

Streaming Media Caching with
Transcoding-Enabled Proxies

Bo Shen, Sung-Ju Lee, Sujoy Basu
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-210 (R.1)
October 31st , 2003*

E-mail: {boshen, sjlee, basus}@hpl.hp.com

proxy
caching,
streaming
media
caching,
video
transcoding

We propose a transcoding-enabled streaming media caching system
(TeC) along with a new set of caching strategies. Our system is
designed for efficient delivery of rich media web contents to
heterogeneous network environments and client capabilities. The
proxies perform transcoding as well as caching in our system. This
design choice allows content adaptation to be performed at the
edges of the networks. Depending on the connection speed and
processing capability of an end user, the proxy transcodes the
requested (and possibly cached) video into an appropriate format
and delivers it to the user. By serving the transcoded video directly
from the proxy, we improve the cache performance. Performance
evaluation via simulation is presented. Specifically, simulations
using both synthesized traces and real traces derived from enterprise
media server logs are conducted. Simulation results indicate that by
incorporating transcoding capability at the network edges, the
traffic to the content origin server is further reduced.

* Internal Accession Date Only Approved for External Publication
Published in the proceedings of the 6th IASTED International Conference on Internet and Multimedia Systems and
Applications, 12-14 August 2002, Kauai, Hawaii.
Copyright Hewlett-Packard Company 2003

1

Streaming Media Caching with Transcoding-Enabled Proxies

Bo Shen, Sung-Ju Lee, and Sujoy Basu
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA

{boshen, sjlee, basus}@hpl.hp.com

Abstract

We propose a transcoding-enabled streaming media caching system (TeC) along with a new set of caching strategies. Our
system is designed for efficient delivery of rich media web contents to heterogeneous network environments and client
capabilities. The proxies perform transcoding as well as caching in our system. This design choice allows content adaptation
to be performed at the edges of the networks. Depending on the connection speed and processing capability of an end user,
the proxy transcodes the requested (and possibly cached) video into an appropriate format and delivers it to the user. By
serving the transcoded video directly from the proxy, we improve the cache performance. Performance evaluation via
simulation is presented. Specifically, simulations using both synthesized traces and real traces derived from enterprise media
server logs are conducted. Simulation results indicate that by incorporating transcoding capability at the network edges, the
traffic to the content origin server is further reduced.

Keywords: proxy caching, streaming media caching, video transcoding.

1 Introduction

Delivery of streaming media contents over the Internet is a challenge; encoding, delivery, caching, and processing are far
more difficult than those of simple web objects. For example, when CNN.com posts a news video clip on its Web server, it
first encodes the news clip at several different bit-rates (28-56 Kbps for dial-up connections and 150-plus Kbps for broadband
networks [8]) to satisfy users with different network connection speeds. In addition, the prosperity of wireless network brings
more heterogeneous client devices (e.g., laptops, PDAs, palm pilots, cell phones, etc.). Traditional caching system treats each
client request equally and independently. Usually, popular items are cached at a proxy close to the end user and therefore, it
reduces the traffic between the content origin and proxies as well as the user perceived startup latency. However, various
different bit-rate versions of the same video clip may be cached at the proxy at one instance, which can be a waste of storage.

Our solution is to enable the caching proxy with the transcoding ability so that variants of a video object can be delivered by
transcoding the cached content to the appropriate format, instead of accessing the object all the way from the content origin.
This approach puts transcoding units in the content delivery path. Putting computing resources in the content delivery path
has been addressed in [2] and [14]. The network intermediaries perform dynamic content adaptation in this approach. One of
the advantages of having transcoding-enabled proxy is that the content origin servers need not generate different bit-rate
videos. Moreover, heterogeneous clients with various network conditions will receive videos that are suited for their
capabilities, as content adaptation is easily done at the network edges.

We investigate the possibility of using computing resource to trade off caching storage; therefore further improving the
responsiveness for media-rich Web access. One may argue that storage is cheap these days and saving storage is not
necessary. This is partially true. Moreover, The processing capabilities have been advanced and the processors are cheap as
well. In addition, because the video files are very large in size, we cannot assume the unlimited availability of storage.
Focusing on streaming video delivery over the Internet, we use video transcoders at the caching proxies. Video transcoding
itself is a computing intensive task. Many works target at improving the efficiency of the task. In [18], we transcode DVD
video at high resolution to lower resolution in real time. The bit-rate is also reduced during the transcoding.

For the delivery of multimedia content, many coding techniques have been developed to deal with heterogeneous network
conditions and diverse client capabilities. Among these techniques, scalable coding, layered coding are the typical examples.
These techniques are also included in some of the video coding standards such as MPEG-2 and MPEG-4. However, given the
current distribution of multimedia objects on the Internet, majority if not all of the content is actually coded in non-scalable
and single-layered format. We argue that using transcoding to adapt to the heterogeneous is a much more practical approach.

2

Given that the caching proxy is transcoding-enabled, new adaptive caching systems need to be developed for better
utilization of the storage resource. This paper proposes a set of caching algorithms taking into account that variants of the
same video object may exist in the system at any point of time. The variants are produced either a priori or on demand by the
transcoder. The algorithm can choose to cache single or multiple variants of a video. The cached video version can be either
from the origin server or generated by the transcoder. Transcoding can be used to trade off the origin server access. We
evaluate our proposed TeC (Transcoding-enabled Caching) system using various experiments, including trace-driven
simulation. A trace analysis on variants of a streaming video object in a corporate network environment is provided. Our
results indicate that our system shows better caching performance than the traditional caching system with manageable
computation load on the transcoder.

The rest of the paper is organized as follows. In Section 2, we propose the system architecture of the transcoding-enabled
caching proxy along with a set of caching algorithms specifically designed for TeC. Performance analysis and trace-driven
simulation results are presented in Section 3. Specifically, simulations based on proxy traces derived from a real cooperate
media server log and simulations based on synthesized traces are conducted. Related work is surveyed in Section 4 and we
conclude in Section 5.

2 Tracoding-enabled Caching

2.1 System Architecture

Proxy caches are often deployed at the edges of the network to reduce the traffic to and from the origin server and user
perceived latency. We propose a transcoding enabled caching proxy that serves various bit-rate versions of video objects to
the end users with different devices or connection profiles. Focusing on the video delivery, we illustrate the system
architecture as following.

Transcoding-enabled caching (TeC) proxy consists of the components as shown in Figure 1. The proxy acts as a client to the
content server. A RTP/RTSP client is therefore built into the proxy to receive the streamed content from the origin server
(uplink). The received stream is put into the incoming buffer. The transcoder continuously pulls bit streams from the
incoming buffer and subsequently pushes the transcoded bits out to the outgoing buffer. The proxy decides to cache the
content either from the incoming buffer or the outgoing buffer while it is being produced by the transcoder. Additionally, The
proxy acts as a server to the end user. Therefore, a RTP/RTSP server is built to stream the video to the end user (downlink).
The data in the outgoing buffer is obtained either from the transcoder or from the caching system.

The size of the incoming buffer and the outgoing buffer can be small given that the transcoder processes the video data in a
streamlined fashion. The speed of the process, i.e., the transcoding bit-rate, is defined as the number of bits the transcoder
generates per second. As long as the transcoding bit-rate is larger than the minimum of the uplink and the downlink
bandwidths, the transcoding process does not significantly increase the end-to-end delay. Nevertheless, video transcoding can
be computing intensive. Many works are under investigation to reduce the workload of such a session. Among those,
compressed domain based approach provides the best performance [18]. In compressed domain transcoding, the incoming
video is only partially decompressed. Rate adapting is performed in the compressed domain while the motion information is
reused. This approach considerably improves the speed over the conventional decoding-transcoding-recoding approach.
While not in the scope of this paper, we assume the transcoder is capable of handling reasonable number of concurrent
sessions in real time. This allows us to focus on the investigation of the caching benefits the collocated transcoder brings.

Given the real time transcoding capability, the TeC proxies can dynamically transcode video objects to different variants to
satisfy the end users in heterogeneous networks. Each variant is a version. If version x can be obtained by transcoding from
version y, we call version y a transcodable version for x. Conversely, version x is the transcoded version of y. In video
transcoding, a higher bit-rate version can be transcoded to a lower bit-rate version. For example, if a video at bit-rate of 64
Kbps can be transcoded from the same video at bit-rate of 128 Kbps, the 128 Kbps version is a transcodable version for the
one at 64 Kbps. Consequently, the 64 Kbps version is a transcoded version from the one at 128 Kbps.

The transcoded version may have degradation in fidelity comparing with the original version. The TeC proxy can produce
transcoded versions with 1 to (n-1) generation loss in fidelity, where n is the total number of possible versions. For video
transcoding, this loss is negligible when bit-rate reduction is coupled with resolution reduction. For example, when a video
clip with the CIF resolution (352×288) at bit-rate of 1 Mbps is to be delivered to a PDA type of client device with resolution
at QCIF (176×144), the reduction in the resolution already reduces the bit-rate by a factor of approximately four.

3

TranscoderIncoming
Buffer Outgoing

Buffer

up link

down link

Caching
System

RTP/RTSP Client

RTP/RTSP Server

origin
server

end
user

TeC proxy

Figure 1. System and components for transcoding-enabled caching proxy.

Note that the variation in versions delivered to the end user is not transparent to the end user. Either the end user specifically
asks for certain version of an object based on his/her awareness of his/her connection and display device, or agent software of
the streaming client tells the proxy its connection and device capability parameters and the proxy then choose one version for
the session. In addition, the TeC proxy is often at the edge of the network close to the end user, it is not meant for adapting to
the bandwidth variation in up link. If there are packet losses in up link due to congestion, the TeC proxy can choose not to
cache for the session.

2.2 Caching Algorithms

A TeC proxy trades off computation with storage. The main idea is to serve the end user with the appropriately transcoded
version of the cached video whenever possible, depending on the network capacity and connection profile of the user. Let us
assume that the origin server has n versions at bit-rates b1, b2, …, bn for each video object. The highest bit-rate version is b1
and the lowest is bn, i.e., b1 > b2 >…> bn. When version bi is requested from the end user, and if there is version bj (bj > bi,
i.e., bj is a transcodable version for bi) in cache, the TeC proxy transcodes bj to bi instead of fetching bi from the content
origin. Therefore, it is a cache hit even though bi is not directly available from the cache. We define the following events in a
TeC proxy:

- Exact Hit, the requested version of the video object exists in the cache.
- Transcode Hit, the requested version does not exist in the cache, but a transcodable version of the video does.
- Miss, the requested or a transcodable version of the video does not exist in the cache.

Note that when the origin server has only one bit-rate version of a video (possibly a high bit-rate) and a user with low-speed
connectivity requests that object, our proxy transcodes the original video into an appropriate bit-rate object and stream it to
the user. Hence, our system works well regardless of whether the content origin supports various bit-rate versions of the
videos or not. We propose two types of caching algorithms that behave differently when each event occurs.

2.2.1 Cache Single Version (TEC_11 and TEC_12)

This algorithm allows at most one version of a video object to be cached at the proxy at any single time. By caching only one
version, we store more video objects and utilize the storage space efficiently. The main challenge of this algorithm is
deciding which bit-rate version of the video to cache.

When an exact cache hit occurs, the TeC proxy refreshes the access record for the object and streams it to the end user. If a
request leads to a cache miss, the TeC proxy fetches the video from the origin server, streams it to the end user and caches it.
Remember that we consider each version of a video as an independent item; although a request is to a video that is cached, if
the request has to be responded from the content origin (i.e., the end user requests a higher bit-rate version than the cached
one), then it is considered a cache miss.

In general, if the end user requests version bi of a video while bj, where bi > bj, exists in the cache, then bj is removed before
bi is fetched from origin server and subsequently cached at the proxy. Since we allow only one version of an object to exist in
the cache, the lower bit-rate version is evicted from the cache. If a video request results in a transcode hit, the TeC proxy
transcodes the cached object to an appropriate bit-rate and streams it to the user. In the mean time, the proxy can choose
which version of the video to cache in two different ways, which leads to two variations of the algorithm. For algorithm

TEC_11, the proxy refreshes the access record of the already cached object without caching the newly transcoded version.
For algorithm TEC_12, the proxy evicts the transcodable version from the cache and stores the newly transcoded version. In
summary, if the client requests version bi of a video while bj, where bi < bj, exists in the cache, bi is transcoded from bj and
streamed to the user. TEC_11 refreshes the access record of bj , but TEC_12 removes bj and caches bi .

Whenever the cache becomes full and requests to the un-cached video are received, certain files in the cache must be
replaced. We simply use the existing popular cache replacement algorithms (e.g., LRU, LFU, LRU-k [15], or GD* [12]) for
this purpose. The pseudo code of algorithms TEC_11 and TEC_12 is presented in Figure 2.

2.2.2 Cache Multiple Versio

The motivation of caching m
example, if b1 and b2 are bot
if the temporal-locality of ac
caching efficiency.

In this algorithm, when there
version if required, streams i
cache. Consequently, multip
transcoder generates the requ
if the client request version
and cached. Note that bi and

Similar to TEC_11 and TE
algorithm. For example, if L
fetched or the transcoded ver
version bi of a video object is requested

if bi is already in the proxy cache
 stream bi to the user from the cache
 update the access record of bi
else if version bj of the same video is in the proxy cache and bj > bi
 transcode bj into bi
 stream the transcoded bi to the end user
 if TEC_11

update the access record of bj
 if TEC_12
 remove bj from the cache

 store bi in the proxy cache
 update the access record of bi
else if bj is in the proxy cache and bj < bi
 remove bj from the cache
 fetch version bi of the video from the content origin
 stream bi to the end user
 if the size of bi is larger than the available cache space
 select the replacement victim using the selected algorithm
 store bi in the proxy cache
 update the access record of bi
else
 fetch version bi of the video from the content origin
 stream bi to the end user
 if the size of bi is larger than the available cache space
 select the replacement victim using the selected algorithm
 store bi in the proxy cache
 update the access record of bi
4

Figure 2. Cache single version, algorithm TEC_11 and TEC_12.

ns (TEC_2)

ultiple versions of the same video object is to reduce the processing load on the transcoder. For
h in the cache, a request to b2 will lead to an exact hit, i.e., no transcoding is needed. In addition,
cesses to a certain video object across its variants is high, this approach may further improve the

 is a cache miss, the TeC proxy fetches the video from the origin, transcodes it to the requested
t to the end user and caches it even if other bit-rate versions of the same video object are in the
le versions of a popular video can be cached at a given time. If a transcode hit occurs, the
ested version. It is subsequently delivered to the end user and cached in the proxy. For example,

bi of a video while bj (bj > bi) exists in the cache, bi is transcoded from bj, delivered to the user
bj now both exist in the cache.

C_12, when the space is needed to cache new objects, we use an existing cache replacement
RU is used, TeC proxy will find the least recently used objects and replace them with either the
sion. Figure 3 shows the pseudo code of TEC_2 algorithm.

5

Figure 3. Cache multiple versions, algorithm TEC_2.

2.2.3 Discussion

The effectiveness of the three presented algorithms highly depends on the user access behavior and the network environment
of those users. For instance, when the users connected to a proxy have similar network capacities (e.g., employees in a
corporate that have high-speed network connection during work hours), algorithms TEC_11 and TEC_12 will perform better
than TEC_2. In fact, if the proxy has the knowledge of which bandwidth is predominant among the links to the users it is
connected to, it will know the appropriate bit-rate for that bandwidth and cache only that version of the video. On the other
hand, if the users show heterogeneous network connectivity and processing capability (e.g., some are using PDAs while on
the road, some are dialing-up to the Internet from home, and some are using DSL or cable modem to connect to the network)
and the access behavior shows strong temporal locality, TEC_2 will show superior performance. In the next section, we
simulate our proposed algorithms for performance evaluation.

3 Simulations and Results

We developed a stack-based implementation is developed for the performance evaluation simulation study. To focus on
evaluating the benefit of TeC scheme, no prefix caching [16] is considered. That is, if an object is cached, the whole object is
cached. In practice, TeC can work with prefix caching to provide better performance. We conduct two types of simulation;
first, an enterprise trace is used to simulate prolonged access of media content in mostly homogenous network environment.
To evaluate the performance in a more heterogeneous network, we then use a synthesized trace. In all the simulations, the
TeC proxy uses LRU as the cache replacement algorithm. Based upon various cache capacities, we compare the performance
of the TeC proxy with that of a regular caching proxy. The regular caching proxy only serves as a regular interception proxy
using the same caching algorithm (LRU). That is, the proxy treats each access independently even if the access is to the same
media object but a different version. We call this algorithm a “reference model”.

3.1 Enterprise-Trace-Driven Simulation

The media server logs provided as input to our simulator are obtained from the servers of HP Corporate Media Solutions. All
log entries are from April 1 through May 31, 2001. During those two months, there were two servers running Windows
Media Server (TM) that serve content to clients around the world within HP intranet. The contents include audio and video
coverage of keynote speeches at various corporate and industry events, messages from the company's management, product
announcements, training video, and professional development courses for employees. A detailed analysis of the overall
characteristics of these logs (covering an earlier period of time) can be found in [6].

Note that the Windows Media Server is not RTP/RTSP-based as we would prefer. Nevertheless, the client access pattern and
the video popularity statistics extracted from the server log are useful for our trace-driven simulation. For the TeC simulation,

version bi of a video object is requested

if bi is already in the proxy cache
 stream bi to the user from the cache
 update the access record of bi
else if bj is in the proxy cache and bj > bi
 transcode bj into bi
 stream the transcoded bi to the user from the cache

if the size of bi is larger than the available space
 select the replacement victim using the selected algorithm
 store bi in the proxy cache
 update the access record of bi and bj
else
 fetch version bi of the video from the content origin
 stream bi to the end user
 if the size of bi is larger than the available cache space
 select the replacement victim using selected algorithm
 store bi in the proxy cache
 update the access record of bi

6

the server log cannot be used in its primitive form. In the following, we first describe how to extract proxy traces from the
server logs and then provide an analysis that focuses on the variant issue on a media server.

To derive proxy traces from primitive server logs, we partition the server log into separate proxy access logs of four major
geographical areas connecting the HP intranet: North America, Europe, Asia-Pacific Region and South America. For
simplicity of this derivation, countries in Africa and Near-East, such as Egypt, Israel and Arab countries are included in
Europe. We primarily use the domain name portion of the client’s hostname, as recorded in the log entry, to assign the
region. However, when the hostname field is empty, we try to resolve the hostname from the client's IP address. In rare cases
when even that method fails, we use the language country-code of the client. This is not completely accurate, since users
traveling to another country with their laptop may be accessing the HP intranet. We believe however that such accesses are
mainly by salespersons covering some sales region, so they are unlikely to intersect the regions we defined.

Another preprocessing is needed to identify multiple bit-rate-variants of the same media object. When these variants are
present in the media server, they are identifiable by some suffix of their URL. We find two common patterns. One is the use
of the extensions *28.asf, *56.asf, and *110.asf or *112.asf. It is verified that these objects are coded at 28Kbps, 56Kbps ,
and above 100Kbps respectively. We label them as low (b2), medium (b1) and high (b0) bit rate variants, respectively.
Another pattern is the use of *56k.asf and *100k.asf suffices. We label them as medium (b1) and high (b0) bit rate variants,
respectively. Unfortunately, only a small number of the media objects have such variants already identifiable. Therefore, we
further look at the average bandwidth field of each entry in the server logs. We label the access as to a low or medium bit rate
variant if the bandwidth experienced while delivering the object is less than 28 Kbps or 56 Kbps, respectively. Otherwise, we
label the access as to a high bit rate variant.

The final step of the preprocessing is to eliminate entries that do not fit the requirements of the simulator. For example,
entries with the URL of the content absent, or for which the proxy assignment by region does not work are eliminated.
Entries with timestamp not available or zero bytes transferred are also discarded.

To analyze the proxy traces we obtained from preprocessing, we define seven variant categories. Category c0, c1 and c2
contain objects with only one variant. That is, c0 contains objects encoded at high bit rate only. Category c1 contains objects
encoded at medium bit rate only, and c2 for low bit rate only. Category c01 contains objects with two variants, at bit rate b0
and b1,. Similar definitions can be derived for categories c02 and c12. Category c012 contains objects with three variants.
That is, for each object in category c012, there are three variants on the server. Using the extracted proxy trace for North
America as an example, Figure 4 shows the distribution of the number of objects in each variant category. Since the media
server is targeting at corporate intranet users, it is not surprising that the majority of the object are coded in one variant only.
In addition, we see the spike in category c2 because there is a significant amount of audio clips encoded at 28Kbps. Since
there is no variation in the accesses to objects in categories c0, c1 and c2, the TeC system will not improve the caching
performance of these accesses. However, there are also 115 objects coded in all three bit rates (in category c012), and around
100 objects coded in various combinations of two bit rates (in categories c01, c02 and c12). The TeC system can improve the
system performance for the accesses to these objects.

0

100

200

300

400

500

600

c0 c1 c2 c01 c02 c12 c012

nu
m

be
r o

f o
bj

ec
ts

Figure 4. Distribution of variant objects.

7

Figure 5 shows the number of accesses within the investigated time period for each of the variant categories. Within each
category, the number of accesses to different variants is also shown. Since the TeC system improves caching performance
only when there are accesses to bit-rate variants, we pay our attention to c01, c02, c12 and c012 categories. Note that the
access to one variant dominants in each of these categories. In most cases, the highest-bit-rate variant is accessed more often.
This result is expected, as the accesses are mostly from the corporate intranet with high bandwidth. Also note that the
accesses to variants are mainly to objects in category c012. Within this category, the access to variant b0 dominants. The
access to other variants is nearly 25% of the total access to objects in the category, and less than 10% of total access overall.
This indicates a pattern of access from clients in homogenous conditions, which is also expected in corporate intranet
environments.

0

5000

10000

15000

20000

25000

30000

35000

c0 c1 c2 c01 c02 c12 c012

nu
m

be
r o

f a
cc

es
s

access b0 access b1 access b2

Figure 5. Distribution of accesses in variant categories.

To give an overview of the content variation, Table 1 shows the statistics for each variant type: the number of unique objects
and the total number of accesses to these objects. It also includes the total and average file size (in megabytes) of these
unique objects. We consider each variant of the same content as independent objects and count the accesses to those objects
separately.

Variant
Number of

objects
Number of

accesses
Total size

(MB)
Average size

(MB)
b0 395 27503 12749 32
b1 165 2839 3049 18
b2 708 25543 4614 7

Total 1268 55885 20412

Table 1 Statistics for media objects by variant types

During the measured two months, there is at least 20 GB of content resides on the content server and there are total of 55885
accesses. However, the 20GB of data is not on the server from the beginning to the end. To obtain an understanding
regarding the amount of content on the origin server in a smaller time frame, we perform the following analysis. For each
content object, we find the first and the last day it is accessed within the measure period. In between, the object must be on
the origin server. Collectively, we find that on average, there is at least 6GB of content on the server on any given day.

Figure 6 shows the simulation result using the proxy trace generated for North America region. Simulations using proxy
traces generated for other regions provide similar results. Figure 6 (a) shows the overall byte hit ratio, (b) shows the
contribution of transcode hit and exact hit for TEC_11, and (c) shows the statistics of the number of concurrent session (for
TEC algorithms, it is the number of concurrent transcoding sessions) at each access timestamp when the cache capacity is
2GB (10% of total object size). Specifically, the maximum, average, and the average of the absolute deviation are shown.

8

60

70

80

90

100

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

by
te

 h
it

ra
tio

 (%
)

Ref
TEC_11
TEC_12
TEC_2

60

70

80

90

100

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

cu
m

ul
at

iv
e

by
t h

it
ra

tio
 (%

) E_HIT T_HIT

(a) (b)

0

1

100

10000

Total TEC_11 TEC_12 TEC_2

nu
m

be
r o

f c
on

cu
rre

nt
 s

es
si

on
s

Max
Avg
Avd

(c)

Figure 6. Simulation results from media-server trace.

The simulation results show the caching performance improvement the TeC system brings when the access to media object is
to almost homogenous variants. In this particular case, the proxy using TEC_11 provides 3~5% byte hit ratio improvements
over the reference model. Considering that the access to variants is only about 10% of total access, the improvement indicates
30~50% of the variant-based access can be served from TeC directly therefore saving server bandwidth. Since the dominant
version in enterprise environment is most likely the high bit-rate version, algorithm TEC_12 that caches lower bit-rate
variants produces worse result. Note that TEC_2 achieves less improvement in byte hit ratio as compared with TEC_11.
Nevertheless, since TEC_2 caches multiple versions of the same object, the transcoding load is reduced significantly. This is
evident from Figure 6 (c). For the cache size at 10% of the total object size, the average concurrent transcoding session
required for TEC_2 is orders of magnitude less than that for TEC_11.

3.2 Synthesized-Trace-Driven Simulation

The simulation in Section 3.1 showed the performance of a TeC proxy in a corporate intra network where less heterogeneity
is expected. To evaluate the performance of the proposed system for a variant-based media website serving heterogeneous
clients, we use the following “synthesized” trace as no public trace of this kind is available.

To generate the synthesized trace, we create a pool of 500 original video objects with their playing time varying from 5 to 15
minutes. The access pattern is characterized by the following three factors:
1. Popularity of the video: We assume a Zipf distribution with α of 0.47 [7].
2. Access arrival interval: We assume a random arrival through a Poisson process.
3. Variety of downlink capacity: Three settings are selected. We designate 512 Kbps and 256 Kbps for desktop users, and

128 Kbps for mobile users.
The variation of the downlink capacity also dictates the variants of the media object. Therefore, the size of each variant of a
video object is the production of its length in seconds and its bit-rate. Using these parameters, we generate a content pool of
approximately 30 GB of data.

9

Two different models of simulation are designed. First, we perform the simulation through an all-version-origin model. In
this model, the original content server provides multiple bit-rate versions of each original video object. The client requested
video is either served from the origin server, cache at the TeC proxy, or it is generated by the TeC proxy through transcoding.
Second, we perform the simulation through a master-version-origin model where only one master version of each video
object is available at the content origin server. In this model, the client requests either the master version or a lower bit-rate
version of the video. The lower bit-rate variant is generated exclusively by the TeC proxy.

3.2.1 All Version Origin Model

We use an “even-variant” scenario that is defined as follows. In this scenario, media contents are accessed evenly by clients
in each downlink bandwidth capacities. This scenario represents a highly heterogeneous environment. While the popularity
of video objects follows a Zipf-like distribution (α =0.47), the downlink capacity varies evenly. The simulation lasts 8 hours
with 600 accesses arriving at a random Poisson process. Consequently, the average access arrival time interval is 48 seconds.
During the simulation, a total of 12GB of content is delivered to the clients.

Figure 7 (a) shows the byte hit ratio for various cache capacities in even-variant scenarios. Note that TEC_11 algorithm
provides the best result, showing nearly 15% performance improvements over the reference model. Figure 7 (b) shows the
portion of exact hit and transcode hit for the TEC_11 algorithm. The result indicates that from 20% to 50% of the bytes can
be served through transcoding. Figure 7 (c) shows the total number of streaming sessions and the number of transcoding
sessions for each caching algorithm when the cache capacity is 4 GB. The result from 1000-th second to 6000-th second of
the 8-hour simulation is shown. The number of concurrent transcoding sessions is well within the range that a modern PC can
handle.

0

10

20

30

40

50

1 3 5 7 9
cache capacity (GB)

by
te

 h
it

ra
tio

 (%
)

Ref
TEC_11
TEC_12
TEC_2

0

10

20

30

40

50

1 3 5 7 9
cache capacity (GB)

cu
m

ul
at

iv
e

by
te

 h
it

ra
tio

 (%
) T_HIT

 E_HIT

(a) (b)

0

10

20

30

40

time (second)

nu
m

be
r o

f c
on

cu
rre

nt
 s

es
si

on
s

Total
TEC_11
TEC_12
TEC_2

(c)

Figure 7. Simulation results for even-variant scenario.

10

3.2.2 Master Version Origin Model

In Section 3.2.1, we assumed that the origin content server provides multiple bit-rate versions of any video object. This may
not be the case for many websites, such as a media website created specifically for high-bandwidth users. The TeC proxy can
help increase the reach and the performance of these website by providing an on-the-fly transcoding and caching for localized
access. To study the performance under this circumstance, we define a “master-version-origin” mode as follows. In this
mode, only one master version is stored at the origin server. Therefore, when there is a cache miss, the master version is
fetched always from the origin. However, the TeC proxy can choose to cache either the master version or the transcoded
version. We again compare the performance of our algorithms with a reference model where a transcoder is not available and
only the master version is cached at the proxy. We use a dominant-variant scenario in this experiment.

In dominant-variant scenario, we picture that the requests are mainly from mobile users after work checking news through
cell phones or PDAs. The access arrival interval is short and highly temporally localized. We simulate this scenario by
generating 600 accesses arriving in a random Poisson process throughout a one-hour simulation. Therefore, the average
access arrival interval is six seconds. The variation in downlink capacity is relatively small; 90% of the downlink traffic is
assigned to the dominant downlink capacity. We use 128 Kbps downlink as the dominant link. There are occasional requests
from 256 Kbps or 512 Kbps downlinks. During the simulation, a total of 6 GB of data is delivered to the clients.

Figure 8 (a) shows the byte hit ratio. Our algorithms achieve 3~6% improvement over the traditional LRU system. When
cache capacity is small, TEC_12 achieves better effectiveness than TEC_11. However, as we can see from Figure 8 (b), the
performance gain primarily results from exact hits rather than transcode hits, since transcode hits account for 3~10% of the
total byte hit.

For requirement on computing resources, Figure 8 (c) shows the concurrent session load on the TeC proxy. The load on the
transcoder is much heavier compared with Figure 7 (c) which shows the load of all-variant-origin model. On occasion, more
than 50% of the total concurrent session needs transcoding, which poses a heavy load on the transcoding unit. This is due to
the high density of client accesses and the predominant requests for low bit-rate variant. TEC_11 has a higher level of
transcoding load than those of TEC_12 and TEC_2. This result is not surprising since the TEC_11 algorithm caches the
highest bit-rate version, while TEC_12 and TEC_2 cache lower or multiple versions. Therefore, an exact hit is more likely in
TEC_12 and TEC_2 than in TEC_11. Variations of the TEC algorithms provide different level of load on the transcoder. In
practice, one can choose to use different TEC algorithms based on the available transcoding resource. For example, if a TeC
proxy can handle limited concurrent transcoding sessions, TEC_2 is the best choice since it incurs less concurrent
transcoding sessions as can be seen from Figure 8 (c).

4 Related Work

Several schemes for caching video streams from the Internet have been proposed. Prefix caching [17] stores the initial parts
of popular videos on the proxy to reduce the playback latency. MiddleMan [1] aggregates a number of proxy caches
connected within a network to cache video files. The system proposed in [4] has proxies perform request aggregation, prefix
caching, and rate control to cache streaming media. Video staging [20] prefetches certain videos onto the proxies to preserve
WAN bandwidth. None of the above schemes uses transcoding at the local network proxies.

Many works have contemplated with the idea of putting transcoders at network intermediaries [3,9,10,11,19]. MOWSER [3]
allows mobile users to specify the QoS parameters. Proxy agents between the web server and mobile users transcode the Web
content into the viewing preference of the clients. MOWSER however, does not deal with proxy caching. A similar work is
done at [19] that uses InfoPyramid data model to adapt web contents to mobile client capabilities. Web caching is not
considered in this work, either. On-the-fly transformation of web contents at the network infrastructure was proposed in [9].
Lossy compression is used for each specific data-types to adapt to network and client variations. An analytical framework for
transcoding web streams at the proxies was discussed in [10]. IBM Websphere transcoding publisher [11] can transcode
HTML and image contents into various languages and formats suited for the users’ wireless devices. It does not however,
transcode streaming videos. The idea of providing differentiated service to clients of a web server and managing available
bandwidth by transcoding JPEG images and dynamically determining the quality of the image to transmit to the client has
been explored in [5].

In [16], a layered caching scheme is introduced to adjust stream quality based on per-layer popularity. The video layers are
inter-dependent while in our work, different versions of a video object are independent. In [16], the proxy serves the end user
with part of the object while fetching other parts (i.e., enhancement layer) if the video gains popularity. The concept of partial
hit is thus introduced. However, the transcode hit defined in our work is different; a transcode hit contains a super set of the

11

content that the end user requests. The TeC proxy serves the end user with a transcoded version, and no access to the origin
server is required. Similar to [16], [13] proposed a soft caching system for caching Web images at different resolutions. It
evaluated the soft caching system for images based on the user download time.

0

20

40

60

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

by
te

 h
it

ra
tio

 (%
)

 Ref
TEC_11
 TEC_12
TEC_2

0

3

6

9

12

0.5 1.5 2.5 3.5 4.5
cache capacity (GB)

tra
ns

co
de

 b
yt

e
hi

t r
at

io
 (%

)

TEC_11
TEC_12
TEC_2

(a) (b)

0

20

40

60

80

100

120

1 3600time (second)

nu
m

be
r o

f c
on

cu
rre

nt
 s

es
si

on
s

Total TEC_11
TEC_12 TEC_2

(c)

Figure 8. Simulation results for dominant-variant scenario in master-version-origin model.

5 Conclusion

We proposed a transcoding-enabled caching proxy system. Two types of caching algorithms specific to TeC proxy system
were presented. In addition to an efficient video delivery to the end users with heterogeneous network conditions and client
capabilities, the proposed system improves caching performance by serving transcoded objects to the client and intelligently
caching them. Both trace-driven simulation and model-based simulation are conducted. Simulation result shows that our
proposed system improves caching performance with marginal transcoding load in the enterprise network environment. For
network environment with users of more heterogeneous network conditions, nearly 20% of increase in caching performance
is achieved with manageable computation load on the transcoder. For media sites with only one video version, TeC is still
beneficial when most clients access the content through low bandwidth channels.

The TeC proxy system can be extended to manage other types of Web content such as images. Similar strategies can be used.
For video contents, interval caching or prefix caching can be deployed rather than storing the entire video. Given a
distribution of access intervals, our algorithm can be expanded to operate in a similar fashion and comparable advantages are
expected. In addition, algorithms can be developed to adaptively select different flavor of the TEC algorithms based on
variations in the user access pattern. This extension is an ongoing work.

12

References

1. S. Acharya and B. Smith, “MiddleMan: A Video Caching Proxy Server,” Proceedings of NOSSDAV 2000, Chapel Hill,

NC, June 2000.
2. E. Amir, S. McCanne and R. Katz, “An Active Service Framework and its Application to Real-time Multimedia

Transcoding,” Proceedings of ACM SIGCOMM’98, Vancouver, Canada, September 1998, pp. 178-189.
3. H. Bharadvaj, A. Joshi and S. Auephanwiriyakul, “An Active Transcoding Proxy to Support Mobile Web Access,”

Proceedings of IEEE Symposium on Reliable Distributed Systems, West Lafayette, IN, October 1998, pp. 118-123.
4. E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and Implementation of a Caching System for Streaming

Media over the Internet,” Proceedings of the 6th IEEE Real-Time Technology and Applications Symposium,
Washington, DC, June 2000, pp. 111-121.

5. S. Chandra, C. S. Ellis and A. Vahdat, “Differentiated Multimedia Web Services using Quality Aware Transcoding,”
Proceedings of the Nineteenth Annual Joint Conference Of The IEEE Computer And Communications Societies
(INFOCOM), Tel Aviv, Israel, March 2000.

6. L. Cherkasova and M. Gupta, “Characterizing Locality, Evolution, and Life Span of Accesses in Enterprise Media
Server Workloads,” Proceedings of NOSSDAV 2002, Miami, FL, May 2002.

7. M. Chesire, A. Wolman, G. M. Voelker, and H. M Levy, “Measurement and Analysis of a Streaming-Media Workload,”
Proceedings of the 3rd USENIX Symposium on Internet Technologies and Systems, San Francisco, CA, March 2001.

8. CNN.com Video, http://www.cnn.com/video.
9. A. Fox, S. D. Cribble, Y. Chawathe, and E. A. Brewer, “Adapting to Network and Client Variation Using Infrastructural

Proxies: Lessons and Perspectives,” IEEE Personal Communications, 5(5), August 1998, pp. 10-19.
10. R. Han, et al., “Dynamic Adaptation in an Image Transcoding Proxy for Mobile Web Browsing,” IEEE Personal

Communications, 5(7), December 1998, pp. 8-17.
11. IBM Websphere, http://www.developer.ibm.com/websphere/index.html.
12. S. Jin and A. Bestavros, “GreedyDual Web Caching Algorithm: Exploiting the Two Sources of Temporal Locality in

Web Request Streams,” Computer Communications, 24(2), February 2001, pp. 174-183.
13. J. Kangasharju, Y. Kwon, A. Ortega, X. Yang, and K. Ramchandran, “Implementation of Optimized Cache

Replenishment Algorithms in a Soft Caching System,” Proceedings of IEEE Second Workshop on Multimedia Signal
Processing, Los Angeles, CA, December 1998, pp. 233-238.

14. W.Y. Ma, B. Shen, and J. Brassil, “Content Service Network, The Architecture and Protocols,” Proceedings of WCW
2001, Boston, MA, June 2001, pp. 89-107.

15. E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page Replacement Algorithm for Database Disk Buffering,”
Proceedings of the ACM SIGMOD’93 International Conference on Management of Data, Washington, DC, May 1993,
pp. 297-306.

16. R. Rejaie, H. Yu, M. Handely, and D. Estrin, “Multimedia Proxy Caching Mechanism for Quality Adaptive Streaming
Applications in the Internet,” Proceedings of IEEE INFOCOM, Tel Aviv, Israel, March 2000, pp. 980-989.

17. S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching for Multimedia Streams,” Proceedings of IEEE
INFOCOM’99, New York, NY, March 1999, pp. 1310-1319.

18. B. Shen, and S. Roy, “A Very Fast Video Special Resolution Reduction Transcoder,” Proceedings of International Conf.
On Acoustics Speech and Signal Processing (ICASSP), Orlando, FL, May 2002.

19. J. Smith, R. Mohan, and C. Li, “Scalable Multimedia Delivery for Pervasive Computing,” Proceedings of ACM
Multimedia, Orlando, FL, November 1999, pp. 131-140.

20. Z. -L. Zhang, Y. Wang, D. H. C. Du, and D. Su, “Video Staging: A Proxy-Server-Based Approach to End-to-End Video
Delivery over Wide-Area Networks,” IEEE/ACM Transactions on Networking, 8(4), August 2000, pp. 429-442.

