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Demosaicing of Color Images Using Steerable Wavelets

Yacov Hel-Or and Daniel Keren
Hewlett-Packard Labs Israel *

Abstract

In some types of digital color cameras only a single value is provided for each pixel:
either, red, green, or blue. The reconstruction of the three color values for each pixel is
known as the “demosaicing” problem. This report suggests a solution to this problem
based on the steerable wavelet decomposition. The reconstructed images present a
faithful interpolation of missing data while preserving edges and textures.

1 Introduction

A color image is typically represented by three bands each of which is a matrix of values
representing the responses of an array of photo-sensors to the viewed scene. The three bands
are often referred to as red (R), green (G), and blue (B) according to their spectral sensitivity.
Thus, three numbers are given at each matrix location composing a pizel value. Some CCD
cameras, however, provide only a single value for each pixel due to their inability to position
three photo-sensors at the same location. In these cases, the captured image is composed of
three bands whose pixel values are partially sampled. An example of a CCD array with a

typical photo-sensor arrangement is given in Figure 1.

The demosicing problem deals with the reconstruction of a color image I from a partial
sampling D of its pixel values. This inverse problem is, of course, under-determine since
the solution space includes infinite images satisfying D. To obtain a single solution, a quality

criterion should be defined over the solution space so that the best image according to that
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Figure 1: A typical arrangement of photo-sensors in a CCD array (left). This arrangement
provides three color bands whose pixel values are partially sampled (right). Note that in this
example, the number of green samples is twice that of the red and the blue. This corresponds
to the varying spatial resolution of the human visual system at different spectral wavelength.

criterion will be chosen. Assuming P(I) specifies the probability that an image I is the
acquired image, the mazimum a posteriori (MAP) criterion defines the desired solution as

the image I that maximizes the a posteriori conditional probability:
I= argm{axP(ﬂD) (1)

In general it is difficult to evaluate P(I|D) and the Bayes rule is applied to this end:

P(D[I)P(I)

P(I|D) = D)

(2)

Since D is already given, P(D) is constant and can be disregarded. As a result, estimating
the a posteriori probability P(I|D) requires the evaluation of P(D|I) and P(I). The first
term is typically easy to define and depends on the noise characteristics of the measured
samples. On the other hand, modeling the a priori probability P([) is a complicated task

and can be critical for any reconstruction approach.



Previous studies dealing with the demosaic problem suggested several alternatives to specify
an image prior P(I). Brainard and Sherman [BS95, Bra94| use the spectral characteristics
of natural images and the correlation between color bands to define a prior over the image
population. With their approach the prior function is image independent and is calculated
once and for all natural images. Keren [Ker96] suggested the use of an adaptive prior that
is calculated for each specific image and changes over the location in the image based on the
partial information available. Both approaches assume the smoothness of natural images in
the spatial domain. This smoothness assumption is problematic in textured areas and near
edges or lines where the smoothness assumption is incorrect. Applying the smoothness prior

to these areas will result in blurred edges and a loss of high frequency details.

This report suggests a new approach which exploits the correlation between neighboring
information in the “steerable wavelet” representation. The advantage of working in the
wavelet domain is that the smoothness assumption is applied in the appropriate scale and
in the appropriate orientation. The demosaic results using this approach provides a faithful

interpolation of missing samples while preserving edges and textures in the resulting image.

The report is organized as follows: First, the basic problem and the suggested solution
are presented for a simpler case; the reconstruction of a gray-scale images from its partial
sampling. Next, the steerable wavelet decomposition is presented. Finally, the reconstruction
of color images using the steerable wavelet decomposition is explained. It should be noted
that though the current paper is written in the the context of demosaicing solutions, the
suggested approach is also appropriate for a wide variety of reconstruction problems that

can be dealt with using the same framework.
2 Modeling Gray-Scale Natural Images

Many psychophysical and computational studies show that natural images have special char-
acteristics forming a non uniform distribution over the image space (see e.g. [Ker87, OF96)).
For example, it is widely assumed that the power spectra of natural images tend to be
inversely proportional to their spatial frequencies [Fie93]. Additionally, it is shown that

natural images are spatially and spectrally correlated within neighborhood areas [OF96]. In



color images, the correlation is even more restrictive due to the fact that there is a strong

correlation (or anti-correlation) between color bands [Wan95, HK84].

2.1 Isotropic smoothness Model

Previous approaches for the reconstruction of a single-band image used the Markov Random
Field (MRF) model for introducing the prior probability P(I) [GG84, MMP87]. With this
model, natural images are assumed to be isotropically “smooth” with probability conforming
to the Gibbs distribution:

1
P(I) = Ze*‘””

where Z is a normalization constant and W(7) is a smoothness measure of the image I.
Popular smoothness measures are the first order (membrane) and the second order (thin

plate) energy forms:

(1) = [ VI|*de

(1) = [ V2170
where the integral is performed over the image support §2.

Assuming the sampled values are D(z;,y;) and the measurement noise is a white zero mean
Gaussian process with variance o2, the conditional probability P(D|I) then follows the
Gaussian distribution:

Si(D(wi,yi) — (i, y:)?)
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P(DIT) = = exp{ -

A }

Using, for example, the second order MRF model, and plugging P(D|I) and P(I) above into

Equation 1 we obtain:

- 1 Yi(D(wi,yi) — (i, 4:)*) 2712
I= arg max [ﬁ exp{— 552 — /Q | V=1|7d$2

It is easy to verify that maximizing the above expression is equivalent to minimizing;:

Zi(D(i% Z/z') - I<xi7 yi)2
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C(I|D) = ) +)\/Q V212402 (3)



This cost function consists of two terms: the first term penalizes pixel values not conforming
with the sampled values, and the second term penalizes for a non smooth solution. The
variable A is a tuning parameter that determines the relative weight of the smoothing term

in the total cost.

Minimizing Equation 3 yields a solution that compromises between the sampling values and
the smoothness term. Due to the prior assumption that natural images are isotropically
“smooth”, areas in the image that are indeed “smooth” will be reliably reconstructed. How-
ever, edges, lines, and textured areas in the original image that do not conform with the
prior model will be blurred. Moreover, if the sampling values are assumed to be error free
(i.e. noise variance is zero), oscillating artifacts will appear near edges. This is demonstrated
in Figure 2. The upper figure shows partial sampling of the green band as taken by a digital
camera Kodak DCS-200. The lower figure shows the reconstructed image using an iterative
scheme that minimizes Equation 3 where the sampled values are assumed to be error free.
The oscillating artifacts near edges and lines are demonstrated (see, for example, the net

pattern in between the rungs in the chair back).



Figure 2: Upper figure: The green band of a sampled image taken by a digital camera (Kodak
DCS-200). Lower figure: Reconstructed figure using the isotropic smoothness assumption.



2.2 Directional Smoothness Model

As mentioned in the previous section, the main problem with the isotropic smoothness model
is the interpolation near edges and in textured areas where the smoothness assumption is
incorrect. For this end, several alternatives were suggested, all of them model a typical image
as a piecewise constant or a piecewise linear function. Anisotropic diffusion [Pm90], robust
statistics [MMRKO1], and regularization with line processes [GG84|, were developed to treat
image interpolation and reconstruction with discontinuities. In recent studies [BZ87, BR9G6,

BSmH97] all the above approaches were shown to be theoretically equivalent.

This work is similar in spirit to these approaches, namely, interpolation is performed along
edges and not across edges. Previous methods are based on the localization of edges using
gradient operations and preventing the interpolation from crossing these edges. This leads
to two main difficulties: The gradient is a too local feature and thus produces many spuri-
ous edges especially when the data is sparsely sampled as in our case. Additionally, these
approaches operate on a single scale of the image. Since edges can appear in different scales,
only part of the edges are correctly treated. In this work the interpolation is based on the
orientation of the underlying edges which is a more global feature and therefore less sensi-
tive to missing data and noise. Furthermore, the interpolation is performed in a multi-scale

manner and thus deals with each edge in its appropriate scale.

In this work a more intuitive prior assumption is given to natural images. Natural images
are considered as 2D functions with sharp edges at different scales and different orienta-
tions. This prior is in accord with statistical [OF96], neuro-physiological [SGVES89], and
psychophysical [BA91] studies where natural images are said to contain localized, oriented,

and bandpass structures.

In order to efficiently obtain the particular structure of a given image with respect to the
above properties a multi-scale and multi-orientation representation should be applied to the
image. The multi-scale representation can be implemented using the Laplacian pyramid

decomposition [BA83|. The Laplacian pyramid decomposes an image I into a set of band-



pass components:
I = Z B,
S
where each band By represents a particular scale in the Laplacian pyramid. The multi-

orientation representation can be applied using steerable filters decomposition where By is

decomposed into a linear set of oriented bands:

B, = Z Bs,d
d

where the sum is performed over the orientation bands d = 0..m — 1, and the preferred
direction of each band is 6; = %d. The entire decomposition with respect to scale and
orientation is referred to as the steerable wavelet decomposition [FA90]. The main advantage
of the steerable wavelet decomposition is that the image response can be recovered for any
direction. Thus, if B; 4 represents the image response along the preferred direction 6, then

the image response along an arbitrary direction 6 can be calculated by a weighted sum of

{Bs’d}l
m—1
Bs,9 == Z hk:(e)Bs,d
k=0

where h; are known functions that depend on the the angle 6. Typically, it is common to
assume that high value of a particular coefficient B; 4(p) suggests for an oriented structure
in the image, located at p with direction 6; and scale s. However, this is not always true
since the transform coefficient is phase dependent. In order to nullify the phase factor it is

necessary to apply the Hilbert transform!

of the steerable wavelets as well [Bra78|. A pair
of filters which are Hilbert transforms of each other form a quadrature pair. Thus, for each
scale and orientation we have a pair of bands B; 4 and Bs,d from which an oriented structure
can be deduced. The squared sum of two coefficients forming a quadrature pair represents
the (phase independent) energy of the signal at the particular frequencies represented by the

quadrature filters. In our case, a high energy response in:

E,q(p) = B2,(p) + B24(p)

indicates an oriented structure in the image, located at p with direction 6, and scale s. If

the Hilbert bands are steerable as well (and we design them to be such) then it is possible

1Hilbert transform of a filter has the same frequency response with a phase shift of 90°.



to “steer” the energy response in a similar manner for any orientation 6:

E,o(p) = B2y(p) + B2y (p)

In this manner, the directional energy which is the energy response at a particular preferred

direction and in a particular scale can be calculated.

An example of steerable wavelet decomposition applied to a naive interpolation (bilinear)
of the chair image is presented in Figure 3. In this decomposition we have chosen three
scales and four orientations. The wavelet bands {Bs 4} along with their quadrature pairs are
presented. Figure 4 shows the energy response of each band calculated by a squared sum of
its quadrature pairs. Bright areas indicate an oriented structure at the particular direction

and scale.

Under the assumption that natural images contain sharp edges at different scales and dif-
ferent orientations, it is very probable that the coefficient values in the Laplacian pyramid
will have similar values along directions with high directional energy responses. lL.e. if Eg
is high, and a neighboring pixel ¢ is at direction 6 from p, then the difference |Bs(p) — Bs(q)]
should be small. This assumption can be expressed as a prior probability for a Laplacian

band as follows:

1
P(B,) = e ")

where W3 is a directional smoothness function measuring the extent of smoothness of the
coefficient band B; according to the directional energy Ej¢. For example, adopting the
membrane energy form for smoothing, the directional smoothness measure will be:

Us(Bs) =3 D> 9(Bsyn(p)(Bs(p) — Bs(q))*

P geN(p)

where N(p) is the local neighborhood of p, and pg is the angle representing the direction
of ¢ from p. The function g(z) is an increasing monotonic function adjusting the strength
of this smoothness criterion according to the directional energy. Assuming the Laplacian
coefficients are uncorrelated along scales we have that the joint probability of the entire set

of Laplacian coefficients B = { B} is a chain multiplication of priors:

P(By, By, --+) = P(B) = [ P(B.)



Figure 3: The Steerable Wavelets decomposition applied to a naive interpolation of the chair
image. Three scales are presented (top to bottom: 1st, 2nd, and the 3rd octaves). At each
scale eight steerable filters were applied; foutOdirections were sampled where two steerable
filters (forming a quadrature pair) were applied at each direction.



Figure 4: An energy response calculated by the squared sum of the quadrature values. Three
scales (top to bottom) and four orientation (left to right) are presented. Bright areas indicate
an oriented structure at the particular orientation and scale.

Since the decomposed image I defines uniquely its Laplacian coefficients (even though the
Laplacian forms an over-complete representation) the prior distribution of B is proportional

to the prior of natural images:
P(I) = /P(I|B)P(B)dB - /5([ — " B,)P(B)dB x P(B*) where [ =3 B

Plugging this into Equations 2 and 3 we find that minimizing the cost function C(I|D)
(Equation 3) can be performed alternatively by minimizing a corresponding term involving

the Laplacian coefficients B:
>i(D(wy,y:) — I, yi)2>
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C(I|D) o< C(B|D) = A Uy(B)) (4)

The minimization of C'(I|D) can be performed iteratively using a gradient descent procedure.

The iterations are performed in two steps minimizing the data term and the smoothness term
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alternately. If B! is the set of the Laplacian coefficients at iteration ¢, the following iterative

scheme will minimize the smoothness term:

B (p) = Z 9(Epa(p))(Bi(q) — Bi(p))

qGN

where 3 is a scalar parameter adjusting the convergence rate, and Z is a normalization
constant Z = 3 e n(p) 9(Fspy(p)). Note that the difference Bi(q) — BL(p) is weighted by E, z,
thus, at each location p the Laplacian band By is directionally diffused along orientations with
high directional energies. A similar iteration procedure is performed in order to minimize

the data term. At step ¢ the following iteration is performed:

I'"(p) = I'(p) + v(D(p) — I'(p))

The scalar v is similarly a convergence parameter depending on the error variance o. If
D(p) is error free (¢ = 0 as we assume in our case) v is one and the iteration rule becomes:
I'™(p) = D(p). In this case, combining the two steps into one minimization procedure

results in an algorithm as illustrated in Figure 5.

The effect of smoothing along the preferred orientations is demonstrated in Figures 6 and 7.
In Figure 6 the diffusion was performed only along the vertical direction. It can be seen that
vertical lines and edges were reliably interpolated while other edges remained unchanged.
Figure 7 shows a diffusion along all directions where four directional bands were used. In

this case edges and lines in all orientations were reliably interpolated.

12



Raw Image

!

Naive interpolation
P

Laplacian Pyramid Steerable Pyramid
’
for each scae

smooth along
prefered orientations

collapse pyramid

L reset original samples

Figure 5: Domosaicing algorithm for error free sampled data.
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Figure 6: Directional interpolation of the green band taken by the Kodak DCS-200 cam-
era. The interpolation was performed only for those bands whose preferred orientation were
vertically oriented. The rest of the image remains unchanged.

Figure 7: Directional interpolation of the green band taken by the Kodak DCS-200 camera.
The interpolation was perform for all directions.
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3 Steerable Wavelets and Local Orientation

The wavelet transform has become a popular image representation in recent years. The

transform gained its popularity due to several useful properties:

e [ts basis functions are localized both in spatial and frequency domains.

e [t decomposes an image into multi-scale and multi-orientation components which is a

useful property in many processing tasks.

e It exploits the local correlations in natural images (signals), and thus its coefficients

are (relatively) uncorrelated.

The wavelet decomposition is appropriate for our task since its coefficients capture multi-scale
and multi-orientation structures in the image. However, the conventional Wavelet transform
is inappropriate to this end due to the fact that it is not shift-invariant nor rotation-invariant.

Figure 8 demonstrates this problem (taken from [SFAH92|).

Actually, every critically sampled transform will be variant to shift or rotation [SFAH92].
To overcome this problem it is essential to perform an over-complete transform (the number
of coefficients is greater than the number of pixels). This is not a problem in our case since

our aim is image analysis and not image coding.

The steerable wavelet decomposition [FA90] is a wavelet-like transform that is invariant to
shift and rotation and thus appropriate for our task. It is an over-complete representation

having the following properties:

e Its basis functions are shifted, scaled, and rotated versions of a “mother wavelet”; If

M (x,y) is a mother wavelet, then each basis kernel W 4 can be constructed by:
Ws.a = Rg,M(sx, sy)

where (sx,sy) is a scaling by s, and Ry, represents a rotation by 6;. Each wavelet

band B, 4 is a result of convolving the image I with the corresponding basis kernel:

Bs,d =1x Ws,d
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Figure 8: Assume the signal to be transformed (upper left) is composed of a particular wavelet
basis function wg(z). All of the wavelet coefficients of this signal will have zero values except
for the coefficient corresponding to the k' basis function. Now, if we shift the signal by one
pixel (upper right), the coefficients of the new signal might be distributed in all the wavelet
levels (right). In translation invariant transforms the coefficients of the translated signal are
similarly translated. This example is taken from [Simoncelli et. al. 1992] .

e It is a self-invertible transform (the synthesis functions and the analysis functions are

identical).

e It is shift and rotation invariant. Therefore, its coefficients form smooth structures and

graceful changes in the wavelet domain.

e It has a flat response (the sum of squares of the basis functions is constant for all

(z,9)).

e Its basis functions are similar to the the receptive fields of the simple cells in the visual

cortex.

e Most important: it is possible to recover the filter response in any direction. L.e. if the

16



bands B; 4 (d = 0..m — 1) are the signal responses in preferred directions 6, then

m—1

VO e [0---27] Bsg= Y ha(0)Bsa

d=0

where {hy}7,' are known interpolation functions. This is the “steerability” property

of these filters.

The last property is very useful is our case. The “steerability” property allows us to calculate
the directional energy of an image at any chosen direction by “steering” the directional
energy. In [FA91] Freeman and Adelson explain how to calculate the directional energy
from a set of steerable filters and their Hilbert transforms (forming quadrature pairs). The
directional energy is phase-independent due to the phase asymmetry of the quadrature filter
pair [Bra78]. Freeman and Adelson [FA91] suggested a set of steerable quadrature pairs based
on derivatives of a Gaussian. They provide filter taps with the appropriate interpolation

functions {hg}.

An alternative approach for calculating the direction with the highest energy response, de-
noted by local orientation, is suggested by Haglund et. al. [HKG93]. The local orientation
d;(p) is a vector associated with the position p and scale s denoting the dominant direction in
the neighborhood of p. The strength of the local orientation is represented by the magnitude
of ds(p) and its direction is half of the angle formed by ds(p). Since the local orientation
angle can varies from 0 to m, doubling the angle gives the range of 27 and thus is efficient
in terms of direction continuity (see [Jah95] for more details). The approach of Haglund et.
al. is an approximation of the steerable filters since it can recover only the energy response
along the “local orientation”. However, its calculation is somewhat simpler. Given a local
orientation d4(p), the directional energy along 6 can be approximated by projecting ds(p)

onto a unit vector ny = (cos(20), sin(26)):

Es,e(p) =d, (p) s Ny

With this approach the Hilbert transforms of the steerable filters W, are not necessarily

steerable. Haglund suggested using a set of polar separable filters whose transfer functions

17



can be separated into angular parts and radial parts. In the frequency domain (uq,ug) this

type of filters are conveniently expressed in polar coordinates:

WS,d = SS(Q)ﬁd(e)
where the notation X denotes the Fourier transform of X. The radial part Ss(q) is a
function of ¢ = y/u? + u2 and is in practice a band pass filter that can be implemented by
the Laplacian Pyramid scheme. The angular part Dy(f) is a function of # = tan™" (uy/u,).

Haglund suggested the use of a set of quadrature pairs with the following angular parts:

Vie = Sila)cos™(0 — )
i od = S(q)i cos? (0 — O4)signum(cos(0 — 6,4))

where 0; = %i ford =0, ---,m—1. The indices e and o denote the even and odd components
of the quadrature pair. The parameter [ determines the angular resolution of these filters. It
is necessary that m > [+ 1 (see [Jah95]). Note that the even component filters are steerable
while the odd components are not. If we represent the local orientation ds(p) as a complex
number whose magnitude corresponds to the strength measure and its angle is double the
local direction then the local orientation can be calculated by the following sum (see [Jah95]

for a proof):
d,(p) = €®™E,4(p) where E,q=(I%K:,)*+ (I*K2,)’
d

An example of steerable filters with their Hilbert transform for a single scale is given in Figure
9. The decomposition of the frequency domain using these filters for m = 3 is illustrated
in Figure 10. The division into rings represents the multi-scale decomposition, while the

devision into sectors represents the multi-orientation decomposition.

We use the steerable filters in our demosaicing process in order to calculate local orientations.
The results of applying three sets of quadrature steerable filters (three different scales) to
a naive interpolation (bilinear) of the raw chair image is presented in Figure 3. From these
outputs it is possible to calculate the local orientations as explained. The calculated local

orientations for three scales are shown in Figure 11.
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Figure 9: Four kernels of steerable filters (top row) and their Hilbert transforms (bottom row)

of the 4th octave.

Figure 10: Multi-scale and multi-orientation decomposition of the frequency domain performed
using the Steerable Wavelets. The division into rings represents the multi-scale decomposition
and the division into sectors represents the multi-orientation decomposition. The grey areas
represent a particular filter with a preferred direction of 135°.
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Figure 11: Flow diagrams of the local orientation calculated for three scales of the chair
image. At each pixel the direction and the strength of the local orientation is represented by

an oriented line segment.



4 Demosaicing of Color Images

At a first glance it would seem that demosaicing of color images can be performed by applying
a directional smoothing to each color band (red green and blue) separately. The directional
energy should be calculated once, for example, from the luminance image, and directional
smoothing of each band can be implemented accordingly. With this approach, the correlation
between the color bands is expressed by the fact that a single directional energy map is
used. Unfortunately, this approach does not give satisfactory results: Smoothing along
dominant orientations indeed retains the sharpness of edges, however, the location of these
edges might be subject to small shifts. These small shifts are due to the mis-registration of
the color samplings. Misalignment of edges along the color bands results in color artifacts
in the demosaic image. This behavior is demonstrated in Figure 12. Figure 13 shows
the demosaicing result of the chair image after directional smoothing of each color band

separately. Color artifacts are noticeable.

To overcome this problem, a possible solution is to enforce a smooth structure in the color
values. However, care should be taken so that edges and lines in the image will not be
affected by this smoothing. An efficient color representation space in which color smoothing
can be applied is the luminance-chrominance color representation. This representation can

be obtained by linearly transforming the RGB values into YIQ values using the following

transformation:
Y 0.299 0.587 0.114 R
I | =1 0596 —-0.274 —-0.322 G
Q 0.211 —-0.253 0.312 B

In the YIQ representation the Y component represents the luminance (intensity) of the image
and the IQQ components represent the chrominance. Such a representation is appropriate for

our task due to two reasons:

e The luminance-chrominance is an uncorrelated color representation and as such enables

treatment of each color band separately [Wan95].

e The human visual system is more sensitive to high frequencies in the luminance band

(Y) than in the chrominance bands (IQ). In fact, in the chrominance bands, the human
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Figure 12: Top: A two-band color image with the corresponding color samples. Middle: The
cross sections of the interpolated color bands. The reconstructed steps are sharp due to the
directional smoothing. Bottom: A stripe of color artifact due to misalignment of the step
edges in the interpolated bands.

visual system is only sensitive to low frequencies. This is shown in Figure 14 (from

[PW93]).

Since edges, lines, and textures are composed of high frequencies, their appearance is in-
fluenced mainly by the luminance component. This phenomena enables us to enforce a
smooth structure in the chrominance bands while preserving high frequency structures in
the luminance band. The updated algorithm for demosaicing will include two pathways. A
given image is now transformed into a luminance band and two chrominance bands. The
luminance band is directionally smoothed according to the algorithm described in Section
2.2. The chrominance bands, however, are isotropically smoothed by a convolution with a
Gaussian kernel. The resulting values are then transformed back into the RGB representa-
tion and the original samples are reset to their original values. This process is performed

several times iteratively until a satisfactory result is produced. In our simulations three to
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Figure 13: A demosaic image after applying the directional smoothing on each color band
separately. Note the color artifacts near edges.

four iterations produce good results. The suggested algorithm is illustrated in Figure 15.

5 Results

The proposed algorithm was tested on a wide variety of images. Some of them were acquired
by the Kodak digital camera (DCS-200) where raw data was provided as well as the de-
mosaic images. These images supply an objective comparison between existing demosaicing
algorithm (Kodak’s) and the suggested method. The rest of the test images were generated
from given RGB images where raw data was produced by taking a partial sampling of the
original values, simulating a digital camera. Figures 16, 17 and 18 are three examples of
demosaic images produced by the suggested algorithm, along with the results provided by
the Kodak camera. It can be seen that the Kodak algorithm produces color artifacts mainly
along edges and in textured areas (the chair and grass areas in Figures 16, 17, and the wood

pattern in Figure 18). These artifacts were drastically reduced using the suggested approach.

Figures 19 and 20 are two examples of demosaic images along with the original RGB images.
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Figure 14: Luminance-chrominance sensitivity of the human visual system with respect to
spatial frequency. The solid line represents the luminance sensitivity while the dashed and the
dotted lines represent the chrominance sensitivities. Taken from [Poirson and Wandell 1993].

Indeed, color artifacts were reduced, however, due to the lower sampling rate, the demosaic
images are slightly blurred compared to the originals. Image 21 is a good example demon-
strating the limitation of the suggested approach and actually of any demosaic algorithm.
Due to the perspective warp in this image, the fence rungs of the lighthouse form a mono-
tonically increasing frequency pattern. At a particular frequency, the demosaic algorithm
breaks down and produces a strong color aliasing. Notice that the aliasing artifacts occur in
the area where the rungs falls on every other pixel which is exactly the Nyquist frequency of
this image. This demonstrates that the demosaic algorithm cannot recover high frequencies

above the Nyquist limit.
6 Computational Aspects

The computation cost of the proposed algorithm is composed of three parts:

1. The transformation of the RGB image into YIQ representation.

2. The decomposition of the luminance band into the steerable wavelets representation.
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Figure 15: Demosaicing algorithm of color images.

This includes the application of two filters per each directions (the quadrature pair)

and a repetition of the directional decomposition for each scale level.

3. The directional smoothing of the luminance component and the isotropic smoothing

of two chrominance components.

This complexity can be drastically reduced if some approximations are performed. First,
since the demosaic color artifacts take place mainly in the high frequencies, it is possible to
work in the highest scale level or even in the original image space. This, of course, will not
perform well in the low frequencies domain, however, we assume that low frequencies are
interpolated quite accurately. Next, the number of directional decomposition can be reduced.

We used a four directional decomposition, which required the application of eight filters,
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Figure 16: Demosaic results of color images. Left: The demosaic result of the chair image as
produced by the Kodak camera algorithm. Note the color artifacts near the chair rungs and
in the grass area. Right: The demosaic result using the suggested approach.

however, three directional decomposition gives reasonable results as well. Finally, since the
RGB to YIQ transformation and the smoothing operation are both linear operations, it is
possible to propagate the smoothing operation into the RGB space. This will eliminate the
need to transform from RGB to YIQ and visa versa at each iteration. Additionally, working
in the RGB space can avoid the calculations of pixel values existing in the original sampled

image.
7 Conclusion

A new demosaic algorithm is proposed which interpolates a color image given its partial sam-
pling from a digital camera. The technique is based on the steerable wavelets decomposition
where image values are interpolated in their appropriate scale and in their appropriate di-
rection. The interpolation is performed in the luminance-chrominance color representation.
Chrominance values are interpolated using the classical regularization approach. Luminance

values are interpolated using a directional regularization scheme. This approach gives a

26



faithful interpolation of edges and textured areas while reducing color artifacts.
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Figure 17: Demosaic results of color images. Top: The demosaic result as produced by the
Kodak camera algorithm. Bottom: The demosaic result using the suggested approach.
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Figure 18: Top: The demosaic result as produced by the Kodak camera algorithm. Bottom:
The demosaic result using the suggested approach.
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Figure 19: Left: The original RGB image. Right: A demosaic result using a partial sampling
of the original image.
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Figure 20: Top: The original RGB image. Bottom: A demosaic result using a partial sampling
of the original image. 31



Figure 21: Left: The original RGB image. Right: A demosaic result using a partial sampling
of the original image.
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