

Scalable, Efficient Range Queries
for Grid Information Services

Artur Andrzejak, Zhichen Xu
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-209
July 22nd , 2002*

E-mail: {artur_andrzejak, zhichen_xu} @hp.com

peer-to-peer
search, range
queries, grid
information
services

Recent Peer-to-Peer systems such as Tapestry, Chord or CAN act
primarily as a Distributed Hash Table (DHT). To facilitate efficient
range queries in such a system, we propose a CAN-based extension
of this DHT-functionality. The design of our extension suggests
several range query strategies; their efficiency is investigated. A
further goal is to enhance the routing aspects so that also frequently
changing data can be handled efficiently. We show that some
relatively simple approaches are able to reduce the communication
overhead. The design of the system is driven by its application as a
part of the information infrastructure for computational grids. Our
approach complements current solutions such as MDS-2 by adding
self-organization, fault-tolerance and an ability to handle dynamic
attributes. We evaluate our system in this context via a simulation
which confirms that the suggested design meets the targeted
objectives.

* Internal Accession Date Only Approved for External Publication
Copyright IEEE To be presented at and published in the Second IEEE International Conference on Peer-to-Peer
Computing, 5-7 September 2002, Linköping, Sweden

1

 Scalable, Efficient Range Queries for Grid Information Services

Artur Andrzejak and Zhichen Xu
Hewlett-Packard Laboratories, Palo Alto
{artur_andrzejak,zhichen_xu}@hp.com

Abstract

Recent Peer-to-Peer (P2P) systems such as Tapestry,
Chord or CAN act primarily as a Distributed Hash Table
(DHT). A DHT is a data structure for distributed storing of
pairs (key, data) which allows fast locating of data when a
key is given.

To facilitate efficient queries on a range of keys, we pro-
pose a CAN-based extension of this DHT-functionality. The
design of our extension suggests several range query strate-
gies; their efficiency is investigated in the paper. A further
goal is to enhance the routing aspects of current DHT-sys-
tems so that also frequently changing data can be handled
efficiently. We show that some relatively simple approaches
are able to reduce the communication overhead in this case.

The design of the system is driven by its application as a
part of the information infrastructure for computational
grids. Such grids provide an infrastructure for sharing com-
puting resources; an information infrastructure is their
inherent part which collects resource data and provides
search functionality. Our approach complements current
solutions such as MDS-2 by adding self-organization, fault-
tolerance and an ability to efficiently handle dynamic
attributes, such as server processing capacity.

We evaluate our system in this context via a simulation
and show that its design along with particular query and
update strategies meet the goals of scalability, communica-
tion-efficiency and availability.

1. Introduction

Computational grids provide means for sharing comput-
ing power, storage capacity, instruments, data, and applica-
tions. They involve many thousands or millions of
distributed-computing devices, linked together in local or
regional networks, which in turn are interconnected on a
global level. In addition to providing computing power for
solving the grand–challenge problems, grid is envisioned as
a technique to remove one of the major pitfalls of today’s
information technology systems, namely capacity planning
[5].

Unlike traditional computing systems where all the
resources in the system are under the direct control of a sin-
gle organization, grid resources are geographically distrib-
uted, heterogeneous in nature, owned by different

individuals or organizations with possibly different policies
[11].

To enable efficient and appropriate uses of the resources
from both the systems’ and applications’ perspectives, it is
important to provide means to keep track of the availability
and attributes of millions of resources. In grid this function-
ality is provided by an information service. The most widely
known implementation of such a service is MDS-2 [3].

In an information service computing resources are char-
acterized by sets of attributes, as for example the type of the
operating system, network address, CPU speed or storage
capacity. A fundamental function of such a system is the
search for resources with specific combinations of attribute
values. Due to a large number of resources, indexing of the
attributes becomes necessary.

This problem can be attacked by a P2P-based, distributed
indexing infrastructure. The advantages of such an approach
are the self-organizing characteristics, fault-tolerance and
scalability inherent to P2P-systems. We believe that these
properties make the P2P-based information services attrac-
tive enough to complement or partially substitute current
(non-P2P) solutions.

While all P2P systems provide distributed storage and
search functionality, they differ mostly in the degree of
search efficiency and in success guarantees. In earlier sys-
tems such as Gnutella [6] and Freenet [2], a search request
“floods” a limited (overlay network) neighborhood of the
requester. This approach cannot provide any guarantee
whether a search finds the desired data even if this data is
present. Its second disadvantage is the large amount of traf-
fic generated. More recent systems such as Tapestry [8],
Chord [11] or CAN [9] feature a deterministic structure by
mimicking a DHT mentioned in the abstract. As a result,
they are able to locate each data present in the system; those
systems also provide performance guarantees in terms of
logical hops while taking advantage of network proximity.

Different types of attributes managed in an information
infrastructure might require different indexing mechanisms.
Attributes which have a limited number of values (e.g. the
type of the operating system) can be handled efficiently by
the above-mentioned systems implementing a DHT. On the
other hand, for “continuous” types of attributes, such as pro-
cessing or storage capacity, querying of attribute ranges is
useful: first, finding resources with an approximate attribute
value might be sufficient; furthermore, we might want to
locate all resources with attribute values larger (or smaller)
than a certain number.

2

Unfortunately, the systems implementing a DHT do not
support queries of ranges. In their current versions, each dis-
crete value in a range must be queried individually, which is
infeasible in the most cases. An orthogonal aspect where
those systems perform poorly is the efficiency of handling
fast-changing attributes. Certain resource characteristics,
such as processing capacity, might change dramatically in a
short time period. This implies short update intervals and as
a consequence increased network traffic. None of the above-
mentioned systems provide mechanisms to counter this
problem.

Driven by these limitations, we extend the CAN-based
DHT-system into an indexing infrastructure which allows
querying of ranges and supports efficient handling of
dynamic data. Furthermore, we take advantage of our prior
work, expressway routing [13], to further cut down costs of
searching and updating. Our work provides foundation for a
self-organizing and scalable implementation of such parts of
a grid information infrastructure as Grid Index Information
Service (GIIS) [3], which provides a coherent image of dis-
tributed grid resources and allows searching for specific
resources.

Our contributions are the following:

• Extension of CAN for efficient handling of range que-
ries by using Space Filling Curves as hash functions.

• Design and evaluation of range query strategies which
are simple yet efficient in terms of network traffic and
time.

• Design and comparison of attribute value update strate-
gies which reduce the overhead caused by a P2P-infra-
structure.

• A detailed simulation study based on synthetic data and
real data center traces.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 describes distrib-
uted indexing infrastructure for range queries. Section 4
presents techniques to perform efficient query and update.
Section 5 evaluates our approaches using simulation. Sec-
tion 6 concludes and sketches the future work.

2. Related Work

There are quite a few existing projects that address the
problem of search in a grid information service.

MDS-2 provides directory services for grids [3]. It uses
LDAP as a uniform interface for accessing and managing
static and dynamic information about the status of a grid and
its components. It includes a configurable information pro-
vider component called Grid Resource Information Service
(GRIS) and a configurable aggregate directory component
called Grid Index Information Service (GIIS). MDS-2 pro-
vides a simple instantiation of GIIS using a hierarchical
structure. The simple directory accepts registration message
from child GRIS or GIIS instances and merges these infor-
mation sources into a unified information space.

The work that is closest to ours is by Adriana Iamnitch et
al [7]. It proposes a mechanism for organizing the MDS-2
directories in a flat, dynamic P2P-network. Each Virtual
Organization that participates in the grid dedicates a certain
amount of its resources as peers which host information ser-
vices and constitute a P2P- network between organizations.
The authors evaluate several search algorithms based on
query forwarding. Unfortunately, this approach exhibits
some drawbacks similar to those of the Gnutella system [6]:
the search is not deterministic and results not guaranteed.

JXTA search [12] uses a P2P network to support wide
and deep search for rich information and targets at informa-
tion search in general. The main problem it tries to address
is the ability to search the huge amount of contents that can-
not be handled by centralized approaches such as the one
e.g., by Google.

Our work is based on recent DHT-techniques such as
those in CAN [9]. The most important advantage of these
P2P-systems as opposed to the earlier ones is that the new
systems provide deterministic structure and performance
guarantees in terms of logical hops; they also take advan-
tage of network proximity. To our knowledge, it is the first
approach that extends these methods for range queries.
Also, our work is the first application of such advanced
P2P-techniques for grid information services.

3. Distributed Indexing Infrastructure for
Range Queries

In this section we first discuss how a collection of DHTs
enhanced by the ability to query ranges can be used to pro-
vide search functionality in a grid information infrastruc-
ture. Then we describe the essential parts of the architecture
of CAN [9] - the Content-Addressable Network - and
explain how it can be extended to handle range queries.

3.1 Using DHTs for searching of resources

As mentioned above, parts of an information infrastruc-
ture such as GIIS organize the data about resources into a
coherent image on which search can be performed. We dis-
cuss here how such a functionality can be provided by P2P-
based techniques, offering the advantages listed above. Put-
ting aside the issues of protocols and the architectures of
current grid systems, we assume that each resource is
described by a set of attributes with globally known types.
A user interested in certain resources issues a query which is
a combination of desired attribute values or their ranges; an
example query in the CONDOR system

Requirements = Arch == "SGI" && OpSys ==
"IRIX6" && Memory >= 256

will search for all SGI machines running IRIX6 with at least
256 MByte of memory.

To further simplify we assume that in our setting each
attribute has an independent indexing infrastructure (albeit

3

other solutions as conglomerates of attributes or trees of
attributes [14] are possible). In this scenario, for each
attribute either a “traditional” DHT or the approach pre-
sented in this paper is used depending on its type. In the
above example, the attribute “Arch” (and also “OpSys”)
could use “pure” CAN, Tapestry or Chord to manage a list
of the pairs (architecture-type, machine-location). On the
other hand, for the attribute “Memory” our enhanced DHT
must be applied. To find resources specified by several
attributes as in example above, the information infrastruc-
ture queries for each attribute present in the query the appro-
priate indexing infrastructure and concatenates the results in
a database-like “join” operation.

3.2 Extending CAN for range queries

CAN organizes nodes into a P2P-network to solve the
problem of data placement and retrieval over large-scale
storage systems [9]. It uses a logical d-dimensional Carte-
sian space (a d-torus). This space is partitioned into zones,
with a node (a peer) serving as owner of the zone. An object
o is mapped to a point p(o) in the space (its “key”). A node
R responsible for o is the one which has p(o) in its zone. To
find R, we compute p(o) and contact any node in the net-
work with a request to route a message to R. Routing from
the contacted node to R boils down to routing from one
zone to another in the Cartesian space.

Node addition corresponds to picking a random point in
the Cartesian space, routing to the zone that contains the
point, and splitting the zone with its current owner. Node
removal amounts to having the owner of one of the neigh-
boring zones take over the zone owned by the departing
node.

In our context the “objects” are pairs (attribute-value,
resource-ID), where attribute-value is a real number in R1,
and resource-ID is a handle to the resource. Without loss of
generality, we assume that the attribute values are in range
from 0.0 to 1.0.

A subset of the servers participating in grid will act as
nodes in a (CAN-based) P2P-network and store the pairs
(attribute-value, resource-ID). Each of them is responsible
for a certain subinterval of [0.0, 1.0] of the attribute values.
We call such a server an interval keeper (IK) and the corre-
sponding subinterval its interval. Each server in the grid

reports its current attribute value to an IK with the appropri-
ate interval.

On the other hand, each IK owns a zone in the logical d-
dimensional space. The mapping between the intervals and
the zones is an essential element of efficient range queries.
Intuitively, if two IKs have close-by intervals, then also
their zones should be close-by. Furthermore, to allow an
adaptation of the number of IKs to the total number of par-
ticipating servers, even stronger property is required: if an
interval I is split into intervals I1 and I2, then the zones of I1
and I2 must partition the zone of I.

Good candidates for such a mapping are the Space Fill-
ing Curves (SFCs). Especially, we use the Hilbert curve [1]
for R2 and its generalizations for Rd. The Hilbert curve is
defined recursively: for an approximation level l = 1 it is a
point, for l = 2 it looks like the left figure in Figure 1. For
each higher approximation level we subdivide each zone
into four subzones and “copy” into it a shrunk and possibly
rotated version of the curve for l = 2 (see [1] for more
details). Each such a created zone corresponds in a natural
way to a certain subinterval of [0.0, 1.0]. For example, for l
= 2 we have four equally sized intervals [0, 0.25), [0.25,
0.5) and [0.75, 1.0].

Given an attribute value, the mechanism that finds the IK
whose interval contains this value is implemented as fol-
lows. We assume that the dimension d and the approxima-
tion level l are fixed and known globally. In the first step we
compute the hypercube determined by the Hilbert function
which corresponds to the interval containing our value.
Then we contact any known IK and ask it to route our mes-
sage to the IK whose zone encompasses this hypercube.

In practice, the distribution of nodes in Rd does not have
to be uniform and static. Depending on the distribution of
attribute values and the frequency of updates (determined
by the rate in which the attribute changes), the distribution
of the IKs can be dynamically adjusted. Figure 2 illustrates
the refinement of a zone when the IK that owns the lower-
left zone has to handle more updates because the population
of resources that belong to that range becomes denser, or
their attributes of those resources changes more frequent. In
our current implementation we split an interval (and so also
a zone) of an IK in two if it has to handle more than L, say,
reporting servers. We call L the split threshold.

Allowing uneven distribution of IKs can affect logical
routing performance since, for most of the P2P systems, the
theoretical logical routing performance relies on the uni-
form distribution of nodes in the overlay. Fortunately, our

Figure 1: Hilbert curve for approximation level l = 2 and l = 3

l = 2 l = 3

[0, .25] (.75,1]

(.5,.75] (.25,.5]

Figure 2: Adjusting the intervals dynamically

4

previous work provides techniques to take advantage of the
network proximity and forwarding capacity of the nodes in
overlay. In [13], we show that the routing performance can
achieve on average 1.06 times of optimal routing perfor-
mance.

4. Querying and Updating

In this section we first describe three implementations of
the range queries, and in the second part the strategies for
efficient updating of the data. In addition to simplicity,
important design goals were the reduction of the network
traffic for both querying and updating. In the case of range
queries we also tried to minimize the query time, while for
the updating strategies we wanted to ensure fault-tolerance
and the self-organizing properties.

We say that an IK intersects a query (range) when its
interval has a non-empty intersection with the query range.

4.1 Range query implementations

Common to all three implementations is the following
method of routing to an IK which initiates the querying pro-
cess: for a range query whose lower and upper bounds are l
and u, we first route to the IK that owns the middle point
(l+u)/2, and then have that node recursively propagate the
request to its neighbors until all the IKs which intersect the
query are visited (“flooding”). This method has the advan-
tage of simplicity; it also works without changes if single
attribute values are sought. Other methods are conceivable,
such as initiating the flooding at the “ends” of the range as
well; but since they are conceptually the same, we think that
the proposed form exposes performance differences in the
clearest way.

For the flooding part we propose three strategies. The
first one is the most “naive” one, yet simple and applicable
for different hash functions. The second and third strategy
take advantage of the proximity preservation properties of
the Hilbert function or its generalizations; the performance
in these cases depends strongly on the choice of the hash
function. We believe that those are the most natural
approaches in our setting.

• Brute force: We first compute the smallest hypercube
that encompasses all zones of the IKs intersecting the
query, and then flood the request in a BFS-manner to all
nodes which belong to this hypercube. Disadvantages
of this method include wasted effort because not all
nodes that are visited actually intersect the query.

• Controlled flooding: We let the current node forward
the message to neighboring nodes that definitely inter-
sect the query. An advantage of this approach is that no
nodes that do not intersect the query are visited. One of
the disadvantages is the fact that nodes may receive
multiple messages for the same query. In addition, there
is possibly less parallelism comparing with the brute
force approach.

• Directed controlled flooding: The initial node starts

two “waves” of propagation. In the first wave, the cur-
rent IK propagates the query only to the neighbors that
intersect the query and have “higher” interval than the
current node. The second wave differs by the fact that
the current IK propagates the query to neighbors with
“lower” interval. An advantage is the reduction of mes-
sage duplication as compared with controlled flooding.

4.2 Update strategies

The strategies described in the following ensure high
fault-tolerance and self-organizing properties. Furthermore,
we elaborate on them in order to minimize the network traf-
fic. It is important to note that they can be applied indepen-
dent of the used DHT-approach, and also do not assume the
range query functionality described in the previous section.

In the “naive”, unmodified case the servers report peri-
odically the values of their attributes to the responsible IKs
using the routing of the P2P-infrastructure. Each IK collects
the pairs (attribute-value, server-id). If an update for one of
these servers is not received in the next reporting round, the
corresponding pair is erased.

In this way no additional activity is needed if the
attribute value has changed so much that the pair (attribute-
value, resource-id) is managed by another IK. This update
strategy has two other advantages. First, the reporting serv-
ers do not need to know about splits or changes of IKs. Fur-
thermore, if an IK fails, its replacement (created as in CAN)
acquires complete and up-to-date information within one
update round.

However, P2P-routing of updates incurs a lot of over-
head compared to the physical network routing (IP-routing)
in terms of network hops. In the following we describe
approaches how to reduce this overhead.

Besides the techniques that we have proposed in our ear-
lier work [13], that is, to introduce an auxiliary network to
optimize routing, we can cache the IP-addressed of the rele-
vant IKs. We assume that when an IK received an update, it
sends back a message containing its IP-address and the lim-
its of its interval. The server records this information in a
cache of a fixed cache size s, say. In the subsequent update
rounds it checks first the cache for an IK whose interval
contains the current attribute value. If found, the update
information is send to this IK via IP-routing. In this sce-
nario, the P2P-routing is used only at a cache miss or if the
IP-routing failed, i.e. if there was no acknowledgement
from the IK.

This strategy might become less efficient if the number
of IKs grows and so the sizes of their intervals decrease.
The following approach turned out to be very efficient in
avoiding this effect and further increasing the share of IP-
routing. When searching in the above-mentioned cache, we
artificially “broaden” the intervals of the cached IKs by sub-
tracting t, say, from the lower interval limit and adding t to
the upper limit. The parameter t is called the tolerance level.
This method can be only applied if it is not necessary to
know the exact attribute values.

Finally, under the same assumptions we can use the fol-
lowing method to balance the load between IKs. Each time

5

when a P2P-routing is used, the reported attribute value is
randomized in less significant digits by adding a random
value from an interval [-r,r]. The parameter r is called the
randomization level. This causes the update information to
be stored on an IK with an interval "close" to the true value.
It helps if a lot of very similar values are reported.

5. Evaluation

To show the effectiveness of the techniques, we evaluate
them via simulation. We assume that the attribute used in
the experiments is current processor capacity. Thus, in que-
ries we search for all machines with processor capacity in a
certain range.

Table 1 summarizes common parameters for our experi-
ments. One of then is the distribution of attribute values. We
use three different distributions shown in Figure 3: uniform
random, normalized Pareto with parameter a = 100, and
traces of residual server processing capacity from a data
center. The traces come from 41 servers and were collected
in 5-minute intervals during 34 days starting on September
2nd, 2001 (see [10] for more details). It is interesting to see
that a Pareto and the data center distributions are somehow
similar (albeit reversed and the data center distribution have
several peaks). This confirms a frequently made assumption
that a Pareto is a better fit for real-life utilization patterns
than the uniform distribution.

5.1 Query performance

The preprocessing step for the following experiments is
the building up of simulated CAN networks. For each

parameter set we start with one IK and report a set of
attribute values (with a specific distribution) until the num-
ber of IKs created due to splits reaches a specified value.
The parameter L is 20. In case of the data center traces we
concatenate traces from different days and times of the day
to reach a sufficient number.

In the first set of experiments, we study the query per-
formance with a simulated CAN network. The time taken to
perform a range query consists of (1) the time to route to the
IK that owns the middle of the range, and (2) the time spent
to flood the query request to all the nodes intersecting the
query.

To measure (1) we randomly select a pair of nodes in the
network and route between them. Figure 4 shows the num-
ber of logical hops needed between a random pair of nodes
averaged over 10 times the number of nodes of experiments
(e.g., if the number of nodes is 100, the number of experi-
ments is 1000). The x-axis shows the number of IKs and the
y-axis shows the average number of logical hops.

From this figure we see that node distribution can
slightly affect routing performance for CAN when d = 2.
But the differences are much smaller for CAN with a higher
dimension such as 4 and 8. (Due to space constraints we
omit the cases d = 4 and 8.) For d = 8, the average number of
logical hops between two randomly selected nodes ranges
from 5 to 8 for the number of IKs used in the system. In fact,
with the techniques described in [13], we can achieve close
to optimal routing performance.

To measure (2) we compute the longest and the average
path length taken to reach all IKs that intersect the query,
the number of messages sent, and the number of nodes that
are visited during the flooding. These quantities are normal-
ized according to the number of IKs which intersect the
query (note that this also applies to the average path length,
so that in the figures the numbers on the y-axis are less than
1). We show results averaged over 10 random tries for
ranges which vary from 0.002 to 0.6. The longest and the
average path length provides indication how fast the query
request can be propagated to the nodes intersected by the
query.

Figure 5 to Figure 7 illustrate the results for the three dif-
ferent distributions with 1000 IKs and d = 2. We only show
the average path length since the shapes of the curves for
longest path and average path are very similar. In these fig-
ures, (a) compares the average path length of the three dif-

Figure 3: Densities of the used attribute values

Parameters Range

of IKs (N) 100, 500, 1000, 5000, 10000

Dimension d 2, 4, 8

Attribute
Value
Distribution

Synthetic: uniform and Pareto

Real-life: data center traces

Table 1: Common parameters

1

10

100

1000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Attribute values

F
re

q
u

en
cy

datacenter uniform
Pareto

Figure 4: Comparison of logical routing performance, d = 2

0

10

20

30

40

50

100 500 1000 5000 10000
Nu m b e r o f IKs

L
o

g
ic

al
 H

o
p

s

unif orm

datac enter

pareto

6

ferent query propagation strategies, (b) compares the
number of messages, whereas (c) compares the number of
nodes visited. We can observe the following:

• The controlled flooding algorithms (undirected and
directed) perform better than the brute force approach
with respect to the time taken to propagate the query
requests (longest and average path length). The only
exception is for the Pareto distribution, where the con-
trolled flooding algorithms perform slightly worse for
query ranges 0.2 till 0.6. This is probably due to the
non-uniform distribution of the IKs in the system.

• The controlled flooding algorithm performs consis-
tently better than the brute force algorithm with respect
to the number of messages and number of nodes vis-
ited. The improvements are more significant for queries
with relatively large ranges. In fact, for the two con-
trolled flooding algorithms, only those IKs whose inter-
sect the query are visited.

• The directed controlled flooding algorithm reduces the
messaging overhead only slightly. For d = 2, the perfor-
mance of the two controlled algorithms are comparable.

Figure 8 shows the same set of curves for d = 4, the data
center trace, and N = 1000. The situation for d = 8 is very
similar. We observe that for a higher dimension, the con-
trolled flooding algorithms perform consistently better than

the brute force algorithm in terms of number of messages
and number of nodes visited. The performance improve-
ments are more significant for than those for a low dimen-
sion. Concerning the time to propagate the query request,
the performance differences for queries with smaller range
are larger than queries for large ranges.

5.2 Update efficiency

In the following we evaluate the effects of the strategies
described in Section 4.2. For all experiments the data center
traces were used. We simulated updates occurring in 5-
minute intervals during a single day (this gives 288 update
rounds). To increase the number of updates per round, we
concatenated the data for a single 5-minute “slot” of a 24
hours period from 33 days. We set 50 as the threshold at
which the interval of an IK is split. At each update round
new splits could occur (which caused the number of IKs to
increase). To decrease the number of parameters, we did not
merge together neighboring IKs with low number of report-
ing servers. The number of IK after the last round was in the
range 110-160.

Figure 9 provides intuition how the changes in update
patterns may affect the routing efficiency. The efficiency is
measured as a ratio of IP-routed update messages to the total
number of update messages. In round 97, obviously a new
“pattern” of the update values occurs. It causes many cache

(a) Average path length

(b) Number of messages (c) Nodes visited

Figure 5: Average path length, number of messages, and
number of nodes visited, where x-axis is the size of range
query. The figures are for the data center trace, N = 1000
and d = 2.

0

0.05

0.1

0.15

0.2

0.25

0.00 0.01 0.05 0.20 0.40 0.60

brute force

controlled flooding

directed controlled
flooding

0

5

10

15

0.
00

2
0.

05 0.
4

Range

0
2
4
6
8
0
2

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

0

1

2

3

4

5

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

(a) Average path length

(b) Number of messages (c) Nodes visited

Figure 6: Average path length, number of messages, and
number of nodes visited, where x-axis is the size of range
queries. The figures are for the uniform distribution trace,
N = 1000 and d = 2.

0

0.1

0.2

0.3

0.4

0.00 0.01 0.05 0.20 0.40 0.60

brute force

controlled
flooding

directed
controlled
flooding

0

1
2

3

4

5

6

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

0

0.5

1

1.5

2

2.5

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

7

failures at the reporting servers, and thus a drop in the frac-
tion of IP-routed updates. An additional effect is the likely
creation of new IKs, so further cache entries become out-
dated. The same figure shows that the tolerance level t
indeed drastically improves the routing efficiency. This is
discussed in the following

Figure 10 visualizes the effect of the servers cache size s
and the tolerance level t on the fraction of all IP-routed
updates in relation to all updates (summed over all rounds).
We see that a value of 10 for the cache size s (which corre-
sponds to 7-10% of the number of IKs) is close to the cache
saturation level. More significant is the influence of the tol-
erance level t. For s = 10 already a small value of t = 0.001
increases the fraction of IP-routed updates to a level not
attainable by the means of increasing the cache size in case t
= 0.0. For t = 0.01 already a small cache size ensures a high
ratio of IP-routed messages.

In Figure 11 we see the effect of the tolerance levels on
the number of created IKs per round. With higher tolerance
levels, less and less of new IKs are needed during the suc-
cessive update rounds.

Figure 12 shows the effect of the randomization level r
on the density of the number of IKs per interval. With
increasing value of r we expect this density to be more
evenly distributed. It turns out that this effect is not very
pronounced, at least not for this data set. Therefore this
approach seems to have only a limited value for balancing

of load between the IKs. However, for a peak attribute den-
sity at 0.7 a positive effect can be observed (also cf.
Figure 3). This leads to a conjecture that for degenerate
update value sets (e.g. many identical values) this approach
performs well.

6. Conclusions and Future Work

In this paper we investigate the issue of extending P2P-
based Distributed Hash Table systems such as CAN to allow
range queries. To our knowledge, this is the first work that
addresses this problem.

We propose three simple strategies for propagating
range-query requests, and strategies to minimize the com-
munication overhead during the attribute updates. We evalu-
ate the effectiveness of these strategies through simulations
using both synthetic and real-life workloads. We show that
the techniques we propose are effective in meeting the goals
of scalability, availability and communication-efficiency.
The design of the system and its evaluation targets its usage
as a part of the information infrastructure for grids.

While this system is based on CAN, our future work will
include evaluating of similar approaches which are based on
Plaxton-like DHT-systems such as Tapestry or Chord. We
also intend to investigate application of caching and replica-
tion to further improve reliability and availability of the
information service. An interesting problem is handling of

(a) Average path length

(b) Number of messages (c) Nodes visited

Figure 7: Average path length, number of messages, and
number of nodes visited, where x-axis is the size of range
queries. The figures are for the Pareto distribution trace,
N = 1000 and d = 2.

0

0.05

0.1

0.15

0.2

0.25

0.00 0.01 0.05 0.20 0.40 0.60

brute force

controlled flooding

directed controlled
flooding

0

1

2

3

4

5

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

0

0.5

1

1.5

2

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

(a) Average path length

(b) Number of messages (c) Nodes visited

Figure 8: Average path length, number of messages,
number of nodes visited, where x-axis is the size of range
query. The figures are for the data center trace, N = 1000
and d = 4.

0

0.2

0.4

0.6

0.8

1

0.00 0.01 0.05 0.20 0.40 0.60

brute force

controlled
flooding

directed
controlled
flooding

0

20

40

60

80

100

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

0
5

10
15
20
25
30

0.
00

2

0.
01

0

0.
05

0

0.
20

0

0.
40

0

0.
60

0

8

multiple attributes by a single enhanced DHT-system, as
well as coupling these techniques with a real grid informa-
tion infrastructure.

7. References

[1] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmaier,
“Space Filling Curves and Their Use in Geometric Data
Structures”, Theoretical Computer Science, 181, 1997, pp.
3-15.

[2] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet:
a Distributed Anonymous Information Storage and
Retrieval System”, Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, USA,
2000.

[3] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing”, 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10), IEEE
Press, 2001.

[4] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I.
Stoica, “Wide-area cooperative storage with CFS”,
SOSP’01, Banff, Canada, 2001.

[5] C. Decusatis, “Grid computing: the next (really, really) big
thing - interconnecting millions of distributed-computing
devices”, BYTE, Spring 2002.

[6] Gnutella, http://www.gnutella.org.

[7] A. Iamnitchi, and I. Foster, “On Fully Decentralized
Resource Discovery in Grid Environments”, International
Workshop on Grid Computing, Denver, Colorado, 2001.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao, “OceanStore: An
Architecture for Global-Scale Persistent Storage”, ASPLOS
‘00, MA, USA, 2000.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A Scalable Content-Addressable Network”,
ACM SIGCOMM ‘01, San Diego, CA, USA, 2001.

[10] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak, “Statistical
Service Assurances for Applications in Utility Grid
Environments”, submitted, 2002.

[11] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A scalable peer-to-peer lookup
service for Internet applications”, ACM SIGCOMM ‘01,
San Diego, CA, USA, 2001.

[12] S. Waterhouse, “JXTA Search: Distributed Search for
Distributed Networks”, Sun Microsystems, May 2001.

[13] Z. Xu, M. Mahalingam, and M. Karlsson, “Turning
Heterogeneity to an Advantage in Overlay Routing”, HPL-
2002-126.

[14] Z. Xu, and Z. Zhang, “Building Expressways for P2P”,
HPL-2002-41.

[15] Z. Zhang, M. Mahalingam, Z. Xu, and W. Tang, “Scalable,
structured Data Placement over P2P Storage”, HPL-2002-
40.

Figure 9: Example how the changes in update patterns
affect the routing efficiency

Figure 10: Influence of cache size and tolerance level t on
the fraction on IP-routed updates

0

0.2

0.4

0.6

0.8

1

1 41 81 121 161 201 241 281

round #

IP
-r

o
u

te
d

 f
ra

ct
io

n

t = 0.01 t = 0.005

t = 0.001 t = 0.0

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
cache size

IP
-r

o
u

te
d

 f
ra

ct
io

n

t = 0.01

t = 0.001

t = 0.0

Figure 11: Effect of the tolerance level t on the number of IKs

Figure 12: Effect of the randomization level r on the
distribution of IKs density

50

100

150

1 41 81 121 161 201 241 281

round #

n
u

m
b

er
 o

f
IK

s

t = 0.01 t = 0.005
t = 0.001 t = 0.0

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8

attribute value

fr
eq

u
en

cy
 o

f
IK

s r = 0.0

r = 0.01

r = 0.05

