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Abstract 
 
We propose a transcoding-enabled streaming media caching system (TeC) along with a new set of caching strategies. Our 
system is designed for efficient delivery of rich media web contents to heterogeneous network environments and client 
capabilities. The proxies perform transcoding as well as caching in our system. This design choice allows content adaptation 
to be performed at the edges of the networks. Depending on the connection speed and processing capability of an end user, 
the proxy transcodes the requested (and possibly cached) video into an appropriate format and delivers it to the user. By 
serving the transcoded video directly from the proxy, we improve the cache performance. Performance evaluation via 
simulation is presented. Specifically, simulations using both synthesized traces and real traces derived from enterprise media 
server logs are conducted. Simulation results indicate that by incorporating transcoding capability at the network edges, the 
traffic to the content origin server is further reduced.  
 
Keywords:  proxy caching, streaming media caching, video transcoding. 
 
 
1 Introduction 
 
Delivery of streaming media contents over the Internet is a challenge; encoding, delivery, caching, and processing are far 
more difficult than those of simple web objects. For example, when CNN.com posts a news video clip on its Web server, it 
first encodes the news clip at several different bit-rates (28-56 Kbps for dial-up connections and 150-plus Kbps for broadband 
networks [8]) to satisfy users with different network connection speeds. In addition, the prosperity of wireless network brings 
more heterogeneous client devices (e.g., laptops, PDAs, palm pilots, cell phones, etc.). Traditional caching system treats each 
client request equally and independently. Usually, popular items are cached at a proxy close to the end user and therefore, it 
reduces the traffic between the content origin and proxies as well as the user perceived startup latency. However, various 
different bit-rate versions of the same video clip may be cached at the proxy at one instance, which can be a waste of storage. 
 
Our solution is to enable the caching proxy with the transcoding ability so that variants of a video object can be delivered by 
transcoding the cached content to the appropriate format, instead of accessing the object all the way from the content origin. 
This approach puts transcoding units in the content delivery path. Putting computing resources in the content delivery path 
has been addressed in [2] and [14]. The network intermediaries perform dynamic content adaptation in this approach. One of 
the advantages of having transcoding-enabled proxy is that the content origin servers need not generate different bit-rate 
videos. Moreover, heterogeneous clients with various network conditions will receive videos that are suited for their 
capabilities, as content adaptation is easily done at the network edges.  
 
We investigate the possibility of using computing resource to trade off caching storage; therefore further improving the 
responsiveness for media-rich Web access. One may argue that storage is cheap these days and saving storage is not 
necessary. This is partially true. Moreover, The processing capabilities have been advanced and the processors are cheap as 
well. In addition, because the video files are very large in size, we cannot assume the unlimited availability of storage. 
Focusing on streaming video delivery over the Internet, we use video transcoders at the caching proxies. Video transcoding 
itself is a computing intensive task. Many works target at improving the efficiency of the task. In [18], we transcode DVD 
video at high resolution to lower resolution in real time. The bit-rate is also reduced during the transcoding.  
 
For the delivery of multimedia content, many coding techniques have been developed to deal with heterogeneous network 
conditions and diverse client capabilities. Among these techniques, scalable coding, layered coding are the typical examples. 
These techniques are also included in some of the video coding standards such as MPEG-2 and MPEG-4. However, given the 
current distribution of multimedia objects on the Internet, majority if not all of the content is actually coded in non-scalable 
and single-layered format. We argue that using transcoding to adapt to the heterogeneous is a much more practical approach. 
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Given that the caching proxy is transcoding-enabled, new adaptive caching systems need to be developed for better 
utilization of the storage resource. This paper proposes a set of caching algorithms taking into account that variants of the 
same video object may exist in the system at any point of time. The variants are produced either a priori or on demand by the 
transcoder. The algorithm can choose to cache single or multiple variants of a video. The cached video version can be either 
from the origin server or generated by the transcoder. Transcoding can be used to trade off the origin server access. We 
evaluate our proposed TeC (Transcoding-enabled Caching) system using various experiments, including trace-driven 
simulation. A trace analysis on variants of a streaming video object in a corporate network environment is provided. Our 
results indicate that our system shows better caching performance than the traditional caching system with manageable 
computation load on the transcoder. 
 
The rest of the paper is organized as follows. In Section 2, we propose the system architecture of the transcoding-enabled 
caching proxy along with a set of caching algorithms specifically designed for TeC. Performance analysis and trace-driven 
simulation results are presented in Section 3. Specifically, simulations based on proxy traces derived from a real cooperate 
media server log and simulations based on synthesized traces are conducted. Related work is surveyed in Section 4 and we 
conclude in Section 5. 
 
 
2 Tracoding-enabled Caching 
 
2.1 System Architecture 
 
Proxy caches are often deployed at the edges of the network to reduce the traffic to and from the origin server and user 
perceived latency. We propose a transcoding enabled caching proxy that serves various bit-rate versions of video objects to 
the end users with different devices or connection profiles. Focusing on the video delivery, we illustrate the system 
architecture as following. 
 
Transcoding-enabled caching (TeC) proxy consists of the components as shown in Figure 1. The proxy acts as a client to the 
content server. A RTP/RTSP client is therefore built into the proxy to receive the streamed content from the origin server 
(uplink). The received stream is put into the incoming buffer. The transcoder continuously pulls bit streams from the 
incoming buffer and subsequently pushes the transcoded bits out to the outgoing buffer. The proxy decides to cache the 
content either from the incoming buffer or the outgoing buffer while it is being produced by the transcoder. Additionally, The 
proxy acts as a server to the end user. Therefore, a RTP/RTSP server is built to stream the video to the end user (downlink). 
The data in the outgoing buffer is obtained either from the transcoder or from the caching system.  
 
The size of the incoming buffer and the outgoing buffer can be small given that the transcoder processes the video data in a 
streamlined fashion. The speed of the process, i.e., the transcoding bit-rate, is defined as the number of bits the transcoder 
generates per second. As long as the transcoding bit-rate is larger than the minimum of the uplink and the downlink 
bandwidths, the transcoding process does not significantly increase the end-to-end delay. Nevertheless, video transcoding can 
be computing intensive. Many works are under investigation to reduce the workload of such a session. Among those, 
compressed domain based approach provides the best performance [18]. In compressed domain transcoding, the incoming 
video is only partially decompressed. Rate adapting is performed in the compressed domain while the motion information is 
reused. This approach considerably improves the speed over the conventional decoding-transcoding-recoding approach. 
While not in the scope of this paper, we assume the transcoder is capable of handling reasonable number of concurrent 
sessions in real time. This allows us to focus on the investigation of the caching benefits the collocated transcoder brings. 
 
Given the real time transcoding capability, the TeC proxies can dynamically transcode video objects to different variants to 
satisfy the end users in heterogeneous networks. Each variant is a version. If version x can be obtained by transcoding from 
version y, we call version y a transcodable version for x. Conversely, version x is the transcoded version of y. In video 
transcoding, a higher bit-rate version can be transcoded to a lower bit-rate version. For example, if a video at bit-rate of 64 
Kbps can be transcoded from the same video at bit-rate of 128 Kbps, the 128 Kbps version is a transcodable version for the 
one at 64 Kbps. Consequently, the 64 Kbps version is a transcoded version from the one at 128 Kbps. 
 
The transcoded version may have degradation in fidelity comparing with the original version. The TeC proxy can produce 
transcoded versions with 1 to (n-1) generation loss in fidelity, where n is the total number of possible versions. For video 
transcoding, this loss is negligible when bit-rate reduction is coupled with resolution reduction. For example, when a video 
clip with the CIF resolution (352×288) at bit-rate of 1 Mbps is to be delivered to a PDA type of client device with resolution 
at QCIF (176×144), the reduction in the resolution already reduces the bit-rate by a factor of approximately four.  
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Figure 1. System and components for transcoding-enabled caching proxy. 

 
Note that the variation in versions delivered to the end user is not transparent to the end user. Either the end user specifically 
asks for certain version of an object based on his/her awareness of his/her connection and display device, or agent software of 
the streaming client tells the proxy its connection and device capability parameters and the proxy then choose one version for 
the session. In addition, the TeC proxy is often at the edge of the network close to the end user, it is not meant for adapting to 
the bandwidth variation in up link. If there are packet losses in up link due to congestion, the TeC proxy can choose not to 
cache for the session. 
 
2.2 Caching Algorithms 
 
A TeC proxy trades off computation with storage. The main idea is to serve the end user with the appropriately transcoded 
version of the cached video whenever possible, depending on the network capacity and connection profile of the user. Let us 
assume that the origin server has n versions at bit-rates b1, b2, …, bn for each video object. The highest bit-rate version is b1 
and the lowest is bn, i.e., b1 > b2 >…> bn. When version bi is requested from the end user, and if there is version bj (bj > bi, 
i.e., bj is a transcodable version for bi) in cache, the TeC proxy transcodes bj to bi instead of fetching bi from the content 
origin. Therefore, it is a cache hit even though bi is not directly available from the cache. We define the following events in a 
TeC proxy:  
 
- Exact Hit, the requested version of the video object exists in the cache. 
- Transcode Hit, the requested version does not exist in the cache, but a transcodable version of the video does. 
- Miss, the requested or a transcodable version of the video does not exist in the cache. 
 
Note that when the origin server has only one bit-rate version of a video (possibly a high bit-rate) and a user with low-speed 
connectivity requests that object, our proxy transcodes the original video into an appropriate bit-rate object and stream it to 
the user. Hence, our system works well regardless of whether the content origin supports various bit-rate versions of the 
videos or not. We propose two types of caching algorithms that behave differently when each event occurs. 
 
2.2.1 Cache Single Version (TEC_11 and TEC_12) 
 
This algorithm allows at most one version of a video object to be cached at the proxy at any single time. By caching only one 
version, we store more video objects and utilize the storage space efficiently. The main challenge of this algorithm is 
deciding which bit-rate version of the video to cache.  
 
When an exact cache hit occurs, the TeC proxy refreshes the access record for the object and streams it to the end user. If a 
request leads to a cache miss, the TeC proxy fetches the video from the origin server, streams it to the end user and caches it. 
Remember that we consider each version of a video as an independent item; although a request is to a video that is cached, if 
the request has to be responded from the content origin (i.e., the end user requests a higher bit-rate version than the cached 
one), then it is considered a cache miss.  
 
In general, if the end user requests version bi of a video while bj, where bi > bj, exists in the cache, then bj is removed before 
bi is fetched from origin server and subsequently cached at the proxy. Since we allow only one version of an object to exist in 
the cache, the lower bit-rate version is evicted from the cache. If a video request results in a transcode hit, the TeC proxy 
transcodes the cached object to an appropriate bit-rate and streams it to the user. In the mean time, the proxy can choose 
which version of the video to cache in two different ways, which leads to two variations of the algorithm. For algorithm 



 
 
TEC_11, the proxy refreshes the access record of the already cached object without caching the newly transcoded version. 
For algorithm TEC_12, the proxy evicts the transcodable version from the cache and stores the newly transcoded version. In 
summary, if the client requests version bi of a video while bj, where bi < bj, exists in the cache, bi is transcoded from bj and 
streamed to the user. TEC_11 refreshes the access record of bj , but TEC_12 removes bj and caches bi . 
 
Whenever the cache becomes full and requests to the un-cached video are received, certain files in the cache must be 
replaced. We simply use the existing popular cache replacement algorithms (e.g., LRU, LFU, LRU-k [15], or GD* [12]) for 
this purpose. The pseudo code of algorithms TEC_11 and TEC_12 is presented in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2.2.2 Cache Multiple Versio
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cache. Consequently, multip
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if the client request version 
and cached. Note that bi and 
 
Similar to TEC_11 and TE
algorithm. For example, if L
fetched or the transcoded ver
version bi of a video object is requested 
 
if bi is already in the proxy cache 
 stream bi to the user from the cache 
 update the access record of bi 
else if version bj of the same video is in the proxy cache and bj > bi 
 transcode bj into bi 
 stream the transcoded bi to the end user 
 if TEC_11 

update the access record of bj 
 if TEC_12 
  remove bj from the cache 

 store bi in the proxy cache 
  update the access record of bi 
else if bj is in the proxy cache and bj < bi 
 remove bj from the cache 
 fetch version bi of the video from the content origin 
 stream bi to the end user 
 if the size of bi is larger than the available cache space 
  select the replacement victim using the selected algorithm 
 store bi in the proxy cache 
 update the access record of bi  
else 
 fetch version bi of the video from the content origin 
 stream bi to the end user 
 if the size of bi is larger than the available cache space 
  select the replacement victim using the selected algorithm 
 store bi in the proxy cache 
 update the access record of bi  
4 

Figure 2. Cache single version, algorithm TEC_11 and TEC_12. 

ns (TEC_2) 

ultiple versions of the same video object is to reduce the processing load on the transcoder. For 
h in the cache, a request to b2 will lead to an exact hit, i.e., no transcoding is needed. In addition, 
cesses to a certain video object across its variants is high, this approach may further improve the 

 is a cache miss, the TeC proxy fetches the video from the origin, transcodes it to the requested 
t to the end user and caches it even if other bit-rate versions of the same video object are in the 
le versions of a popular video can be cached at a given time. If a transcode hit occurs, the 
ested version. It is subsequently delivered to the end user and cached in the proxy. For example, 

bi of a video while bj (bj > bi) exists in the cache, bi is transcoded from bj, delivered to the user 
bj now both exist in the cache. 

C_12, when the space is needed to cache new objects, we use an existing cache replacement 
RU is used, TeC proxy will find the least recently used objects and replace them with either the 
sion. Figure 3 shows the pseudo code of TEC_2 algorithm. 
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Figure 3. Cache multiple versions, algorithm TEC_2. 

 
2.2.3 Discussion 
 
The effectiveness of the three presented algorithms highly depends on the user access behavior and the network environment 
of those users. For instance, when the users connected to a proxy have similar network capacities (e.g., employees in a 
corporate that have high-speed network connection during work hours), algorithms TEC_11 and TEC_12 will perform better 
than TEC_2. In fact, if the proxy has the knowledge of which bandwidth is predominant among the links to the users it is 
connected to, it will know the appropriate bit-rate for that bandwidth and cache only that version of the video. On the other 
hand, if the users show heterogeneous network connectivity and processing capability (e.g., some are using PDAs while on 
the road, some are dialing-up to the Internet from home, and some are using DSL or cable modem to connect to the network) 
and the access behavior shows strong temporal locality, TEC_2 will show superior performance. In the next section, we 
simulate our proposed algorithms for performance evaluation. 
 
 
3 Simulations and Results 
 
We developed a stack-based implementation is developed for the performance evaluation simulation study. To focus on 
evaluating the benefit of TeC scheme, no prefix caching [16] is considered. That is, if an object is cached, the whole object is 
cached. In practice, TeC can work with prefix caching to provide better performance. We conduct two types of simulation; 
first, an enterprise trace is used to simulate prolonged access of media content in mostly homogenous network environment. 
To evaluate the performance in a more heterogeneous network, we then use a synthesized trace. In all the simulations, the 
TeC proxy uses LRU as the cache replacement algorithm. Based upon various cache capacities, we compare the performance 
of the TeC proxy with that of a regular caching proxy. The regular caching proxy only serves as a regular interception proxy 
using the same caching algorithm (LRU). That is, the proxy treats each access independently even if the access is to the same 
media object but a different version. We call this algorithm a “reference model”.  
 
3.1 Enterprise-Trace-Driven Simulation 
 
The media server logs provided as input to our simulator are obtained from the servers of HP Corporate Media Solutions. All 
log entries are from April 1 through May 31, 2001. During those two months, there were two servers running Windows 
Media Server (TM) that serve content to clients around the world within HP intranet. The contents include audio and video 
coverage of keynote speeches at various corporate and industry events, messages from the company's management, product 
announcements, training video, and professional development courses for employees. A detailed analysis of the overall 
characteristics of these logs (covering an earlier period of time) can be found in [6].  
 
Note that the Windows Media Server is not RTP/RTSP-based as we would prefer. Nevertheless, the client access pattern and 
the video popularity statistics extracted from the server log are useful for our trace-driven simulation. For the TeC simulation, 

version bi of a video object is requested
 
if bi is already in the proxy cache 
 stream bi to the user from the cache 
 update the access record of bi 
else if bj is in the proxy cache and bj > bi  
 transcode bj into bi 
 stream the transcoded bi to the user from the cache 

if the size of bi is larger than the available space 
  select the replacement victim using the selected algorithm 
 store bi in the proxy cache 
 update the access record of bi and bj 
else  
 fetch version bi of the video from the content origin 
 stream bi to the end user 
 if the size of bi is larger than the available cache space 
  select the replacement victim using selected algorithm 
 store bi in the proxy cache 
 update the access record of bi 
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the server log cannot be used in its primitive form. In the following, we first describe how to extract proxy traces from the 
server logs and then provide an analysis that focuses on the variant issue on a media server. 
 
To derive proxy traces from primitive server logs, we partition the server log into separate proxy access logs of four major 
geographical areas connecting the HP intranet: North America, Europe, Asia-Pacific Region and South America. For 
simplicity of this derivation, countries in Africa and Near-East, such as Egypt, Israel and Arab countries are included in 
Europe. We primarily use the domain name portion of the client’s hostname, as recorded in the log entry, to assign the 
region. However, when the hostname field is empty, we try to resolve the hostname from the client's IP address. In rare cases 
when even that method fails, we use the language country-code of the client. This is not completely accurate, since users 
traveling to another country with their laptop may be accessing the HP intranet. We believe however that such accesses are 
mainly by salespersons covering some sales region, so they are unlikely to intersect the regions we defined.  
 
Another preprocessing is needed to identify multiple bit-rate-variants of the same media object. When these variants are 
present in the media server, they are identifiable by some suffix of their URL. We find two common patterns. One is the use 
of the extensions *28.asf, *56.asf, and *110.asf or *112.asf. It is verified that these objects are coded at 28Kbps, 56Kbps , 
and above 100Kbps respectively. We label them as low (b2), medium (b1) and high (b0) bit rate variants, respectively. 
Another pattern is the use of *56k.asf and *100k.asf suffices. We label them as medium (b1) and high (b0) bit rate variants, 
respectively. Unfortunately, only a small number of the media objects have such variants already identifiable. Therefore, we 
further look at the average bandwidth field of each entry in the server logs. We label the access as to a low or medium bit rate 
variant if the bandwidth experienced while delivering the object is less than 28 Kbps or 56 Kbps, respectively. Otherwise, we 
label the access as to a high bit rate variant.  
 
The final step of the preprocessing is to eliminate entries that do not fit the requirements of the simulator. For example, 
entries with the URL of the content absent, or for which the proxy assignment by region does not work are eliminated. 
Entries  with timestamp not available or zero bytes transferred are also discarded.  
 
To analyze the proxy traces we obtained from preprocessing, we define seven variant categories. Category c0, c1 and c2 
contain objects with only one variant. That is, c0 contains objects encoded at high bit rate only. Category c1 contains objects 
encoded at medium bit rate only, and c2 for low bit rate only. Category c01 contains objects with two variants, at bit rate b0 
and b1,. Similar definitions can be derived for categories c02 and c12. Category c012 contains objects with three variants. 
That is, for each object in category c012, there are three variants on the server. Using the extracted proxy trace for North 
America as an example, Figure 4 shows the distribution of the number of objects in each variant category. Since the media 
server is targeting at corporate intranet users, it is not surprising that the majority of the object are coded in one variant only. 
In addition, we see the spike in category c2 because there is a significant amount of audio clips encoded at 28Kbps. Since 
there is no variation in the accesses to objects in categories c0, c1 and c2, the TeC system will not improve the caching 
performance of these accesses. However, there are also 115 objects coded in all three bit rates (in category c012), and around 
100 objects coded in various combinations of two bit rates (in categories c01, c02 and c12). The TeC system can improve the 
system performance for the accesses to these objects. 
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Figure 4. Distribution of variant objects. 
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Figure 5 shows the number of accesses within the investigated time period for each of the variant categories. Within each 
category, the number of accesses to different variants is also shown. Since the TeC system improves caching performance 
only when there are accesses to bit-rate variants, we pay our attention to c01, c02, c12 and c012 categories. Note that the 
access to one variant dominants in each of these categories. In most cases, the highest-bit-rate variant is accessed more often. 
This result is expected, as the accesses are mostly from the corporate intranet with high bandwidth. Also note that the 
accesses to variants are mainly to objects in category c012. Within this category, the access to variant b0 dominants. The 
access to other variants is nearly 25% of the total access to objects in the category, and less than 10% of total access overall. 
This indicates a pattern of access from clients in homogenous conditions, which is also expected in corporate intranet 
environments. 
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Figure 5. Distribution of accesses in variant categories. 

 
To give an overview of the content variation, Table 1 shows the statistics for each variant type: the number of unique objects 
and the total number of accesses to these objects. It also includes the total and average file size (in megabytes) of these 
unique objects. We consider each variant of the same content as independent objects and count the accesses to those objects 
separately. 
 

Variant 
Number of 

objects 
Number of 

accesses 
Total size 

(MB) 
Average size 

(MB) 
b0 395 27503 12749 32 
b1 165 2839 3049 18 
b2 708 25543 4614 7 

Total 1268 55885 20412   

Table 1 Statistics for media objects by variant types 

During the measured two months, there is at least 20 GB of content resides on the content server and there are total of 55885 
accesses. However, the 20GB of data is not on the server from the beginning to the end. To obtain an understanding 
regarding the amount of content on the origin server in a smaller time frame, we perform the following analysis. For each 
content object, we find the first and the last day it is accessed within the measure period. In between, the object must be on 
the origin server. Collectively, we find that on average, there is at least 6GB of content on the server on any given day. 
 
Figure 6 shows the simulation result using the proxy trace generated for North America region. Simulations using proxy 
traces generated for other regions provide similar results. Figure 6 (a) shows the overall byte hit ratio, (b) shows the 
contribution of transcode hit and exact hit for TEC_11, and (c) shows the statistics of the number of concurrent session (for 
TEC algorithms, it is the number of concurrent transcoding sessions) at each access timestamp when the cache capacity is 
2GB (10% of total object size). Specifically, the maximum, average, and the average of the absolute deviation are shown. 
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Figure 6. Simulation results from media-server trace. 

The simulation results show the caching performance improvement the TeC system brings when the access to media object is 
to almost homogenous variants.  In this particular case, the proxy using TEC_11 provides 3~5% byte hit ratio improvements 
over the reference model. Considering that the access to variants is only about 10% of total access, the improvement indicates 
30~50% of the variant-based access can be served from TeC directly therefore saving server bandwidth. Since the dominant 
version in enterprise environment is most likely the high bit-rate version, algorithm TEC_12 that caches lower bit-rate 
variants produces worse result. Note that TEC_2 achieves less improvement in byte hit ratio as compared with TEC_11. 
Nevertheless, since TEC_2 caches multiple versions of the same object, the transcoding load is reduced significantly. This is 
evident from Figure 6 (c). For the cache size at 10% of the total object size, the average concurrent transcoding session 
required for TEC_2 is orders of magnitude less than that for TEC_11. 
 
3.2 Synthesized-Trace-Driven Simulation  
 
The simulation in Section 3.1 showed the performance of a TeC proxy in a corporate intra network where less heterogeneity 
is expected. To evaluate the performance of the proposed system for a variant-based media website serving heterogeneous 
clients, we use the following “synthesized” trace as no public trace of this kind is available.  
 
To generate the synthesized trace, we create a pool of 500 original video objects with their playing time varying from 5 to 15 
minutes. The access pattern is characterized by the following three factors:  
1. Popularity of the video: We assume a Zipf distribution with α of 0.47 [7]. 
2. Access arrival interval: We assume a random arrival through a Poisson process. 
3. Variety of downlink capacity: Three settings are selected.  We designate 512 Kbps and 256 Kbps for desktop users, and 

128 Kbps for mobile users. 
The variation of the downlink capacity also dictates the variants of the media object. Therefore, the size of each variant of a 
video object is the production of its length in seconds and its bit-rate. Using these parameters, we generate a content pool of 
approximately 30 GB of data.  
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Two different models of simulation are designed.  First, we perform the simulation through an all-version-origin model. In 
this model, the original content server provides multiple bit-rate versions of each original video object. The client requested 
video is either served from the origin server, cache at the TeC proxy, or it is generated by the TeC proxy through transcoding. 
Second, we perform the simulation through a master-version-origin model where only one master version of each video 
object is available at the content origin server. In this model, the client requests either the master version or a lower bit-rate 
version of the video. The lower bit-rate variant is generated exclusively by the TeC proxy. 
 
3.2.1 All Version Origin Model 
 
We use an “even-variant” scenario that is defined as follows. In this scenario, media contents are accessed evenly by clients 
in each downlink bandwidth capacities. This scenario represents a highly heterogeneous environment. While the popularity 
of video objects follows a Zipf-like distribution (α =0.47), the downlink capacity varies evenly. The simulation lasts 8 hours 
with 600 accesses arriving at a random Poisson process. Consequently, the average access arrival time interval is 48 seconds. 
During the simulation, a total of 12GB of content is delivered to the clients. 
 
Figure 7 (a) shows the byte hit ratio for various cache capacities in even-variant scenarios. Note that TEC_11 algorithm 
provides the best result, showing nearly 15% performance improvements over the reference model. Figure 7 (b) shows the 
portion of exact hit and transcode hit for the TEC_11 algorithm. The result indicates that from 20% to 50% of the bytes can 
be served through transcoding. Figure 7 (c) shows the total number of streaming sessions and the number of transcoding 
sessions for each caching algorithm when the cache capacity is 4 GB. The result from 1000-th second to 6000-th second of 
the 8-hour simulation is shown. The number of concurrent transcoding sessions is well within the range that a modern PC can 
handle. 
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Figure 7. Simulation results for even-variant scenario. 
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3.2.2 Master Version Origin Model 
 
In Section 3.2.1, we assumed that the origin content server provides multiple bit-rate versions of any video object. This may 
not be the case for many websites, such as a media website created specifically for high-bandwidth users. The TeC proxy can 
help increase the reach and the performance of these website by providing an on-the-fly transcoding and caching for localized 
access. To study the performance under this circumstance, we define a “master-version-origin” mode as follows. In this 
mode, only one master version is stored at the origin server. Therefore, when there is a cache miss, the master version is 
fetched always from the origin. However, the TeC proxy can choose to cache either the master version or the transcoded 
version. We again compare the performance of our algorithms with a reference model where a transcoder is not available and 
only the master version is cached at the proxy. We use a dominant-variant scenario in this experiment. 
 
In dominant-variant scenario, we picture that the requests are mainly from mobile users after work checking news through 
cell phones or PDAs. The access arrival interval is short and highly temporally localized. We simulate this scenario by 
generating 600 accesses arriving in a random Poisson process throughout a one-hour simulation. Therefore, the average 
access arrival interval is six seconds. The variation in downlink capacity is relatively small; 90% of the downlink traffic is 
assigned to the dominant downlink capacity. We use 128 Kbps downlink as the dominant link. There are occasional requests 
from 256 Kbps or 512 Kbps downlinks. During the simulation, a total of 6 GB of data is delivered to the clients. 
 
Figure 8 (a) shows the byte hit ratio. Our algorithms achieve 3~6% improvement over the traditional LRU system. When 
cache capacity is small, TEC_12 achieves better effectiveness than TEC_11. However, as we can see from Figure 8 (b), the 
performance gain primarily results from exact hits rather than transcode hits, since  transcode hits account for 3~10% of the 
total byte hit.  
 
For requirement on computing resources, Figure 8 (c) shows the concurrent session load on the TeC proxy. The load on the 
transcoder is much heavier compared with Figure 7 (c) which shows the load of all-variant-origin model. On occasion, more 
than 50% of the total concurrent session needs transcoding, which poses a heavy load on the transcoding unit. This is due to 
the high density of client accesses and the predominant requests for low bit-rate variant. TEC_11 has a higher level of 
transcoding load than those of TEC_12 and TEC_2. This result is not surprising since the TEC_11 algorithm caches the 
highest bit-rate version, while TEC_12 and TEC_2 cache lower or multiple versions. Therefore, an exact hit is more likely in 
TEC_12 and TEC_2 than in TEC_11. Variations of the TEC algorithms provide different level of load on the transcoder. In 
practice, one can choose to use different TEC algorithms based on the available transcoding resource. For example, if a TeC 
proxy can handle limited concurrent transcoding sessions, TEC_2 is the best choice since it incurs less concurrent 
transcoding sessions as can be seen from Figure 8 (c). 
 
4 Related Work 
 
Several schemes for caching video streams from the Internet have been proposed. Prefix caching [17] stores the initial parts 
of popular videos on the proxy to reduce the playback latency. MiddleMan [1] aggregates a number of proxy caches 
connected within a network to cache video files. The system proposed in [4] has proxies perform request aggregation, prefix 
caching, and rate control to cache streaming media. Video staging [20] prefetches certain videos onto the proxies to preserve 
WAN bandwidth. None of the above schemes uses transcoding at the local network proxies. 
 
Many works have contemplated with the idea of putting transcoders at network intermediaries [3,9,10,11,19]. MOWSER [3] 
allows mobile users to specify the QoS parameters. Proxy agents between the web server and mobile users transcode the Web 
content into the viewing preference of the clients. MOWSER however, does not deal with proxy caching. A similar work is 
done at [19] that uses InfoPyramid data model to adapt web contents to mobile client capabilities. Web caching is not 
considered in this work, either. On-the-fly transformation of web contents at the network infrastructure was proposed in [9]. 
Lossy compression is used for each specific data-types to adapt to network and client variations. An analytical framework for 
transcoding web streams at the proxies was discussed in [10]. IBM Websphere transcoding publisher [11] can transcode 
HTML and image contents into various languages and formats suited for the users’ wireless devices. It does not however, 
transcode streaming videos. The idea of providing differentiated service to clients of a web server and managing available 
bandwidth by transcoding JPEG images and dynamically determining the quality of the image to transmit to the client has 
been explored in [5].  
 
In [16], a layered caching scheme is introduced to adjust stream quality based on per-layer popularity. The video layers are 
inter-dependent while in our work, different versions of a video object are independent. In [16], the proxy serves the end user 
with part of the object while fetching other parts (i.e., enhancement layer) if the video gains popularity. The concept of partial 
hit is thus introduced. However, the transcode hit defined in our work is different; a transcode hit contains a super set of the 
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content that the end user requests. The TeC proxy serves the end user with a transcoded version, and no access to the origin 
server is required. Similar to [16], [13] proposed a soft caching system for caching Web images at different resolutions. It 
evaluated the soft caching system for images based on the user download time.  
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Figure 8. Simulation results for dominant-variant scenario in master-version-origin model. 

 
 
5 Conclusion 
 
We proposed a transcoding-enabled caching proxy system. Two types of caching algorithms specific to TeC proxy system 
were presented. In addition to an efficient video delivery to the end users with heterogeneous network conditions and client 
capabilities, the proposed system improves caching performance by serving transcoded objects to the client and intelligently 
caching them. Both trace-driven simulation and model-based simulation are conducted. Simulation result shows that our 
proposed system improves caching performance with marginal transcoding load in the enterprise network environment. For 
network environment with users of more heterogeneous network conditions, nearly 20% of increase in caching performance 
is achieved with manageable computation load on the transcoder. For media sites with only one video version, TeC is still 
beneficial when most clients access the content through low bandwidth channels. 
 
The TeC proxy system can be extended to manage other types of Web content such as images. Similar strategies can be used. 
For video contents, interval caching or prefix caching can be deployed rather than storing the entire video. Given a 
distribution of access intervals, our algorithm can be expanded to operate in a similar fashion and comparable advantages are 
expected. In addition, algorithms can be developed to adaptively select different flavor of the TEC algorithms based on 
variations in the user access pattern. This extension is an ongoing work. 
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