

Making Software Agent Technology
available to Enterprise Applications

Dick Cowan, Martin Griss
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-211
July 26th , 2002*

E-mail: d ick_cowan@hp.com, martin_griss@hp.com

applications,
application server,
agents, J2EE,
JADE

Software agents provide the technology necessary to dynamically
negotiate, select, and utilize the appropriate services required in
today’s highly dynamic business world. In this paper, we describe
our research into combining an agent platform with a J2EE
application server to enable the use of software agents in enterprise
applications. This provides the necessary first step of integrating
agent technology with other mainstream web server, application
server, DB, communication and security technologies, to produce a
scalable, robust platform for intelligent applications of various
kinds.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Making Software Agent Technology available to
Enterprise Applications

Dick Cowan
Hewlett-Packard Labs
1501 Page Mill Road

Palo Alto, CA 94304 USA
01-650 857-8038

dick_cowan@hp.com

Martin Griss
Hewlett-Packard Labs
1501 Page Mill Road

Palo Alto, CA 94304 USA
01-650 857-8715

martin_griss@hp.com

ABSTRACT
Software agents provide the technology necessary to dynamically
negotiate, select, and utilize the appropriate services required in
today’s highly dynamic business world. In this paper, we describe
our research into combining an agent platform with a J2EE
application server to enable the use of software agents in
enterprise applications. This provides the necessary first step of
integrating agent technology with other mainstream web server,
application server, DB, communication and security technologies,
to produce a scalable, robust platform for intelligent applications
of various kinds.

Categories and Subject Descriptors
D.4 [Operating Systems] – Application Servers
I.2.11[Distributed Artificial Intelligence]: multiagent systems

General Terms
Management, Performance, Design, Reliability, Experimentation,
Standardization.

Keywords
Applications, application server, J2EE, JADE

1. INTRODUCTION
We will provide an overview of our work to make the JADE [1]
agent platform become a managed service under a J2EE [2]
application server. We used HP’s application server (HPAS
version 8.0)[3] for the following reasons:

• As stated on the HP-AS web site [3]:

HP-AS was built, "from the ground up," on a
completely standards-based, modular architecture and
provides developers with the unprecedented ability to
"pick-and-choose" only the specific services they want
or need. This allows a software developer to leverage
the knowledge and effort of experienced developers
and/or avoid recreating components to common
software design requirements. HP-AS provides the core
set of services that service-based applications require,
including naming and directory, management, logging,
and security services.

• It is freely downloadable [3], making it easily accessible
to the agent development community.

We use the term BlueJADE to refer to the combination of HP-AS
(formerly known as Bluestone Application Server) with the JADE
agent platform.

Although FIPA [4] standards addressed agent to agent
communication and agent hosting environments, no agent
platform implementation to date has reached the quality of
commercial software applications, and in particular one of the key
obstacles to the widespread deployment of agent technology is the
relative immaturity of agents in regard to scalability, federation,
persistence, transactions, security, deployment lifecycle,
management, and integration with legacy systems or existing
systems. These features are crucial to provide robust, reliable
agent-based intelligent applications. Current systems leave the
agent developer with a lot of work to do when building a real
application, and this often is not done well, if at all. Such
industrialization work is essential for any deployed application.

2. PLATFORM INDUSTRIALIZATION
Agent platforms have traditionally looked at themselves as the
complete support system in which agents do their work. Although
this works for simple agents, developers are left without a
portable solution when it came to interacting with traditional web
services or appliances. As shown in Figure 1, an agent platform
should correctly be viewed as simply one of many services
offered to the enterprise application developer.

Figure 1. Showing the JADE service within HP-AS

By "management" we include a number of typical system,
application and service configuration, monitoring and control
actions, such as: a) detecting and restarting a faulty element; b)
detecting load conditions and adjusting resources or moving an
element to another processor; c) restarting an element when its
configuration changes; d) collecting information on the normal
and abnormal client and resource state, statistics and usage of
each component; and e) element lifecycle monitoring and control.
By "element" here we mean a single agent, a related group of
agents, an agent container1, a complete agent platform, or even a
set of agent platforms on multiple machines with associated other
software.

In order to do this, we must provide a "standard" API that such
management systems can access. As an example, one might also
consider SNMP, J2EE management beans [5] or the DMTF
WBEM and CIM [6].2 A companion project is using an SNMP
compatible Agent MIB to allow HP OpenView to manage JADE
agents and platforms [15].

3. Specifications of the Agent Hosting Service
To develop an agent hosting service that can be managed there are
two primary components that we consider:

3.1 Agent facing
Although we are currently using JADE, if possible we wanted the
work done on this side to be as applicable as possible to other
(FIPA-compliant) agent implementations. As such, we wanted to
limit our view of the underlying agent system to just those
interfaces exposed by a package we could influence. For the
JADE effort this package is named jade.wrapper. We envision
that as agent systems increase in popularity that some of the
interfaces defined in this package would move into a standards
body (such as FIPA or JAS) and become standard interfaces that
agent platform builders would implement and on which agent
application builders could rely. They would then become part of
some neutrally named package. We also recognized that our
requested changes would need to done in a manner that permitted
the agent platform to function as a stand-alone entity with no
dependencies on any particular server or framework.

3.2 Server facing
This component is the one seen by the software that desires to
manage and host the agent platform. To enhance the applicability
of this component to different agent platform implementations, the
classes in this component should restrict their view of the
underlying agent system to just those interfaces and/or classes
defined in the first component.

4. Agent Facing Implementation
For the JADE implementation, we added our classes to the
package jade.wrapper as it already had classes there to control an

1 By Agent container here, we mean some sort of agent or element
grouping capability, such as the JADE container or J2EE
container [2].

2 At this point, it appears that the JAS [7] Version 1.12
specification does not address management in this broader
sense, but may have some interfaces that might influence a
future iteration of our design.

agent as well as their containers. Our work started in the summer
of 2001 using JADE version 2.2. Working closely with the JADE
developers we contributed our work, in open source form, to
them. These enhancements are now part of version 2.5. In this
section we describe the classes we modified or added to this
package.

An agent management service must provide the ability to manage
at least two entities: the agent platform and individual agents. It is
desirable to implement platform management in a manner that
(optionally) hides individual implementations, such as JADE’s
containers or agent groups.

The interfaces PlatformController and AgentController define
methods used to control the platform or individual agents. These
interfaces are implementation neutral. The exception
ControllerException is thrown by methods of both interfaces.
The class PlatformEvent is used to notify platform listeners of
platform events.

4.1 State Related Classes
Both the agent platform and individual agents have life cycles and
hence specific states. Although JADE’s core.Agent class defines
life cycle states, to adhere to implementation neutrality we
introduced state classes to the wrapper package and then let the
JADE specific implementation of our agent controller map
between our generic states and theirs.

4.2 Agent Management Services
The interface AgentController defines the following methods for
agent management:

• getName – Get agent name.

• start – Start agent.

• suspend – Suspend agent.

• activate – Resume following suspend.

• kill – Terminate the agent.

• getState – Get the agent’s state.

The exception ControllerException may be thrown by the above
methods. Platform specific exceptions (like JADE's
StaleProxyException) would be caught and re-thrown as a
ControllerException by the class implementing
AgentController. This is very similar to JasException proposed
by JAS [7].

The class Agent in the JAPE’s wrapper package serves as a
management proxy to an actual agent and provides a JADE
specific implementation of AgentController.

4.3 Platform Management Services
The interface PlatformController defines the following methods
for platform management:

• getName – Get platform name.

• start – Start platform.

• suspend – Suspend platform.

• resume – Resume following suspend.

• kill – Terminate the platform.

• getState- Get the platform’s state.

• addPlatformListener – Add an event listener.

• removePlatformListener – Remove a listener.

Platform listeners implement the following methods, all of which
have a PlatformEvent argument containing details of the specific
event.

• bornAgent – An agent was born.

• deadAgent – An agent died.

• startedPlatform – The platform was started.

• suspendedPlatform – The platform was suspended.

• resumedPlatform – The platform was resumed.

• killedPlatform – The platform was killed.

The class AgentContainer in JADE’s wrapper package provides
a JADE specific implementation of PlatformController.

5. Server Facing Implementation
To create a service to run under HP-AS as well as package
everything in a manner suitable for external distribution, we have
created a stand-alone tree containing documentation, all source
core, and two sample applications.

5.1 Service Implementation
The service implementation consists of the following components:

1. JADEService.java – Every service requires an interface
and implementation. This provides the interface for the
service.

2. JADEServiceImpl.java – The implementation of the
service. This class uses the agent facing code described
earlier.

3. Logger.java – Capture System.out and System.err
output and place it into HP-AS’s log with date, time,
thread name, and message type header.

4. JADEServiceImpl.mbean – Defines those methods that
may be managed through any JMX [8] browser.

5. JADEServiceImpl.properties – Provides properties
about this service.

To activate the service requires the addition of a description of the
JADE service to be added to HP-AS’s XML deployment
definition file. This description assigns the service a name,
provides the fully qualified class name of the class that
implements this service, and specifies the name of its
configuration file. It is in this latter XML configuration file that
one specifies arguments to the service, arguments to JADE, and
defines the collection of agents to be started along with their
arguments.

Using this XML configuration file has provided a simple and
extensible solution for defining properties of individual agents.
The first boolean valued property we defined is used to indicate if
the agent should be automatically restarted should it abnormally
terminate. The second is to indicate if the agent requires a GUI
and to not start it if no display console is available (as would be
the case when starting HP-AS without a GUI). Another attribute
we have discussed is one to control how many instances of a
particular agent to start. Clearly there are other interesting
attributes that can be defined and used to control agents and the
platform.

5.2 Demonstration Applications
As part of the distributed package we have included two simple
applications that demonstrate agent control and communication
between JSPs and agents.

5.2.1 DemoAgent
Contains two simple agents which exchange messages. The
sender agent sends a QUERY-REF message to the receiver agent
every 10 seconds. The receiver agent responds with an INFORM
message with the same message content as it received. This
repeats indefinitely. JADE’s RMA agent is also started from
which their Sniffer can be run to view the individual message
exchanges. This application also makes available two JSPs that
may be invoked from any browser. The first JSP will send a
message to the receiver agent (via a socket bridge agent) and
display the response message. The second JSP creates another
sender agent instance that also sends to the existing receiver.

5.2.2 Agentcities
Starts a single Ping agent that will communicate with other agents
over an HTTP transport protocol. This application provides the
functionality necessary to launch a new Agentcities [10] site. In
addition the URL http://localhost:9090/agentcities will cause HP-
AS to present a simple form that allows one to send an Agentcities
information request to an Agentcities node and display the
response.

6. Other Platforms
Clearly there are other agent platforms as well as J2EE application
servers and what was we have done could be redone with other
combinations. We are currently looking into a port to the open
source J2EE server JBoss [11]. It is our hope that agent and agent
platform management will be addressed by FIPA such that
minimal lifecycle management would be defined in a consistent
manner. Attempting to add management to an existing
implementation presents many interesting challenges. Considering
the different agent-hosting environments (J2ME/CLDC to J2EE)
[12] and using the terminology of the FIPA Abstract Architecture
Specification [13], one would say, “an agent may be
manageable”. This could be done by having an agent return its
management interface (which could be null) or to always create
agents with a platform factory method which would return agents
with appropriate management functionality for their hosting
platform.

For Java based implementations JMX [8] would be the obvious
standard to follow. By initially thinking of the fundamental
components as managed beans (MBeans), the complete system
becomes very easily managed.

7. Status and Next Steps
We have an initial working implementation of BlueJADE running
on a collection of machines under Windows NT, Windows 2K,
and Linux. Using the standard HP-AS control mechanisms we can
start and stop the JADE agent platform as well as individual
agents. We can also demonstrate automatic agent restart and
platform reconfiguration – whereby if you modify the XML file
defining the active agent population the changes will impact what
is actually running in the agent platform.

At the time of this writing one can manage a JADE main
container and agents in it. The JADE extensions to enable
management of an agent container (vs. a main container) are still

http://localhost:9090/agentcities

pending. In typical usage with HP-AS one would usually create
and manage a JADE main container anyway. We are now using
this work to support four in-house sandbox systems on which we
run the assortment of services and agents used daily by
researchers in our group [9]. It is also supporting our four
Agentcities sites [14] with others under construction. We have
packaged BlueJADE in a form permitting simple distribution and
installation by other interested parties and are currently working
with a few selected organizations3.

We encourage wider usage, and contributions from the agent
community in this important area of agent industrialization. Here
are a few open questions for future work:

• Agent restart likely needs some form of "exponential
backoff" whereby should the agent fail on a subsequent
restart the time to its next attempted restart is increased.

• What is the best way to load balance agents? Can agents
be forcibly moved to benefit load balancing?

• How should agent persistence be handled so as to
integrate well with data base services?

• What is the relationship between an agent and a JSP?

• When an agent needs to act on your behalf and interact
with legacy systems requiring password access how
should that be done so as not to compromise security?

8. ACKNOWLEDGMENTS
We thank David Bell, an original member of the team, for his
effort in starting this work. We would also like to thank Kevin
Smathers (HP Labs) for all his help with our Linux testing
environment and Michael Li (HP Corp Infrastructure) for the
BlueJADE trail map, and proposing some of our next step
activities. We also appreciate the efforts by members of our
Bluestone middleware division for answering questions
concerning HP-AS and its components. Finally, we would like to
acknowledge Fabio Bellifemine (Telecom Italia Lab) and other
members of the JADE team for working with us to help shape and
implement the modifications to JADE.

9. REFERENCES
[1] Fabio Bellifemine, Agostino Poggi and Giovanni

Rimassi, "JADE: A FIPA-Compliant agent
framework", Proc. Practical Applications of Intelligent
Agents and Multi-Agents, April 1999, pg 97-108 (See
http://sharon.cselt.it/projects/jade for latest information)

[2] J2EE information and specifications.
http://java.sun.com/j2ee/

[3] HP-AS information and download.
http://www.bluestone.com/products/hp-as/default.htm

[4] FIPA: Foundation for Intelligent Physical Agents, see
http://www.fipa.org , and P.D. O’Brien and R. Nicol,

3 This work is being done by our research group [9] to better
understand the many important issues relating to agent usage by
J2EE applications and should not be interpreted as any future
product plans or commitments on the part of HP.

"FIPA: Towards a standard for intelligent agents." BT
Technical Journal, 16(3), 1998.

[5] J2EE Management Beans (JMX)
http://java.sun.com/products/JavaManagement/wp/

[6] WBEM/CIM. See http://jcp.org/jsr/detail/48.jsp

[7] Java Agent Services Specification, version 1.0.
http://www.java-agent.org/Documents/documents.html

[8] Java Management Extensions
http://java.sun.com/products/JavaManagement/

[9] Agents for Mobility department:
http://www.hpl.hp.com/org/stl/maas/index.html

[10] Agentcities: http://www.agentcities.net/

[11] JBoss J2EE server. See http://www.jboss.org/

[12] J2ME/CLDC See http://java.sun.com/products/cldc/

[13] FIPA Abstract Architecture Specification
http://www.fipa.org/specs/fipa00001/

[14] Salt Lake City, UT. See:
http://agentcities.cs.utah.edu/agentcities/
Palo Alto, CA. See:
http://mml.hpl.hp.com/agentcities/palo-alto/
Honolulu, HI. See:
http://ewasx.hpl.external.hp.com/agentcities/
Miami, FL. See:
http://huphu.hpl.external.hp.com/agentcities/

[15] Brian Remick and Robert Kessler, “Managing Agent
Platforms with AgentSNMP,” CS dept, U of Utah,
April 2002. Submitted to this workshop.

http://sharon.cselt.it/projects/jade
http://java.sun.com/j2ee/
http://www.bluestone.com/products/hpas/default.htm
http://www.fipa.org
http://java.sun.com/products/JavaManagement/wp/
http://jcp.org/jsr/detail/48.jsp
http://www.javaagent.org/Documents/documents.html
http://java.sun.com/products/JavaManagement/
http://www.hpl.hp.com/org/stl/maas/index.html
http://www.agentcities.net/
http://www.jboss.org/
http://java.sun.com/products/cldc/
http://www.fipa.org/specs/fipa00001/
http://agentcities.cs.utah.edu/agentcities/
http://mml.hpl.hp.com/agentcities/paloalto/
http://ewasx.hpl.external.hp.com/agentcities/
http://huphu.hpl.external.hp.com/agentcities/

