

Distributed, Interleaved, Parallel and
Cooperative Search in Constraint
Satisfaction Networks

Youssef Hamadi
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-21
March 8th , 2002*

distributed
AI,
constraint
satisfaction,
search

In this work, we extend the efficiency of distributed search
in constraint satisfaction networks. Our method adds
interleaving and parallelism into distributed backtrack
search. Moreover, it has a filtering capacity that makes it
open to cooperative work. Experimentations show that 1)
the shape of phase transition with random problem can be
characterized, 2) important speed-up can be achieved when
the distribution of solutions is non uniform.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Distributed, Interleaved, Parallel and Cooperative Search
in Constraint Satisfaction Networks

Abstract

In this work, we extend the efficiency of distributed search in
constraint satisfaction networks. Our method adds interleav-
ing and parallelism into distributed backtrack search. More-
over, it has a filtering capacity that makes it open to coopera-
tive work. Experimentations show that 1) the shape of phase
transition with random problem can be characterized, 2) im-
portant speed-up can be achieved when the distribution of so-
lutions is non uniform.

Keywords: Distributed AI, Constraint Satisfaction,
Search

Introduction
In the distributed constraint satisfaction paradigm (DCSP)
a problem is distributed between autonomous agents which
are cooperating to compute a global solution. Agents are
finding values for problem variables subject to constraints
that are restrictions on which combinations of values are
acceptable. Since the seminal work of (Yokoo, Ishida, &
Kubawara 1990), the raise in application interoperability
combined to the move towards decentralized decision pro-
cess in complex systems raise the interest for distributed
reasoning. Several distributed search method have been pre-
sented to tackle DCSP (Yokoo 1995; Armstrong & Durfee
1997). None of them ask the question of efficiency. In
this work we show how to enhance the efficiency of dis-
tributed search. The basic method to search for solution in
a constraint network is depth-first backtrack search (DFS)
(Golomb & Baumert 65), which performs a systematic ex-
ploration of the search tree until it finds an assignment of
values to variables that satisfies all the constraints. DFS
has been extended to parallel-DFS to speed-up the resolu-
tion process (Rao & Kumar 1993). Parallelism was then the
answer to the question of efficiency for sequential search.
Interestingly parallel-DFS showed that under some assump-
tions, speed-up could be superlinear which means that se-
quential search is sub-optimal on some problems. Follow-
ing these conclusions interleaved sequential DFS has been
presented (Meseguer 1997). Here we give an answer to the
problem of efficiency in any distributed search algorithm.
Our method combines interleaved and parallel search for
solution in DCSPs. The distributed backtrack search used
acts like the well known sequential conflict-directed back-

jumping (CBJ) (Prosser 1993). Moreover, it takes advantage
of the asynchronous relations between agents to perform a
more refined and effective update of conflict-sets. Detected
conflicts allows to some extent the removal of directed k-
inconsistent values between agents. This filtering capac-
ity is easily shared between all the interleaved subspaces of
an agent which makes interleaved searches cooperating to-
gether to solve a problem. All the previous make search for
solution in DCSPs more efficient. In the following, we first
give a definition of the DCSP paradigm. We then present
a distinction between distributed, parallel and interleaved
search. Before presenting our distributed search procedure
called IDIBT/CBJ-DkC, we give DisAO a distributed agent
ordering method used during backtracking. Afterwards, we
present a set of experimental results followed by a general
conclusion.

Background
Distributed constraint satisfaction problems
A distributed constraint network (X ;D; C;A) involves a set
of n variables X = fX1; : : : ; Xng, a set of domains D =
fD1; : : : ; Dng where Di is the finite set of possible values
for variable Xi, C the set of binary constraints fCij ; : : :g
where Cij is a constraint between i and j. Cij(a; b) = true

means that the association value a for i and b for j is al-
lowed. Asking for the value of Cij(a; b) is called a con-
straint check. G = (X ; C) is called the constraint graph as-
sociated to the network (X ;D; C). Variables and constraints
are distributed among a set fAgent1; : : : ; Agentmg of m
autonomous sequential processes called agents. Each agent
Agentk “owns” a subset Ak of the variables in X in such a
way that A = fA1; : : : ; Amg is a partition of X . The do-
mainDi (resp. Dj), the constraint Cij (resp. Cji) belongs to
the agent owning Xi (resp. Xj)1. In our work we focus on
the study and evaluation of inter-agents interactions. That is
why we limit our attention to the extreme case, where there
are n agents, each only owning one variable, so thatA = X .
Thus, in the following,Agenti will refer to the agent owning
variable Xi. Of course, the assignment of a single variable
can relate the solution of an embedded large subproblem and
in fact, each inter-agent constraint can represent a large set

1We suppose that the constraint network is such that (X ; C) is
a symmetric graph.

of constraints. Initially, the graph of acquaintances in the
distributed system matches the constraint graph. So, for an
agent Agenti, � is the set of its acquaintances, namely the
set of all the agents Agentj such that Xj shares a constraint
with Xi. A solution to a constraint network is an assignment
of the variables such that all the constraints are satisfied. The
distributed CSP (DCSP) involves finding a solution in a dis-
tributed constraint network.

Communication model
An agent can send messages to other agents if and only if it
knows their address in the network. The delay in delivering
messages is finite. For the transmission between any pair of
agents, messages are received in the order in which they are
sent. Agents use the following primitives to achieve message
passing operations:

� sendMsg(dest;“m”) sends message m to the agents in
dest.

� getMsg() returns the first unread message available.

IDIBT: Distributed Interleaved and Parallel search
Parallel backtrack search is used to speed-up the resolution
process (Rao & Kumar 1993; Kornfeld 1981). Distributed
backtrack search faces a situation where the whole problem
is not fully accessible; resolution is enforced by collabo-
ration between subproblems. Both framework use several
processing units. In parallel search, N processors concur-
rently perform backtracking in disjoint parts of a state-space
tree. In distributed search, distinct subproblems are spread
on several processing units and backtracking is performed
by the way of collaboration.

X2 X3

X4

X1
A0

A1 A2

A3

X1

S S S S
(a)

X2

X3

X4

P1P0

(b)

Figure 1: Tree search: (a) parallel search, (b) distributed
search

Part a) of figure 1 presents a parallel exploration for a 4-
variables CSP. Here, the problem is duplicated on two pro-
cessors P0 and P1. P0 is in charge of the subspace charac-
terized by X1 = a, P1 explores the remaining space. Dur-
ing the computation, message passing is useless. However,
since a processor can exhaust its task before another (good
heuristic functions, filtering, . . .), dynamic load balancing is
used (Rao & Kumar 1993). Usually, an idle unit asks a busy
one for a part of its remaining exploration task.

Part b) of the figure presents a distribution of this problem
between four autonomous agents. Here, state-space explo-
ration uses local resolution for each subproblem with nego-
tiation on the shared constraints.

Interleaved sequential depth-first search (IDFS) tries to
mimic a parallel exploration into a single process (Meseguer
1997). In its limited form, IDFS splits the top of a search
tree into different subspaces and successively perform their
exploration.

To combine interleaved and parallel search in our dis-
tributed framework, we divide a problem search space into
independent subspaces. In each one a distributed conflict-
directed backtrack search will take place. In the system, we
will have two kind of agent with distinct behaviors.

� a Source agent, which will partition its search space in
several subspaces called Context

� the remaining agents which will try to instantiate in each
context.

There is no duplication of processing units here. Agents
will successively consider search in the different contexts.
This interleaving will be achieved by message passing oper-
ations. The context of resolution added within each message
will allow an agent to successively explore the disjoint sub-
spaces. Parallelism is given by the observation that since
agents are asynchronous, they can simultaneously operate
in distinct subspaces.

All the previous makes the state space exploration of
IDIBT/CBJ-DkC distributed, parallel and interleaved. Be-
fore closing this section, let us remark that sometimes dis-
tributed = parallel. In particular when the search space
is flat i.e., no ordering used during the exploration of the
subspaces. Distributed filtering is a good example of that
(Hamadi 1999).

Conflicting agents in distributed search
Our framework is totally asynchronous but we need an or-
dering between related agents to apply the backtracking
scheme which ensures completeness. In the following we
present our distributed ordering method followed by the
IDIBT/CBJ-DkC search process.

Distributed Agent Ordering
The practical complexity of a search process is highly de-
pendent on user’s heuristic choices such as value/variable
ordering. Usually these heuristics take advantage of domain-
dependent knowledges. Each agent can use particular
heuristics in the exploration of its subproblem. But in the
DCSP, agents must collaborate to use an efficient ordering
between their subproblems. This ordering defines the hi-
erarchical relation used during the distributed backtracking
process.

Algorithm In our system, each agent locally computes its
position in the ordering according to the chosen heuristic.
Concretely, each agent determines the sets �+ and ��, re-
spectively children and parent acquaintances, w.r.t. an
evaluation function f and a comparison operator op which
totally define the heuristic chosen. This is done in the lines
1 to 2 of Algorithm 1.

After that, agents know their children (�+) and parents
(��) acquaintances. During the search, they will send as-
signment value to children, and in case of dead-end, they

begin
% � split;

1 �+ ;; �� ;;

for each Agentj 2 � do
if (f(Agentj) op f(self)) then �+ �+ [fAgentjg;

2 else �� �� [fAgentjg;

% �� ordering;

3 max 0;

for (i = 0; i < j�+j; i++) do
m getMsg();

if (m = value:v; from:j) then
if (max < v) then max v;

max++;

sendMsg(��, “value:max; from:self”);

sendMsg(�+, “position:max; from:self”);

for (i = 0; i < j��j; i ++) do
m getMsg();

if (m = position:p; from:j) then Level[j] p;

Order �� according to Level[] ;

4 Extend �� ;

end

Algorithm 1: Distributed agent ordering

will backtrack to the nearest conflicting agent in ��. So,
we need a total ordering on ��. This is done in the sec-
ond part of Algorithm 1 (lines 3 to 4). Agents without chil-
dren state that they are at level one, and they communicate
this information to their acquaintances. Other agents take
the maximum level value received from children, add one to
this value, and send this information to their acquaintances.
Now, with this new environmental information, each agent
rearranges (total order) the agents in its local �� set by in-
creasing level. Ties are broken with agent tags. Finally, for
fitting each total order ��, the constraint graph is extended
with zero or more additional edges (lines 4). These new
edges are tautological constraints. Their purpose is the en-
forcement of completeness by local search space initializa-
tion in the forward exploration phases (see section).

X2

X3

X4

X6

X1

X5

X7

DCSP:

X7

X1

X2

X4 X5

X2

X1

X2

X4

X2

X6

level 2

level 3

level 4

X3

max−degree ordering:

level 1

Figure 2: Distributed agents ordering

Figure 2 gives an illustration of this distributed processing
for the max-degree variable ordering heuristic. On the left
side of the figure a constraint graph is represented. Once
Algorithm 1 has been applied, the static variable ordering
obtained is the one presented on the right side of Fig. 2.

Property 1 8Ai, if 9Aj ; Ak such that Aj ! Ai and
Ak ! Ai, then 9Aj ! Ak or 9Ak ! Aj .

We haveAj ! A1; Ai andAk ! A2; Ai with A1 2
��(Ai) and A2 2 ��(Ai). By definition we have

f(A1)opf(A2) or f(A2)opf(A1) then by�� extension we
haveA2 ! A1 or A1 ! A2. We can follow the previous
reasoning by consideringAi = A1 orAi = A2. The previ-
ous property expresses that the�� extension step of DisAO
break partial orders in the DisAO ordering. This will corre-
late forward and backtrack steps during distributed search.

IDIBT/CBJ-DkC: Using Conflicts Between Agents

Prosser’s CBJ is directed by conflicts. This sequential algo-
rithm stores with each variablei a “conflict-set” which keeps
the subset of the past variables in conflict with some assign-
ment ofi. When a dead end occurs, CBJ jumps back to the
deepest variableh in conflict with i. If a new dead end oc-
curs, it jumps back tog, the deepest variable in conflict with
neitherh or i. Finally, each time CBJ jumps back fromi to
h, the variablesj such thath < j � i get back their search
space and an empty conflict-set. In the following we detail
the adaptation of this behavior in a distributed framework.

Principles Each agent will maintain a conflict-set which
will be used during backjumping. But here, during a jump
from i to a conflicting agenth our distributed framework
can easily preserve previous work. While CBJ proactively
reinitialize the search space and conflict-set of each variable
j such thath < j � i, IDIBT/CBJ-DkC will do nothing.
In fact, these updates are reduced and delayed as follow.
When a value is addressed toi by an agentj, the receiver
can selectively prune its conflict-set to keep conflicts unre-
lated with the new information fromj. The elements of the
local conflict-set are ordered (<o) thanks to DisAO. These
positions are computed from the bottom to the top. For each
conflicting agenth, we have two configurations:

� j <o h, the conflict withh is still valid. According to that
the corresponding pruning in the local search space can
be kept. Indeed,h is located in a position higher than the
location of the sender. According to that, the new value
for j cannot cancel previous decisions h.

� h <o j, here the deletion of values raised by h’s value
is not independent from j’s values. The local search
space can recover these values andh is removed from the
conflict-set.

This improvement makes IDIBT/CBJ-DkC close to back-
marking (Gaschnig 77) and in a limited way close to dy-
namic backtracking (Ginsberg 1993). The previous behavior
could be enhanced by cutting dependencies between vari-
ables during the detection of conflicts. Nevertheless, this
behavior should be costly since the pruning made according
to a particular acquaintance could not be used for successive
tests.

Directed k-consistency and cooperating searches
CBJ has been extended to achieve directed k-consistency
(Prosser 1993). We can do the same in the distributed frame-
work. During backjumping, when an agenti addresses a
conflict-setfh = v(h)g to h, that mean that the valuev(h)
is incompatible with any value fromi. This value is arc-
inconsistent and can be definitively removed from the do-
main ofh. Here the asynchronism can make the backjump

obsolete; i.e.,h has a new value. But this information is still
useful andv(h) must be removed2.

To illustrate directed k-inconsistency, consider a configu-
ration where an agentj exhausts its domain and constructs
an ordered conflict-setfi = v(i); h = v(h)g. That mean
that each valuev(j) is inconsistent withv(h) or v(i). Con-
sider now thati has no conflict with its��. Now, assume
that each new value addressed fromi to j brings a new back-
jump to i. At the end,i exhausts its search space too and
backjump toh which can definitively removev(h) from its
domain.

Within IDIBT several DFS search are parallelized (see
section). Each agent interleaves explorations and each k-
inconsistency detected in a particular context can benefit to
other contexts. This sharing makes the method cooperative.
But while classical cooperative frameworks have to suffer
from overheads to communicate useful informations (Hogg
& Williams 1993), here the interleaving within each agent
makes the sharing very efficient and easy.

Algorithm The global scheme of the search process is the
following (see algorithm 2 and data structure below). In the
initialisation phase (lines 1 to 3), the source agent divides its
search space inNC subspaces. Remaining agents will use
the same spaceD in each context. In each contextc each
agent initializes its conflict-set and assign its variable. Each
timestamp countervalueCptc is then set to one. After that,
each agent informs children of its chosen value (message
content starting by “infoVal”).

Interactions start at line 4. Here each incoming message
is interpreted in a particular contextc (lines 5 and 6). An
“ infoVal” message from acquaintancej is processed as fol-
low (line 7). First the reported value is stored invalue[j]c
then the associated timestampvalueCpt[j]c is incremented.
The functionupdateSpace(j,c) performs the conservative up-
date of the local search space (see above). Finally the agent
tries to get a value compatible with the new message. If a
compatible value is found, an “infoVal” message with con-
text c informs children of the new choice3. If no value
satisfies the constraints with the agents in��, a backtrack
message is sent in contextc to the nearest conflicting agent
(message content starting by “btSet” in line 8). This mes-
sage includes the computed conflict-set and beliefs about the
timestamps of its membersvalueCpt[conflictSetc]c. The
receiver of the backtrack message (line 9) starts by con-
sidering the directed k-inconsistency detection in line 10.
These detections are made without checking message va-
lidity. The full processing of backtracking demands then
starts in line 11. The agent checks validity by comparing its
timestamp with the reported one and by checking that shared
acquaintances are reported with the same timestamps too
(function contextConsistency). In case of different val-
ues, this means that the sender and/or the receiver have not
yet received some information. Backtrack decision could

2Since IDIBT transmits timestamps instead of beliefs about as-
signed values, the sender adds the value which has to be deleted
each time it address a singleton-conflict-set.

3Of course, current valuemyV aluec can already satisfy the
constraints withj, in which case, information of children is useless.

then be obsolete or badly interpreted. When the comparison
matches, reported conflicts are merged with the local ones.
The current valuemyV aluec is added to the pruned values
for the included agents; i.e., the corresponding pruning in
the local search space. Then, if the agent can find a compat-
ible myV aluec in the remaining search space, this value is
addressed to children in line 12. If such a value cannot be
found, we must consider two cases. The first one is an agent
without possibility for backtracking (empty conflict-set, line
13). This agent has detected problem insolubility in the sub-
spacec. A messagenoSolution in contextc is sent to a
System agent. This extra agent stops the distributed com-
putation in contextc by broadcasting astop message in the
whole multi-agent system. With this information agents can
stop the processing of contextc messages4. If all the context
have no solution, the computation is finished. In addition, it
can also stop the computation when a solution is found. A
global state detection algorithm (Chandy & Lamport 1985)
is used to detect whole satisfaction. Global satisfaction oc-
curs when ina particular contextc, agents instantiated ac-
cording to parent constraints are waiting for a message (line
5) and when no message with contextc transits in the com-
munication network. If there exists a conflicting agent for
backtracking, the agent addresses a backtrack message to
the nearest agent in the augmented conflict-set (line 14).

Primitives and data structures
IDIBT/CBJ-DkC uses the following structures and methods:
NC is the number of contexts.self is the agent running

the algorithm,Dself;c is its domain in contextc. myV aluec

current value in the contextc. myCptc current instanti-
ation number in contextc. This value will be used as a
timestamp in the system.value[]c stores parent acquain-
tances values in contextc. valueCpt[]c stores for each
parent the current instantiation number, in the right con-
text. conflictSetc, this set records the conflicting ac-
quaintances in contextc. updateSpace(j; c), according
to an infoVal message fromj, implements in contextc
the selective update of the search space described above.
getV alue(type; c), returns the first value inDself;c com-
patible with agents in��, starting atmyV aluec. Dur-
ing this search,conflictSetc is updated. If a compatible
value is found,myCptc is incremented. first(S) returns the
first element of an ordered setS. With our application, re-
turns the nearest agent inS. merge(s1;s2) takes two or-
dered sets and returns their ordered union.remove(D; v)
this function removes the valuev, from the local domain
D. It is used to achieve the removal of k-inconsistent val-
ues.contextConsistency(set; reportedV alueCpt; c), set
contains an ordered list of agents,reportedV alueCpt con-
tains for each agent inset timestamps computed by the
sender of the current message. This function ensures that,
firstly reported timestamp forself is the good one; i.e.,
equal tomyCptc, secondly that for the shared acquain-
tances agents, reported timestamps are the same than in

4And by the way give more bandwidth and CPU to remaining
subspaces, i.e., implicit load-balancing. This behavior makes the
search process more and more focused on promising branches.

valueCpt[]c. This mechanism ensures that agents have the
same beliefs about the shared parts of the system.

The previous sendMsg function becomes
sendMsg(dest;m; c), which sends messagem to the
agents indest in contextc.

begin
1 if (�� = ;) then Split domainD in Dself;1 .. Dself;NC ;

for (1 � c � NC) do
if (��! = ;) then Dself;c D;

conflictSetc ;;

2 myV aluec getValue(info, c);myCptc 1;

sendMsg(�+, “infoVal:myV aluec ; from:self”, c);

3 endc false;

4 while (9cjendc = false) do
5 m getMsg();

6 c m:context;

if (m = stop) then endc true;

7 if (m = infoVal:a; from:j) then
value[j]c a; valueCpt[j]c ++; updateSpace(j,c);

myV aluec getValue(c);

if (myV aluec) then
sendMsg(�+, “infoVal:myV aluec ; from:self”, c);

else
8 sendMsg(first(conflictSetc),

“btSet:conflictSetc; Val-
ues:valueCpt[conflictSetc]c”, c);

9 if (m = btSet:set; Values:reportedV alueCpt) then
10 if (jsetj = 1) then remove(Dself ; set(self));

11 if (contextConsistency(set, reportedValueCpt, c)) then
conflictSetc merge(set; conflictSetc);

myV aluec getValue(c);

if (myV aluec) then

12 sendMsg(�+, “infoVal:myV aluec ; from:self”, c);

else
13 if (conflictSetc = ;) then

sendMsg(system, “noSolution”, c);

endc true;

else
14 sendMsg(first(conflictSetc),

“btSet:conflictSetc ; Val-
ues:valueCpt[conflictSetc]c”, c)

end

Algorithm 2: IDIBT/CBJ-DkC

Analysis
Property 2 When an agent Ai changes its instantiation,
agents Aj such that 9Ai ! Aj will reconsider their whole
search space.

When an agent changes its value,�+ agents receive it.
These agents can keep their current instantiation or change
it. By using theUpdateSpace function, they filter their
conflict-set and reinitialize some part of their local search
space. By propagation of instantiations between agents, 2 is
verified.

Property 3 If Ai changes its instantiation according to
a btSet message initially upcoming from Aj , each agent

Ak (such that Ak < Ai in the DisAO ordering) included
in the conflict-set of agentAj has exhausted its search space.

According to backtrack chaining between related agents,
this last property is obvious. Properties 1, 2 and 3 ensure
completeness of the exploration. They prove that accord-
ing to the DisAO computed ordering, backjumping between
agents is made in an exhaustive way. Termination is ensured
by the fact that DisAO orders are acyclic. The use of a state
detection algorithm (Chandy & Lamport 1985) which stops
the system when any contextc is stuck on a solution gives
correctness.

Search complexity is exponential in the number of
variables. But in a distributed execution, rooms are open
to use the relative independence between subproblems. In
the following, levelj represents the set of agents with a
computed levelj andh the highest level in the ordering.

Definition 1 A DisAO ordering is called additive if
8b 2 levelj j 1 � j � h, 6 9 agents a; a0 2 leveli with
1 < i � h j a! b and a0 ! b.

Theorem 1 A DCSP P with domain sizes d, using an
additive DisAO ordering has a worst case time complexity
O(
Q

h

l=1 jlevellj � d).

To prove that we must remark that with an additive or-
dering, during backtracking, the union of two�� set do not
include two agents at the same level. Then a backtracking
occurs between distinct level and at each time considers at
mostd values. The whole problem is solved by considering
at each level combinations of values. Since at each level,
agents are independent, the number of combinations is made
by the sum of domains size. When the ordering produced by
DisAO is not additive, the complexity of backtracking de-
pends on the size of the longest path between agents. In the
worst case we have anO(dn) complexity.

Experiments
We made our experiments on a cluster of linux workstations.
The algorithms are made in C++ with the MPI message pass-
ing library. In all these experiments, each DCSP’s variable
was dedicated to a single computer.

Random problems
We solved randoms problems with 25 variables, 8 values
in each domain and a connectivity between variables set to
30%. The tightness parameter has been changed from small-
est to more important values, with a particular emphasis in
the phase transition area. Each point in our experiments rep-
resents the median value took between 50 instances. Each
instance was solved 3 times to limit the impact of message
interleaving. That means 150 experiments for each point.

According to the search space regularity of these prob-
lems, we did not attempt any speed-up here. Neverthe-
less we can make some interesting observations. The
interleaved/parallel overhead is more important for easy-
solubles instances (at the left of the time peak) than for

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

se
co

nd
(s

)
(m

ed
ia

n)

Tightness

icluster max-time n=25, d=8, p1=0.3

NC=1
NC=2
NC=4
NC=8

Figure 3:IDIBT, 25 agents max-time (median)

easy-insolubles ones (at the right of the peak). In the left
part, small tightness and space regularity make classical
distributed search (NC=1) able to easily found a solution,
while the interleaved/parallel search just adds overheads. In
the right part, insolubility is proved by checking the whole
space. As we can see, this task is made with minimum over-
heads by the interleaved/parallel searches.

N-queens

The n-queens problem is well known for its non regular
search space and this is very favorable to interleaved/parallel
methods. For each instance the number of interleaved sub-
spacesNC was set to 1, 2, 4 and 8.

16-queens 20-queens
NC time msg cchecks time msg cchecks
1 0.84s 4203 41167 13.17s 90114 1.4e6
2 0.55s 3171 24365 4.46s 29953 421031
4 1.62s 10256 96899 92.93s 176062 2.5e6
8 3.37s 22231 210801 - - -

Table 1: N-queens

Table 1 gives time, message passing and constraint checks
results for the 16 and 20-queens problems. When the system
uses two subspaces, speed-up are the most interesting (su-
perlinear with 20 queens). The efficiency of parallel search
is computed by dividing the speed-up by the number of
added computing resources. Here we do not add more pro-
cessing unit. Speed-up is then equal to efficiency (close to
3 with 20 queens). Such efficiency can be explained as fol-
low. The first instantiation in the second subspace locates the
first queen in the middle of the row. Thanks to this choice
remaining agents are more constrained (this choice propa-
gates on 2 diagonals) and global solution is more rapidly
found. Such behavior reproduces in some way the now clas-
sical value ordering “middle” known for its performances
with this problem.

Conclusion
Our algorithm searches for solution in distributed constraint
satisfaction networks. It combines distributed, interleaved
and parallel exploration. During exploration, it uses con-
flicts for backtracking and directed k-inconsistencies detec-
tion. This filtering has extended our method toward coop-
eration. While classical cooperative framework suffer from
overheads and have to deal with questions like: when do we
share an information? when do we stop cooperation? In our
approach, the interleaving makes everything transparent, co-
operation and even load balancing. Two mains conclusion
were drawn from the experiments. First, we have charac-
terized the shape of phase transition with random problems.
Second, non regular search spaces proved the drastic effi-
ciency of our combination over a single distributed search.
This last point makes our method well suited for problems
with poor heuristic function at the top of an agent hierarchy.
Our algorithm is the first answer to the question of efficiency
in distributed search. Its performances make it well suited
for current and future distributed reasoning applications.

References
Armstrong, A., and Durfee, E. 1997. Dynamic prioritiza-
tion of complex agents in distributed constraint satisfaction
problems. InIJCAI, 620–625.
Chandy, K. M., and Lamport, L. 1985. Distributed snap-
shots: Determining global states of distributed systems.
TOCS 3(1):63–75.
Gaschnig, J. 77. A general backtracking algorithm that
eliminates most redundant tests. InIJCAI, volume 1, 457.
Ginsberg, M. L. 1993. Dynamic backtracking.JAIR 1:25–
46.
Golomb, S. W., and Baumert, L. D. 65. Backtrack pro-
gramming.Journal of the ACM 12:516–524.
Hamadi, Y. 1999. Optimal distributed arc-consistency. In
CP, 219–233.
Hogg, T., and Williams, C. P. 1993. Solving the really hard
problems with cooperative search. InAAAI, 231–236.
Kornfeld, W. 1981. The use of parallelism to implement a
heuristic search. InIJCAI, 575–580.
Meseguer, P. 1997. Interleaved depth-first search. InIJCAI,
1382–1387.
Prosser, P. 1993. Domain filtering can degrade intelligent
backjumping search. InIJCAI, 262–267.
Rao, V. N., and Kumar, V. 1993. On the efficiency of
parallel backtracking.IEEE Transactions on Parallel and
Distributed Systems 4(4):427–437.
Yokoo, M.; Ishida, T.; and Kubawara, K. 1990. Distributed
constraint satisfaction for DAI problems. InProc. of the
10th Int. Workshop on DAI. chapter 9.
Yokoo, M. 1995. Asynchronous weak-commitment search
for solving distributed constraint satisfaction problems. In
CP, 88–102.

