

min of the class of sources Θ at rate R, for distortion levels {dθ}, by

Ln(Θ, R, {dθ}, {λθ}) �
= max

X̂n(·)∈Sn(R)
min
θ∈Θ

[
− 1

n
log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
− λθ

]
. (53)

Note that, by Definition 1, if {λθ + α}θ∈Θ is achievable at rate R for distortion levels {dθ}θ∈Θ then, for any ε > 0,

lim infn→∞ Ln(Θ, R + ε, {dθ}, {λθ}) ≥ α. Conversely, if {λθ + α}θ∈Θ is not achievable at rate R for distortion levels

{dθ}θ∈Θ then, lim supn→∞ Ln(Θ, R, {dθ}, {λθ}) ≤ α. Thus, assuming continuity of lim infn→∞ Ln(Θ, R, {dθ}, {λθ})
at10 R,

L(Θ, R, {dθ}, {λθ}) �
= lim

n→∞Ln(Θ, R, {dθ}, {λθ})
= sup{α : {λθ + α}θ∈Θ is achievable at rate R for distortion levels {dθ}θ∈Θ}
= sup{α : {λθ + α}θ∈Θ, {dθ}θ∈Θ, R satisfy Hypothesis 1 } (54)

= max
{{WP }:maxP I(P ;WP )≤R}

min
{θ∈Θ,P∈M(Z)}

[
D(P‖θZ) + F (θX|Z , P × WP , dθ) − λθ

]
(55)

10lim infn→∞ Ln(Θ, R, {dθ}, {λθ}) is clearly monotonously non-decreasing in R and, consequently, can have no more than a countable
number of discontinuity points. Henceforth, for lucidity of the presentation, we shall assume such continuity without explicit mention.
When such continuity does not prevail, the analysis carries over with lower and upper bounds using ±ε “slack” (cf. analogous analysis in
[WM02b]).
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where equality (54) follows from Theorem 1, and equality (55) by writing out Hypothesis 1 explicitly. Thus, we

have arrived at a single-letter characterization of the asymptotic logarithmic competitive maxi-min attainable rel-

ative to a reference set of exponential levels {λθ}θ∈Θ, for any rate R and set of distortion levels {dθ}. Note that

taking {λθ} = {I(θ,R, dθ)} corresponds to minimizing the worst-case difference between the optimal distribution-

dependent exponent and that of the universal scheme, which is the error-exponent analogue of the minimax distortion

redundancy formulation of [DW02a] (recall (5)). Indeed, up to sign (here we use maximin rather than minimax),

max
{{WP }:maxP I(P ;WP )≤R}

min
{θ∈Θ,P∈M(Z)}

[
D(P‖θZ) + F (θX|Z , P × WP , dθ) − I(θ,R, dθ)

]
is the analogue of our setting to the single-letter expression obtained in [DW02a] for the minimax distortion redun-

dancy (cf. Theorem 3 therein).

It should also be clear that the (sequence of) scheme(s) induced by the {WP } attaining the max11 in (55) is

asymptotically maximin optimal. The optimal scheme is, of course, dependent on the reference set {λθ}θ∈Θ through

which the maximin criterion (53) is defined.

A special case of the above derivation worth mentioning is the absolute error exponent for a source class Θ defined

by

PΘ
n (R, d)

�
= min

X̂n∈Sn(R)
max
θ∈Θ

Pr
(
ρn(Xn, X̂n(Zn)) > d

)
. (56)

The inner maximum on the right side is the analogue of the “maximum probability of error of a code over a compound

channel W” of [CK81, Definition 5.9], where here the role analogous to that of the compound channel is played by

the compound source Θ. Unlike for the case of the compound channel, where the optimal exponent is unknown,

here we can characterize the precise exponential behavior of PΘ
n (R, d). Specifically, noting that − 1

n log PΘ
n (R, d) =

Ln(Θ, R, {dθ ≡ d}, {λθ ≡ 0}), (55) gives for this case

lim
n→∞− 1

n
log PΘ

n (R, d) = max
{WP }:maxP I(P ;WP )≤R

[
min

P∈M(Z),θ∈Θ

(
D(P‖θZ) + F (θX|Z , P × WP , d)

)]
.

A question arising at this point is whether, given a rate R and distortion levels {dθ}, there exists a set of

exponential levels {λθ}θ∈Θ which is, in some sense, most natural. One plausible answer to this question seems to lie

in adopting an approach recently advocated for the problem of composite hypothesis testing [FM02]. Specifically,

define the ξ-factored competitive minimax by

Kξ
n(Θ, R, {dθ}) �

= min
X̂n(·)∈Sn(R)

max
θ∈Θ

Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
[P opt

n (θ,R, dθ)]ξ
. (57)

Hence, for example, ξ = 0 corresponds to the absolute minimax criterion, while ξ = 1 corresponds to the competitive

minimax criterion, analogous to that from the hypothesis testing framework of [FM02] (the reader is referred to

[FM02] for a more elaborate discussion of this framework and its motivation, which naturally extend to the setting

of the present work). One of the significant features of Kξ
n(Θ, R, {dθ}) is that if it decays exponentially with n at

a certain rate, γ(ξ) (note that γ(ξ) may be negative, in which case it is really exponential growth), then an error
11Here and throughout, when there does not exist a {WP } attaining the max (so that it is really a sup), “{WP } attaining the max”

should be understood as “a sequence of sets {W (n)
P } asymptotically attaining the sup”.
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exponent of at least γ(ξ) + ξI(θ,R, dθ) is achieved for all θ ∈ Θ. In particular, if γ(ξ∗) ≥ 0 for some ξ∗ > 0, then an

error exponent of at least ξ∗I(θ,R, dθ) is achieved for all θ ∈ Θ, implying, in turn, a positive exponent whenever the

optimal distribution-dependent scheme has a positive exponent. This thus motivates looking for the largest ξ with

this property. Specifically, we let

ξ∗
�
= sup

{
ξ : lim inf

n→∞ − 1
n

log Kξ
n(Θ, R, {dθ}) ≥ 0

}
. (58)

We can now use our results to obtain a closed-form expression for ξ∗ as follows:

− 1
n

log Kξ
n(Θ, R, {dθ}) = max

X̂n(·)∈Sn(R)
min
θ∈Θ

[
− 1

n
log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
+ ξ · 1

n
log P opt

n (θ,R, dθ)
]

n→∞−→ L(Θ, R, {dθ}, {ξ · I(θ,R, dθ)}), (59)

the second line owing to the definition of L(Θ, R, {dθ}, ·), to equation (52) (including the comment following it), and

an assumption that the limit in (59) exists. Hence, by (55),

lim
n→∞

[
− 1

n
log Kξ

n(Θ, R, {dθ})
]

= max
{{WP }:maxP I(P ;WP )≤R}

min
{θ∈Θ,P∈M(Z)}

[
D(P‖θZ) + F (θX|Z , P × WP , dθ) − ξ · I(θ,R, dθ)

]
(60)

and, consequently,

ξ∗ = sup
{

ξ : max
{{WP }:maxP I(P ;WP )≤R}

min
{θ∈Θ,P∈M(Z)}

[
D(P‖θZ) + F (θX|Z , P × WP , dθ) − ξ · I(θ,R, dθ)

] ≥ 0
}

. (61)

Note that ξ∗ ≤ 1 with equality if and only if the family Θ is (R, {dθ})-“universally encodable in the exponential

sense”, i.e., there exists a rate-R scheme attaining exponential levels I(θ,R, dθ) uniformly for all θ ∈ Θ.

We have thus arrived at what is, in the sense described above, a “canonical” choice for the family of (R, {dθ})-
achievable exponential levels, namely, the family {ξ∗ · I(θ,R, dθ)} (with ξ∗ explicitly identified in (61)). As for

a choice of the family of distortion levels {dθ}, one seemingly plausible possibility is to take, for some η > 0,

the family {D(θ,R) + η}. Note that for a general class Θ, {D(θ,R) + η} may not be achievable with a set of

exponential levels which is everywhere positive, even for arbitrarily small η > 0. The reason is that, in general, Θ

will not even be universally encodable in the expectation sense (recall discussion in Section 1 and cf. [DW02a] for

an extensive treatment) and therefore, a fortiori, positive exponential levels will not be attainable simultaneously for

all sources in Θ. Nonetheless, the family Θ being finite and “identifiable” in the sense that the noisy marginal θZ

uniquely determines θ ∈ Θ, was shown in [DW02a] to be a sufficient condition for the universal encodability of Θ

in the expectation sense. As we show in Section 7, this condition also suffices to guarantee the (R, {D(θ,R) + η})-
“universal encodability in the exponential sense” of Θ, for sufficiently small η > 0. In any case, it seems that a

sensible choice of {dθ} should have the associated ξ∗ be positive, guaranteeing a positive exponent whenever the

distribution-dependent exponent is positive.

6 A Neyman-Pearson Type Setting

Consider the following problem: There are two possible signals (or sources) and the goal of an observer of a noise-

corrupted version of the true underlying signal is to reproduce the underlying clean signal with as high a fidelity as
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possible, while operating at a limited information rate R. Clearly, in general, for a given rate R, there is going to be

a tradeoff between the probability with which a reconstruction at a given fidelity level can be guaranteed under one

source, and the corresponding probability (for a possibly different distortion level) associated with the other source

(similarly to the analogous tradeoff in the hypothesis testing problem, cf. [ZG91, LM02] and references therein). Our

goal in this section is to characterize this tradeoff. The specialization of the setting considered here for the case where

there is no rate constraint (pure denoising) seems particularly well-suited to applications where estimation has to be

performed under uncertainty of signal presence. These problems are referred to in various parts of the literature as

simultaneous or joint detection and estimation, cf. [BI95] and the references therein.

Characterization of the tradeoff for our problem, as we show below, follows by an easy specialization of the

generic result of Theorem 1. We start with the simple-vs-simple case in subsection A, moving on to the composite-

vs-composite case in subsection B, where we combine ideas from the previous section as well.

A Simple vs. Simple

Consider the hypothesis testing setting where there are two possible noisy sources, but the goal of an observer, rather

than simply determining which of the two is active, is to come up with a reconstruction of the underlying noise-free

active source, while operating at a limited information rate R. More formally, the problem can be stated as follows:

Let θ(1), θ(2) be two noisy sources. Suppose λ, d1, d2, R ≥ 0 are given and consider the following problem:

Minimize Pθ(2)

(
ρ(Xn, X̂n(Zn)) > d2

)
(62)

over X̂n(·) ∈ Sn(R) subject to

Pθ(1)

(
ρ(Xn, X̂n(Zn)) > d1

)
≤ e−nλ. (63)

Let Gn(d1, d2, λ,R) denote the value of the minimum in (62). Clearly, lim inf − 1
n log Gn(d1, d2, λ,R) ≥ α if {λ, α} is

achievable at rate R for distortion levels {d1, d2} (the family of sources here being Θ = {θ(1), θ(2)}). On the other

hand, if {λ, α} is not achievable at rate R for distortion levels {d1, d2} then lim sup− 1
n log Gn(d1, d2, λ,R) ≤ α.

Hence, assuming existence of limit (justified, again, for all values of R except, possibly, a countable set of values)

A(d1, d2, λ,R)
�
= lim

n→∞− 1
n

log Gn(d1, d2, λ,R)

= sup {α : {λ, α} is achievable at rate R for distortion levels {d1, d2} }
= sup {α : Hypothesis 1 holds for {λ, α}, {d1, d2} at rate R} (64)

= max


{WP } : maxP∈M(Z) I(P ;WP ) ≤ R,

minP∈M(Z)

[
D(P‖θ(1)

Z ) + F (θ(1)
X|Z , P × WP , d1)

]
≥ λ




min
P∈M(Z)

[
D(P‖θ(2)

Z ) + F (θ(2)
X|Z , P × WP , d2)

]
,

where equality (64) follows from Theorem 1, and the last equality by writing out Hypothesis 1 explicitly. Note

that the (sequence of) scheme(s) induced by the {WP } attaining the max in the last line is the (asymptotically)

optimal one. Note also the particularly simple characterization obtained for the pure denoising problem with no rate
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constraint: The optimal denoising exponent achievable under θ(2) for distortion level d2, subject to a requirement

that the “first-kind” exponent for distortion level d1 be at least λ is given by

max
{WP }:minP∈M(Z)

[
D(P‖θ

(1)
Z )+F (θ

(1)
X|Z ,P×WP ,d1)

]
≥λ

min
P∈M(Z)

[
D(P‖θ(2)

Z ) + F (θ(2)
X|Z , P × WP , d2)

]
. (65)

Appendix A contains a more explicit evaluation of A(d1, d2, λ,R) for a binary setting in which under one source

(hypothesis) the observation is pure noise, while under the other, the observation is a noise-free signal.

B Composite vs. Composite

Let Θ1,Θ2 be given subsets of M(X × Z). Let further {λ(1)
θ1

}θ1∈Θ1 , {λ(2)
θ2

}θ2∈Θ2 , {d(1)
θ1

}θ1∈Θ1 , {d(2)
θ2

}θ2∈Θ2 be given

families of non-negative reals and consider the following analogue of the composite hypothesis testing problem:

Minimize max
θ2∈Θ2

Pθ2

(
ρ(Xn, X̂n(Zn)) > d

(2)
θ2

)
e
−nλ

(2)
θ2

(66)

over X̂n(·) ∈ Sn(R) subject to

Pθ1

(
ρ(Xn, X̂n(Zn)) > d

(1)
θ1

)
≤ e−nλ

(1)
θ1 , ∀θ1 ∈ Θ1. (67)

Note that this is the most general possible formulation, as we are allowing the constraint on the error of the “first

kind” in (67) to be distribution-dependent (i.e., dependent on θ1 ∈ Θ1) and we seek to minimize a “competitive”

version of the error of the “second kind” (i.e., performance under Pθ2 is weighted by e−nλ
(2)
θ2 ). As far as the formulation

involving the latter goes, its relevance for this setting, along with guidelines for plausible choices of {λ(2)
θ2

} and {d(2)
θ2

},
derive from argumentation similar to that in Section 5 (which, in turn, was based on the competitive minimax

approach of [FM02]). As for the merit in allowing the constraint on the exponential rate in (67) to be θ1-dependent,

this was a central theme in the recent work [LM02], where such an approach was proposed and motivated for the

composite hypothesis testing problem. The motivation for this approach, as well as guidelines for the choice of a

plausible {λ(1)
θ1

}, carry over from [LM02] to our setting (and will, therefore, not be elaborated on here). The bottom

line is that the constraint on the exponent of the first kind in (67) should be allowed to depend on θ1 ∈ Θ1, for

reasons similar to those discussed in the context of the setting of Section 5. It should be noted, however, that there

is an essential difference between the hypothesis testing problem of [LM02] and the one considered here: while in

the former there existed a scheme complying with the constraint on the error of the first kind which was uniformly

optimal for all θ2 ∈ Θ2, in our setting this of course will, in general, no longer be the case, which is why the minimax

criterion in (66) arises naturally. We now turn to an explicit (single-letter) characterization of the problem in (66) -

(67), and the optimal scheme for it.

Letting Jn

(
{d(1)

θ1
}, {d(2)

θ2
}, {λ(1)

θ1
}, {λ(2)

θ2
}, R

)
denote the value of the minimum in (66), it is clear that

lim inf − 1
n

log Jn

(
{d(1)

θ1
}, {d(2)

θ2
}, {λ(1)

θ1
}, {λ(2)

θ2
}, R

)
≥ α

if {λ(1)
θ1

}∪{λ(2)
θ2

+α} is achievable at rate R for distortion levels {d(1)
θ1

}∪{d(2)
θ2

}, the family of sources here being Θ = Θ1∪
Θ2. Conversely, when these exponential levels are not achievable, lim sup− 1

n log Jn

(
{d(1)

θ1
}, {d(2)

θ2
}, {λ(1)

θ1
}, {λ(2)

θ2
}, R

)
≤
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α. Hence,

lim
n→∞− 1

n
log Jn

(
{d(1)

θ1
}, {d(2)

θ2
}, {λ(1)

θ1
}, {λ(2)

θ2
}, R

)
= sup

{
α : {λ(1)

θ1
} ∪ {λ(2)

θ2
+ α} is achievable at rate R for distortion levels {d(1)

θ1
} ∪ {d(2)

θ2
}

}
= sup

{
α : Hypothesis 1 holds for {λ(1)

θ1
} ∪ {λ(2)

θ2
+ α}, {d(1)

θ1
} ∪ {d(2)

θ2
} at rate R

}
(68)

= max min
 P ∈ M(Z),

θ(2) ∈ Θ2




[
D(P‖θ(2)

Z ) + F (θ(2)
X|Z , P × WP , d2) − λ

(2)

θ(2)

]
, (69)

where (68) follows from Theorem 1 and the maximum in (69) is taken over {WP } satisfying

max
P∈M(Z)

I(P ;WP ) ≤ R, min
 P ∈ M(Z),

θ(1) ∈ Θ1




[
D(P‖θ(1)

Z ) + F (θ(1)
X|Z , P × WP , d1) − λ

(1)

θ(1)

]
≥ 0.

As in previous derivations, the optimal scheme is that induced by the {WP } attaining the maximum in (69).

7 Finite Θ with Distinct Noisy Marginals is Universally Encodable in
the Error-Exponent Sense

Let Θ be a finite set such that for all θ, θ′ ∈ Θ, θZ = θ′Z implies θ = θ′. In other words, each distribution in Θ

is completely determined by its noisy marginal. The results in [DW02a] can easily be shown to imply12 that such

a Θ is universally encodable in the expectation sense, i.e., for any rate R there exists a sequence of schemes with

expected distortions asymptotically attaining D(θ,R), uniformly for all sources θ ∈ Θ. This can be qualitatively

understood through the fact that by observing the noisy observation sequence for sufficiently long, the Z-marginal

of the source can be acquired arbitrarily precisely and reliably, thereby enabling identification of the active source.

In this section we establish the stronger fact that such a Θ is universally encodable in the exponential sense, i.e.,

that there exists a sequence of schemes attaining the optimal (distribution dependent) exponent, I(θ,R, dθ), for all

sources in Θ, when the family of distortion levels {dθ} = {D(θ,R)+η} and η > 0 is sufficiently small. Intuitively, the

explanation for why this is true is the following: Since there is only a finite number of distinct noisy marginals, there

exists an r > 0 such that the Kullback-Leibler “ball” of radius r around each noisy marginal does not contain any

other of the noisy marginals. Thus, considering the conceptually simple scheme which looks at the empirical type

of the noisy observation and operates optimally for the source whose noisy marginal is closest to the observed type

under Kullback-Leibler distance, it is not hard to see that an exponent associated with the probability for correct

identification of the active source of at least r > 0 is attainable uniformly for all sources in the class. Thus, when the

exponent associated with the optimal distribution-dependent scheme for each source is less than r, the identifiability

issue is not the bottleneck and universally exponentially optimal performance is attainable. We make this precise in

what follows.
12This fact can be straightforwardly established based on first principles, without relying on the results of [DW02a].
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For M = |Θ|, without loss of generality, let Θ = {θ(j)}M
j=1. Define i : M(Z) → {1, . . . , M} by

i(P ) = arg min
1≤i≤M

D(P‖θ(i)
Z ), (70)

resolving ties arbitrarily. In words, i(P ) gives the index of the P -nearest neighbor in {θ(j)
Z }M

j=1 under Kullback-Leibler

distance . Let further, for 1 ≤ j ≤ M ,

rj(Θ) = min
P∈M(Z):i(P ) �=j

D(P‖θ(j)
Z ) (71)

be the radius of the largest “divergence - ball” around θ
(j)
Z containing solely points P with i(P ) = j. Finally, define

r(Θ) = min1≤j≤M rj(Θ) and note that r(Θ) > 0 since, by our assumption on Θ, the members of {θ(j)
Z }M

j=1 are

unique (and M < ∞). Note that r(Θ) can be thought of as a “packing radius” of the sources {θ(j)
Z } in the M(Z)

simplex under Kullback-Leibler distance. In the following corollary to Theorem 1, {dθ}θ∈Θ is assumed to be any set

of non-negative distortion levels and I(θ,R, dθ) is the optimal error exponent of the source θ, as defined in (48).

Corollary 4 The exponential levels {min{I(θ,R, dθ), r(Θ)}}θ∈Θ are achievable at rate R for distortion levels {dθ}θ∈Θ.

Specifically, for any ε > 0 there exists an n and a block code of length n and rate ≤ R + ε, X̂n(·), satisfying

− 1
n

log Pθ

(
ρ(Xn, X̂n(Zn)) > dθ

)
≥ min{I(θ,R, dθ), r(Θ)} − ε ∀θ ∈ Θ. (72)

Proof of Corollary 4 will be shortly given below. Note that, in particular, Corollary 4 implies that a positive exponent

is universally achievable for all sources in Θ whenever the optimal source-dependent exponent, I(θ,R, dθ), is positive

for all θ ∈ Θ. Thus, assuming I(θ,R, ·) is continuous at D(θ,R), we know that13 I(θ,R,D(θ,R)) = 0 and, therefore,

I(θ,R,D(θ,R) + η) ≤ r(Θ) for all θ ∈ Θ when η > 0 is sufficiently small. We thus have the following corollary to

Corollary 4.

Corollary 5 The family Θ is (R, {D(θ,R) + η})-universally encodable for η > 0 sufficiently small. More explicitly,

for any ε > 0 there exists an n and a block code of length n and rate ≤ R + ε, X̂n(·), satisfying

− 1
n

log Pθ

(
ρ(Xn, X̂n(Zn)) > D(θ,R) + η

)
≥ I(θ,R,D(θ,R) + η) − ε ∀θ ∈ Θ. (73)

Proof of Corollary 4: Fix ε > 0 and, for 1 ≤ j ≤ M , let {W (j)
P } denote an ε-achiever of I(θ(j), R, dθ(i)), i.e.,

min
P

[
D(P‖θ(j)

Z ) + F (θ(j)
X|Z , P × W

(j)
P , dθ(j))

]
≥ I(θ(j), R, dθ(j)) − ε, and max

P
I(P ;W (j)

P ) ≤ R. (74)

Note that this is possible by the definition (cf. equation (48)) of I(θ,R, d). Construct now {W ∗
P } by letting, for each

P , W ∗
P = W

(i(P ))
P . Thus, clearly, maxP I(P ;W ∗

P ) ≤ R and, for each 1 ≤ j ≤ M ,

min
P

[
D(P‖θ(j)

Z ) + F (θ(j)
X|Z , P × W ∗

P , dθ)
]

= min
{

min
P :i(P )=j

[
D(P‖θ(j)

Z ) + F (θ(j)
X|Z , P × W ∗

P , dθ)
]
, min
P :i(P ) �=j

[
D(P‖θ(j)

Z ) + F (θ(j)
X|Z , P × W ∗

P , dθ)
]}

13To see this from an operational consideration, note that it follows from the converse to noisy source coding that I(θ, R, dθ) = 0 for
dθ < D(θ, R). This fact was also verified technically through the explicit form of I(θ, R, dθ) in [WM02b, Subsection 3.D.2].
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≥ min
{

min
P :i(P )=j

[
D(P‖θ(j)

Z ) + F (θ(j)
X|Z , P × W

(j)
P , dθ)

]
, min
P :i(P ) �=j

D(P‖θ(j)
Z )

}

≥ min
{

min
P

[
D(P‖θ(j)

Z ) + F (θ(j)
X|Z , P × W

(j)
P , dθ)

]
, rj(Θ)

}
≥ min

{
I(θ(j), R, dθ(j)), rj(Θ)

}
− ε

≥ min
{

I(θ(j), R, dθ(j)), r(Θ)
}
− ε, (75)

the inequality before last owing to (74). It follows that for arbitrary ε > 0, {min{I(θ,R, dθ), r(Θ)} − ε}θ∈Θ, R,

{dθ}θ∈Θ jointly satisfy Hypothesis 1 which, by the direct part of Theorem 1, implies the existence of a block code of

rate arbitrarily close to R satisfying (72). �

Note that in this short proof, we have directly applied Theorem 1, avoiding the need for an explicit construction of

the “two-part”, plug-in, scheme described above14.

8 Summary, Conclusions, and a related Future Direction

In this work we have characterized the “achievable region” for error exponents in universal noisy source coding. Our

principle result, Theorem 1, gives a “single-letter” necessary and sufficient condition for a family of exponential levels

to be achievable at a certain rate, for certain distortion levels, for a given family of sources. It was later illustrated

how this principle result can be applied to characterize optimal performance in various noisy source coding settings.

It should be pointed out that the noisy source coding settings considered in the sections following Section 3

are not the only conceivable ones. Many other variations are possible. The treatment of those canonical settings,

however, should be enough to convince the reader that any other setting involving exponents for noisy source coding

when there is more than one possible source can be similarly dealt with by a suitable application of Theorem 1.

Finally, we remark that an extension of the competitive minimax approach of [FM02] to the question of universally

attainable error exponents need not be restricted to the noisy source coding setting considered in this work. For

example, it can be applied also to the setting of the compound channel [CK81, Definition 5.9]. Indeed, letting W
denote a family of channels, the traditional quantity of interest (cf. also [LT98]) is the maximum probability of error of

a channel code represented by the encoder-decoder pair (f, φ), defined as e(W, f, φ) = supW∈W e(W, f, φ). It would

seem that a plausible alternative is to look at the competitive minimax analogue: supW∈W
e(W,f,φ)
e∗(W ) , e∗(W ) denoting

the optimal error exponent of the channel W (at the specific rate, assumed given and suppressed in the notation).

This would be a less pessimistic formulation, incorporating the approach that the better the active channel is, the

better the target performance should be. Variants of the form supW∈W
e(W,f,φ)
[e∗(W )]ξ

may also be possible, with guidelines

for the optimal choice of ξ following reasoning similar to that in [FM02] and in the present work. Note that at rate

regions and channels for which the channel-dependent optimal error exponents are not entirely known, the e∗(W ) in

the denominator can be replaced by available lower and upper bounds (according to the point of view). It would be

interesting to explore this setting and its effect on the optimal (w.r.t. this new criterion) channel code.

14Although this result is probably most naturally understood by considering the conceptually simple plug-in approach described earlier.
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Appendix

A Pure Noise vs. Pure Signal

We dedicate this appendix to an illustration of a simple setting to which our results apply and where a semi-explicit

formula for the achievable exponents can be obtained. We look at the special instance of the simple “hypothesis

testing” setting of Subsection 6.A for the case of “Pure Noise vs. Pure Signal”. The framework we propose seems

particularly relevant for this case as the issue here is to determine whether the observation contains a signal or not,

and to come up with a reconstruction in case a signal is present.

Let θ(1) denote the all-zero source corrupted by a BSC(δ) (“pure noise”), θ(2) denote the noise-free Bernoulli(π)

source (“pure signal”), and ρ denote Hamming loss. So that

θ
(1)
Z = Bernoulli(δ), θ(2)

Z = Bernoulli(π), θ
(1)
X|Z(0|i) = 1, θ

(2)
X|Z(i|i) = 1, i = 0, 1.

For Q ∈ M+(Z × X̂ ) and i = 0, 1, it is easy to see that

D(V ‖θ(i)
X|Z |Q) =

{
0 if V = θ

(i)
X|Z

∞ otherwise.
(A.1)

Hence,

F (θ(1)
X|Z , Q, d) =

{
0 if PrQ(X̂ = 1) > d
∞ otherwise

(A.2)

and

F (θ(2)
X|Z , Q, d) =

{
0 if PrQ(X̂ �= Z) > d
∞ otherwise.

(A.3)

Thus, evaluating (64) for this case,

A(d1, d2, λ,R)

= max


{WP } : maxP∈M(Z) I(P ;WP ) ≤ R,

minP∈M(Z)

[
D(P‖θ(1)

Z ) + F (θ(1)
X|Z , P × WP , d1)

]
≥ λ




min
P∈M(Z)

[
D(P‖θ(2)

Z ) + F (θ(2)
X|Z , P × WP , d2)

]

= max


{WP } : maxP∈M(Z) I(P ;WP ) ≤ R,

P × WP (X̂ = 1) ≤ d1 ∀P : D(P‖θ(1)
Z ) < λ




min
P :P×WP (X̂ �=Z)>d2

D(P‖θ(2)
Z ) (A.4)

= max
 {Wp}0≤p≤1 : max0≤p≤1 I(p;Wp) ≤ R,

(1 − p)Wp(1|0) + pWp(1|1) ≤ d1 ∀p : D(p‖δ) < λ




min
p:(1−p)Wp(1|0)+p(1−Wp(1|1))>d2

D(p‖π), (A.5)

where D(p‖π) = p log(p/π)+(1−p) log((1−p)/(1−π)), I(p;Wp) denotes mutual information between a Bernoulli(p)

random variable and its output from the channel Wp. Note that each Wp here is characterized by the two parameters

0 ≤ Wp(1|0) ≤ 1 and 0 ≤ Wp(1|1) ≤ 1, so that for specific numerical values of R, d1, d2 the variational problem in

(A.5) is easily solved numerically. Moreover, from the optimizing {Wp} it is easy to construct the optimal (sequence

of) schemes.
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