
                                                                       
Modeling the Price-Demand Relationship Using  
Auction Bid Data 
 
Alex Zhang, Dirk Beyer, Julie Ward, Tongwei Liu, Alan Karp, Kemal Guler, 
Shailendra Jain, Hsiu-Khuern Tang 
Software Technology Laboratory  
HP Laboratories Palo Alto 
HPL-2002-202 
July 16th , 2002* 
 
 
pricing, 
demand 
function, 
auction, 
estimation 
 

This report documents two mathematical models for extracting the 
price-demand relationship, commonly known as the demand 
function or demand curve, for consumer products using on- line 
auction bid data. The first model assumes that all bidding sequences 
are equally likely; the second model assumes that the bidders arrive 
in Poisson streams and utilizes the time of bid information. Our 
goal is to estimate, from recorded bids in n auctions, the proportions 
of potential (in addition to the known) bidders who are willing to 
bid a price. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2002 



Contents

1 Introduction 4

2 The Equally Likely Bidder Sequences Model 8

2.1 Model Description and Assumptions . . . . . . . . . . . . . . . . . . . . 8

2.2 Probability That Price i Is Recorded in Bid History . . . . . . . . . . . . 9

2.3 Probability Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The Probability of Observing a Recorded Bid History . . . . . . . . . . . 12

2.5 Reverse Engineering: Solving for Bidder Group Sizes . . . . . . . . . . . 12

2.6 Demand Function Under the Basic Model . . . . . . . . . . . . . . . . . 13

2.7 An Alternative Method of Estimating Bidder Group Sizes . . . . . . . . 15

2.8 Extending the Basic Model (1): Non-Zero Starting Bid . . . . . . . . . . 17

2.9 Simulation Code to Verify Analytical Results . . . . . . . . . . . . . . . . 18

2.10 Extending the Basic Model (2): English Auctions or Second-Price Auctions 19

3 The Poisson Arrival Model 21

3.1 Model Description and Assumptions . . . . . . . . . . . . . . . . . . . . 21

3.2 Probability That Price i Is Recorded in Bid History . . . . . . . . . . . . 22

3.3 Maximum Likelihood Estimation Procedure . . . . . . . . . . . . . . . . 23

3.3.1 Two Bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 More Than Two Bidders . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusions, Implementation and Future Research 25

5 References 26

A Proof of Combinatorial Identity 27

2



B Length of Bid History 28

B.1 A Preliminary Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B.2 The Main Result on the Length of Bid History . . . . . . . . . . . . . . . 29

C Numerical Stability Issues in the Poisson Arrival Model 31

C.1 Start of Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

C.2 In�nite Auctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.3 Full Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C.4 The Gotcha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3



1 Introduction

The concept of demand-price relationship is fundamental to economic theories, in which

the form and speci�cation of the \demand function" is almost always assumed to be

explicitly known. And yet the empirical determination of the demand function for any

given product has been di�cult. Product managers and marketing executives are con-

stantly faced with the question, \If I cut my price on Product X by 10%, what would

be my volume increase?" Managers in many di�erent contexts whom we have talked to

seem to rely on their personal intuition, experience and judgment in their pricing work,

and seem to be reactive to competitors' pricing moves, rather than proactive in leading

the market pricing.

Data Availability and Granularity. Existing approaches to �guring out the de-

mand function include econometric estimation models and procedures. However, these

approaches are mainly developed for macro-economic (economy-wide) studies. More

micro-economic oriented studies suitable for adoption by a single �rm in an industry, on

the other hand, require extensive sets of data, which include competitors' prices, sales

volume and advertising expenditure, in order to achieve a reasonable statistical accuracy.

The availability of data might seem a non-issue for a modern enterprise operating com-

puterized data collection systems; however, we have found that it is not the data from the

enterprise itself, but the data from competitors that has made the existing approaches

di�cult to apply in practice. Often times, competitive information is available through

third-party market research �rms or industry associations; these data sets, however, usu-

ally are available only in aggregate levels (aggregated by time, such as monthly and

quarterly sales, or by product models, such as all inkjet printers and all laser printers),

making them inappropriate for the level of data atoms required in these approaches. We

have experimented with econometric models without the competitive information; the

resulting level of statistical signi�cance and predictive power was generally disappointing

in our trials.

Practical Approaches. Many managers have adopted their own practical approaches

for �guring out the price-demand relationship | through formal or informal consumer

surveys (questionnaires, polls, etc.) and through real experiments conducted in the form

of limited-time o�ers of discounts. These practical approaches are in general costly to

plan and execute (giving out 15% discounts for the purpose of �nding out what would
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happen to demand can be expensive, even after considering the increased unit volume

for the discounts), are time-consuming (involving time to change price labels and time to

advertise the sales), with questionable accuracy of price-demand relationship, as many

variables such as competing stores' responses during the survey or real experiment and

even the local weather and tra�c conditions are uncontrolled for.

Our Idea. Auction websites such as eBay.com and Amazon.com have opened a new

source of data. If our goal is to obtain a demand-price relationship of a product, then

going directly to individual buyers of this product for price-demand information seems

to be a viable approach. Indeed, since auction websites capture and display a host of

useful information such as auction format and individual bids from each bidder (eBay, for

example, displays a \bid history" which includes each bidder's identity, dollar amount

of bid, time of bid, and units desired), we might be able to glean for information on

willingness-to-pay, and hence on the demand-price relationship.

Data Censoring. It is dangerous, however, to report the bids in some aggregated

terms as a demand function without a careful examination of the underlying auction

mechanism and the bidder behavior. A key di�erence between a traditional, o�-line (in-

person) auction and a web-based on-line auction is that not all bidders in a web auction

would be present at the start of the auction; many bidders at a web auction \arrive" after

the auction has already started. Indeed, many bidders �nd out about a particular web

auction after they performed a search to �nd the auction, or were informed by the web

host's e-mail noti�cation. The average web auction lasts signi�cantly longer (ranging

from 3 days to 10 days on eBay, for example) than a typical o�-line auction; the longer

duration of the on-line auction is to account for the random arrivals of potential bidders.

The random, sequential arrival of bidders leads to omission of some bids which might

have been recorded in an o�-line auction but will not be registered in an on-line auction.

For example, Mr. Smith is interested in buying a particular HP inkjet printer model and

is willing to pay at most $100 for it. When Mr. Smith �nds out about an auction for the

printer model on eBay, the bidding has already started, and has now progressed to $105

(the \current price"). Disappointed, Mr. Smith does not submit his bid, which would

have been $100 if he had joined the bidding a little earlier. EBay's \bid history" will not

record Mr. Smith's $100 bid.

We call this phenomenon \self-censoring of bids" (or truncation in the standard econo-
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metric jargon) in an on-line auction. Since our goal is to determine the number of all

buyers who are willing to pay for the product at each price level (such as $100), including

Mr. Smith who would be willing to pay $100 but was not recorded in the bid history, we

will need to recover the missing bids.

Related Literature. Auctions have been studied extensively in the economics litera-

ture; for an overview of auction theory and its historical development, we refer to the

survey paper by Klemperer (1999). The subject of empirical analysis of auction data has

recently received considerable attention; Perrigne and Vuong (1999) contains a survey

of methods in estimating value distributions of �rst-price auctions through structural

econometrics. These methods generally deal with issues in valuation dependency (e.g.

common value and private value), information (a)symmetry, and bidder risk attitude.

Our models di�er from these econometric models in that we focus on one particular

aspect: that of random times of bids, and ignore the aspects of bidder valuation and

bidders' strategic behaviors. Our goal is to estimate the bid distribution from a partially

observable (recorded) bid history, rather than estimating the value distribution from the

full set of bids. Hence, in assuming that bidders will bid their true willingness-to-pay, we

are able to accomplish our goal without imposing a structural model which entails a host

of assumptions on valuation dependency, information (a)symmetry, and risk attitude.

Particularly on using eBay auction data, there are several recent papers. Lunking-Reiley

et al (1999) perform an empirical study of the determinants of price for collectible coins

in over 20,000 eBay auctions between July and August 1999. They found that the seller's

feedback rating (reported by other buyers participating on eBay auctions), the duration

of the auction, and the presence of a reserve price and a higher starting bid, all have a

positive impact on the �nal price reached in the auction. Bajari and Hortacsu (2000)

discuss endogenous entry in eBay auctions in accounting for the valuations of bidders

who decided not to bid in a particular auction because they found the reserve price too

high; Bajari and Hortacsu study the case of common value and examine the collectible

coin auctions on eBay.

Like the above empirical papers on eBay auctions, this paper also uses eBay-like data.

However, we di�er in that this paper explicitly considers a temporal entry process. Our

focus is on the e�ect of random timing of bidding on the observed bids.

Our General Approach. We will attempt to recover the censored bids by models of
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the auction bidding process. In this report, we describe two models on bidder arrival

process. The �rst model assumes that all possible bidder sequences are equally likely;

the second model assumes that bidders at each price level arrive at the auction based on

a Poisson process.

Our emphasis is on the inference of the truncated bids in the continually arrived bid

streams; we will ignore the strategic implications of bidding and gaming behavior for

each individual bidder by making an important assumption that each bidder will bid

exactly his true valuation (or willingness-to-pay).

Our general approach is two-step: First assuming that we know the number of bidders at

each price level, we use the model to determine the statistical properties of the observed

bid history. Second, given a sample of bid histories (say, n = 100), we use statistical

inference to \reverse engineer" the proportion of the underlying bidder pools at each

price level.

In both models, we discrete the prices so that bids are represented by integers, which allow

for a concise expression of the results, but do not materially hinder the applicability of the

models in a world of continuous prices. The results from these models are implemented

in computer code to produce a numerical list and a graph that represents the demand

function.

Organization of This Report. In Section 2, we present the equally likely bidder

sequences model. We show a number of interesting properties of the bidding model, and

give a maximum likelihood estimator of the relative demand function; i.e. the proportion

of all bidders who (potentially) want to bid a certain price level. In Section 3, we present

the Poisson bidding stream model, and again derive a maximum likelihood estimator

for the relative demand, i.e. the arrival rate of bidders who would bid a price level as

a percentage of the total arrival rate of all bidders. We conclude and point out future

research directions in Section 4.
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2 The Equally Likely Bidder Sequences Model

2.1 Model Description and Assumptions

In this model, we assume that there is a �xed number of potential bidders (N), say

bidders A, B, C, D and E for N = 5, each willing to pay a known price, which ranges

from 1, 2, to K (we have used integers as prices; these could be replaced by p1; p2, : : :,

pK). The total number of bidders who are willing to pay price i is mi, with mi � 0

known and m1 +m2 + � � �+mK = N .

Depending on who arrives �rst, second, and last, the recorded bid history would be

di�erent. Given N bidders, there are N ! (N factorial) number of possible sequences

of bidder arrivals (such as ABCDE, ACDEB, or EDCBA). For example, if bidder A is

willing to pay the price of 1, B is 2, C is 3, D is 4, and E is 5, then the sequence ADEBC

would result in a recorded bid history of bidders ADE and prices 145 (B and C will not

be recorded). De�ne the bid history length as the number of bidders recorded in the bid

history, then the bid history length of the above sequence ADEBC would be 3.

Our questions are:

1. What is the probability of a price i being recorded in the bid history?

2. What is the probability distribution of the bid history length?

To simplify the mathematical derivation, we make the following assumptions:

(A1) (Equally likely sequences) Each sequence of bidder arrivals is equally likely.

(A2) (True valuation bid) Each bidder will bid exactly (not above or below) his or her

true willingness-to-pay.

(A3) (No-wait bid) Each bidder will attempt to submit his bid as soon as he arrives

at the auction; he will not \wait and see" (until the last minute of the scheduled

auction ending time, for example) to submit his bid.

(A4) (Known current high bid) The currently highest bid (but not necessarily the bidder

identity) is announced to all bidders.
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(A5) (First price auction) The winner will pay what he bids.

(A6) (Ascending price auction) A bid is recorded only if it is strictly greater than the

previous bid.

(A7) (Zero starting bid) The �rst bid is required to be greater than zero.

(A8) (Negligible bid increment) Any bid that is strictly greater than the currently highest

bid is recorded; the required increment of the new bid over the current high bid is

assumed to be negligible.

Note that our assumption on bidder behavior (A2) implies that each bidder will submit

at most one bid; (A2) might be the most restrictive assumption as the rest of the as-

sumptions are simply rules of the auction. The above auction rules (A2) through (A8)

do not describe a typical eBay auction; we will discuss in a later section how to convert

an eBay auction bid history to one described above. We will attempt to relax some of

these assumptions later so that our results can be applied to situations closer to real

eBay auctions.

2.2 Probability That Price i Is Recorded in Bid History

Let us �rst consider the probability of a particular bid price i being recorded. The

following is a key result.

Lemma 1.

PrfPrice i is recorded in bid historyg =
mi

mi +mi+1 + � � �+mK

:

Proof. We note that price K (the highest bid of the N bidders) will appear in the bid

history with probability 1.

Consider the bidder group i which has a bid price i. Think about the �rst bidder in

bidder group i to arrive at the auction. None of the other bidders from group i will be

recorded in the bid history, by auction rule (A5). This bidder can arrive at the auction

as the �rst in sequence, second in sequence, third in sequence, etc.

If he is the �rst in the bidder sequence, then he will be included in the bid history. The

number of sequences where the �rst in the sequence is a bidder from group i is mi(N�1)!

(recall that mi is the number of bidders who are willing to bid price i).

9



If he is the second bidder in the bidder sequence, then he will be included in the bid

history if and only if the �rst bidder in the sequence is from groups i� 1 or lower. The

number of such sequences is (m1 +m2 + � � �+mi�1) �mi � (N � 2)!.

If he is the third bidder in the bidder sequence, then he will be included in the bid history

if and only if the �rst and second bidders in the sequence is from groups i� 1 or lower.

Then number of such sequences is (m1 +m2 + � � �+mi�1) �mi � (N � 3)!.

Let Mi � m1 +m2 + � � �+mi.

If he is the (Mi�1 + 1)-st bidder in the bidder sequence, then he will be included in the

bid history if and only if all the �rst Mi�1 bidders are from groups i � 1 or lower. The

number of such sequences is Mi�1 � (Mi�1 � 1) � 2 � 1 �mi � (N �Mi�1 � 1)!.

Beyond the (Mi�1 + 1)-st position, there will be a bidder from a higher price group to

arrive before the �rst bidder from group i.

So, the total number of sequences in which a bidder from group i will appear before any

bidder from a higher group is

mi(N � 1)! +Mi�1mi(N � 2)! +Mi�1(Mi�1 � 1)mi(N � 3)! +

+ � � �+ (Mi�1)!mi(N �Mi�1 � 1)!

The total number of bidder sequences is N !, so the probability that price i will appear

in the bid history is the above expression divided by N !.

Utilizing the identity (for proof please see Appendix A)

M+1X
j=1

(N � j)!

(M � j + 1)!
=

N !

M !(N �M)

we get

PrfPrice i is in bid historyg =
mi

N �Mi�1

=
mi

mi +mi+1 + � � �+mK

:

Clearly, when i = K, the above probability is equal to 1. 2

Corollary 1. The probability that a speci�c bidder whose price is i will be recorded in

the bid history is

PrfA particular bidder with price i will be recorded in bid historyg =
1

mi + � � �+mK

:
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2.3 Probability Independence

Now consider any two bid prices i and j. We want the probability that both prices are

recorded in the bid history. The following is a powerful result which we will utilize later

to derive the mean and variance of the demand function.

Lemma 2. For prices i < j,

PrfPrices i and j are both recorded in bid historyg =

PrfPrice i is recorded in bid historyg�

�PrfPrice j is recorded in bid historyg.

Proof. Consider the conditional probability

PrfPrice j is recorded in bid history
��� Price i is recorded in bid historyg;

we shall show that this is equal to PrfPrice j is recorded in bid historyg. Suppose the

�rst bidder from price group i is the k-th bidder in the bidder sequence. Now �x k and

consider the probability that price j will be recorded in the bid history. The proba-

bility can now be thought of as the problem with new parameters (m1; � � � ; mi�1; mi �

1; mi+1; � � � ; mK) (the size of price group i is reduced by 1 while all other price groups

remain the same). But in this new problem, the probability of price j being recorded is

still mj=(mj + � � �+mK), independent of price i and position k. Hence,

PrfPrice j is recorded in bid history
��� Price i is recorded in bid historyg

= PrfPrice j is recorded in bid historyg:

2

The above results can easily be extended to 3-dimensional and n dimensional:

Lemma 3. Given n prices p1; p2; p3; � � � ; pn,

PrfPrices p1; p2; � � � ; pn appear in bid historyg =

=
nY
j=1

PrfPrice pj appears in bid historyg:
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2.4 The Probability of Observing a Recorded Bid History

We now turn to the �nal question in this series of looking at recorded bids: Given

a bid history containing a subset of prices (say A = f1; 3; 4; Kg) in an auction with

bidder groups m1; m2; � � � ; mK (only prices in A are recorded; i.e. prices not in A are not

recorded), what is the probability of observing such a recorded bid history?

Theorem. Denote by A the subset of prices recorded in the bid history. Then the

probability of observing a bid history containing exactly the set A of bid prices is

P (A) =
Y
i2A

P (i) �
Y
j 62A

[1� P (j)]

where P (i) =
mi

mi +mi+1 + � � �+mK

.

For example, consider 5 bid groups A, B, C, D and E, each willing to bid prices 1, 2,

3, 4 and 5. There are 2 bidders in group A, 2 bidders in group B, and 1 bidder in the

other three groups. Then we have m1 = m2 = 2, m3 = m4 = m5 = 1. The probability of

observing a recorded bid history of bid prices 1, 3 and 5 would be P (1; 3; 5) = P (1)�P (3)�

P (5) � [1� P (2)] � [1� P (4)] = (2=7)(1=3)(1=1)[1� (2=5)][1� (1=2)] = 2=70 = 0:02857:

Proof. Denote P (i; j) as the probability of observing recorded i and j, and P (i; �j) as

the probability of observing recorded i but not j. Then we have P (i; j)+P (i; �j) = P (i).

From Lemma 2 and Lemma 3, we have P (i; �j) = P (i) � P (i; j) = P (i) � P (i)P (j) =

P (i)[1� P (j)]. Extending this argument for all bids in A, we obtain the result. 2

Finally, we point out that one can obtain the probability distribution of the length of the

bid history (i.e. number of bids recorded in an auction log); for details, see Appendix B.

2.5 Reverse Engineering: Solving for Bidder Group Sizes

In previous sections, we discussed Step 1 of our two-step process: Assuming that we

know the population characteristics (m1, m2, : : :, mK), what is the characteristics of

the resulting bid history (probability of price i appearing in the bid history, and the

probability distribution of the bid history length). In this section, we describe Step 2, in

which we observe a sample of bid histories and solve for the population characteristics.

The idea we use here is to relate the probability of price i appearing in a bid history to
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the relative frequency of price i counted in a sample of bid histories. Let the relative

frequency of the price i appearing in the sample be fi (0 � fi � 1). Then from the

results of Section 2.2, we have the following system of the simultaneous equations (total

of K equations):

m1

m1 +m2 + � � �+mK

= f1;

m2

m2 + � � �+mK

= f2;

� � �
mK�1

mK�1 +mK

= fK�1;

m1 +m2 + � � �+mK = 1:

The last equation replaces the redundant equation mK=mK = fK = 1 and is used to

normalize the bid group sizes. The solution will be closed-form as follows:

m1 = f1;

m2 = f2(1� f1);

m3 = f3(1� f2)(1� f1);

m4 = f4(1� f3)(1� f2)(1� f1);

� � �

mi = fi

i�1Y
j=1

(1� fj); i = 2; 3; � � � ; K � 1;

� � �

mK =
K�1Y
j=1

(1� fj):

This solution is simple enough to allow easy implementation in an Excel spreadsheet.

2.6 Demand Function Under the Basic Model

The \demand function" D(p) is the number of bidders who are willing to pay a price p.

The relative demand function is the percentage of all bidders who are willing to pay a

price p. Therefore, for integer p between 1 and K,

D(p) = mp +mp+1 + � � �+mK = mp=fp =
p�1Y
j=1

(1� fj); p = 2; 3; : : : ; K;
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with D(1) = 1.

Strictly speaking, for a given p, the aboveD(p) is a random variable as ~fj, j = 1; 2; � � � ; p�

1, are random variables. Utilizing the independence result from Section 2.3, we have that

the estimated demand function is given by

E[D(p)] = E

2
4p�1Y
j=1

(1� ~fj)

3
5 = p�1Y

j=1

E[(1� ~fj)] =
p�1Y
j=1

(1� �fj)

where �fj � E[ ~fj].

We next derive the variance of D(p). The variance will enable us to construct a lower

and upper con�dence level for the estimated D(p).

Variance Result. The variance of D(p) is given by

Var[D(1)] = 0;

Var[D(2)] = f1(1� f1)=S;

Var[D(p)] = Var

2
4p�1Y
j=1

(1� ~fj)

3
5 = p�1Y

j=1

h
(1� fj)

2 + fj(1� fj)=S
i
�

p�1Y
j=1

(1� fj)
2
; p > 1;

where, for notational convenience, we have written �fj as fj, and S is the number of

auctions (sample size of bid histories).

Proof. D(1) = 1 is a constant, so Var[D(1)] = 0. Consider D(2) = 1� ~f1. Var[D(2)] =

Var[ ~f1]. For j = 1; 2; : : : ;, ~fj is a binomial random variable with number of trials S and

probability of success fj. Hence, Var[D(2)] = Var[ ~f1] =
q
f1(1� f1)=S.

Now consider Var[D(p)].

Var[D(p)] = Var

2
4p�1Y
j=1

(1� ~fj)

3
5

= E

2
64
8<
:
p�1Y
j=1

(1� ~fj)

9=
;

2
3
75�

8<
:E

2
4p�1Y
j=1

(1� ~fj)

3
5
9=
;

2

= E

2
4
8<
:
p�1Y
j=1

(1� ~fj)
2

9=
;
3
5�

8<
:
p�1Y
j=1

E[(1� ~fj)]

9=
;

2

=
p�1Y
j=1

E[(1� ~fj)
2]�

8<
:
p�1Y
j=1

(1� fj)

9=
;

2
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=
p�1Y
j=1

��
E[1� ~fj]

�2
+Var[1� ~fj]

�
�

p�1Y
j=1

(1� fj)
2

=
p�1Y
j=1

n
(1� fj)

2 + fj(1� fj)=S
o
�

p�1Y
j=1

(1� fj)
2
;

where we have repeatedly utilized the independence result that

E

2
4p�1Y
j=1

(1� ~fj)

3
5 = p�1Y

j=1

E[(1� ~fj)]

and the identity (
Q
j Aj)

2 =
Q
j(A

2
j).

Results veri�ed by simulation. We wrote a simulation code (see Section 2.9) of

auctions following assumptions (A1) through (A8) using Excel, with 5 bidders (A, B, C,

D, and E) and number of price segments (K) from 2 to 5. Both the demand function

recovery E[D(p)] and the variance estimation Var[D(p)] has been numerically veri�ed.

2.7 An Alternative Method of Estimating Bidder Group Sizes

Our method described above utilizes the probability of price i appearing in the recorded

bid history, in which price i can appear as the �rst recorded bid, or the second, third, up

to i-th bid (recall that the auction rules ensure that the �rst bid will always be recorded

in the bid history). An alternative method is to look at the �rst bid ever recorded in

the bid history. The assumption that all bid sequences are equally likely implies that

the probability of the �rst bid being price i is equal to mi=(m1 + m2 + � � � + mK).

Again equating this probability to the relative frequency of price i appearing as the

�rst bid in the bid history, denoted by f
(1)
i , we obtain mi = f

(1)
i (after we normalize

m1+m2+ � � �+mK to 1), with resulting demand function estimate D(1)(p) =
PK

i=pmi =PK
i=p f

(1)
i .

To evaluate the alternative method against our previously described method, we compare

the variance of D(p) to that of D(1)(p) (as both methods are unbiased estimators). It is

immediately clear that both methods produce the same D(p) for p = 1 (with D(1) = 1).

Now consider p = 2. Since the lowest price of 1 is recorded only if it is the �rst bid, we

have f
(1)
1 = f1, hence D(2) = 1� f1 = 1� f

(1)
1 = D

(1)(2).

For p � 3, we now derive the variance of D(1)(p). We divide all possible bids that

can potentially be the �rst bid to arrive into two groups: those that are greater than

15



or equal to p, or less than p. Then D
(1)(p) will be the probability that the �rst bid

falls into the �rst group. It is now clear that D(1)(p) is a binomial random variable with

number of trials S (number of all bid histories, our sample size) and probability of success

(mp +mp+1 + � � �+mK)=(m1 +m2 + � � �+mK). Hence, the binomial variance is

Var[D(1)(p)] =
(m1 +m2 + � � �+mp�1)(mp +mp+1 + � � �+mK)

(m1 +m2 + � � �+mK)2
�
1

S

We can now compare the above variance to that variance given in Section 2.6, numerically.

For example, when N = 5, K = 5, mi = 1 for i = 1; 2; 3; 4; 5, and sample size S = 100,

we get the following result:

Price p 1 2 3 4 5

Var[D(p)]1=2 0 0.0400 0.0459 0.0417 0.0290

Var[D(1)(p)]1=2 0 0.0400 0.0490 0.0490 0.0400

In all the numerical cases that we have run, we see that our method of using the full set of

bids recorded yields a lower standard error than the alternative method of using only the

�rst bid recorded. Intuitively, this should be so as our method utilizes more information

in the data. We will analytically show that Var[D(p)] � Var[D(1)(p)], as follows.

In each of S independent auctions, there are mi bidders with price i, i = 1; : : : ; K. The

outcome of each auction may be described by a binary vector of length K, with a 1 in

the i-th component if price i was recorded, and 0 otherwise. Let X be the S �K matrix

formed from these (row) vectors. We assume that S > 1.

Let Mi =
P

j�imj and ui = mi=Mi. The likelihood function of X is

SY
n=1

KY
i=1

u
Xni

i (1� ui)
1�Xni =

KY
i=1

u
X
�i

i (1� ui)
S�X

�i;

where X�i =
P

nXni is the i-th column sum. From the form of the likelihood, we conclude

that conditionally given X�1; : : : ; X�K, all binary matrices X with these column sums are

equally likely. In other words, under this conditional probability, X is a binary matrix

with independent columns where the i-th column is a random combination of X�i 1's and

S �X�i 0's.

The two estimators of up are

D̂(p) = (1�X�1=S) � � � (1�X�p=S)
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and

D̂
(1)(p) = S

�1
SX

n=1

1fXni=0 for i=1;:::;p�1g:

Since

PfXni = 0 for i = 1; : : : ; p� 1 j X�1; : : : ; X�Kg

= (1�X�1=S) � � � (1�X�p=S) = D̂(p);

we conclude that

D̂(p) = E[D̂(1)(p) j X�1; : : : ; X�K]

and hence Var(D̂(p)) � Var(D̂(1)(p)). The inequality is strict whenever D̂(1)(p) is not a

function of X�1; : : : ; X�K, i.e., for p > 2.

2.8 Extending the Basic Model (1): Non-Zero Starting Bid

We now relax the assumption (A7) (zero starting bid). Speci�cally, each auction will

now have a known starting bid s which can be 1, 2, or K; the �rst bid recorded must be

equal to or greater than s; any bids lower than s will not be recorded. All other rules

still apply.

We note that not all auctions in the sampled bid histories have the same starting bid;

some auctions might have a zero starting bid, while some others might have a very high

starting bid such as K�1 or even K (partly because some sellers use the starting bid as a

reserve price | in fact, the terminology \starting bid" here is referred to as reserve price,

or more exactly, announced and enforced reserve price, in the auction theory literature).

If all auctions have the same starting bid, then we could simply re-classify our price set

f1; 2; � � � ; Kg so that the price 1 is equal to or above the starting bid.

Surprisingly (or perhaps not so surprisingly), our basic results still hold with a very

minor modi�cation to the tallying of the frequency fi for price i to appear in the bid

histories. Suppose we have a sample of S recorded bid histories. Since the starting bid

for each auction is known, we count the number of auctions with a starting bid s � i as

Si, i = 1; 2; � � � ; K (with SK = S | assuming no auctions have starting bids greater than

the highest possible bid). Then we rede�ne the relative frequency of price i appearing in

bid histories as

fi = (Number of times price i appears in the bid histories)=Si;
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all our previous results on D(p) still hold.

To prove this extension result, we look at an auction with a starting bid s. Any bids i

less than s will not be recorded (will be censored); any bid i that is greater than s will

appear with probability mi=(mi+mi+1+ � � �+mK) (see the results in Section 2.2), which

is independent of mj for all j < s. That is, to bidders with a bid i greater than or equal

to s, the auction will appear to have zero starting bid, while to bidders with a bid lower

than s, the auction simply does not exist.

To summarize the results so far, we have

E[D(p)] =
p�1Y
j=1

(1� fj); p > 1;

Var[D(p)] =
p�1Y
j=1

h
(1� fj)

2 + fj(1� fj)=Sj
i
�

p�1Y
j=1

(1� fj)
2; p > 1;

with E[D(1)] = 1 and Var[D(p)] = 0.

The e�ect of the starting bids is that the variance of D(p) for lower p values is increased.

Again, the above results have been veri�ed by our simulation code (5 bidders).

2.9 Simulation Code to Verify Analytical Results

We wrote a simple (N = 5 bidders) code on the Microsoft Excel platform to simulate

the sampling of bid histories and reverse engineering the demand function D(p). The

following is a brief description of the simulation code.

Step 0: Initialization and preparation. Manually prepare the list of all 5! = 120 possible

sequences of the 5 bidders (ABCDE, ABCED, : : :, EDCBA). Assign a sequence

number, from 1 to 120, to each sequence. Assign a price between 1 and 5 (if K = 5;

K can be chosen to be 2,3,4, or 5) to each bidder.

Step 1: Generate a (uniform, or equally likely) random number on the set of integers be-

tween 1 and 120 (using the Excel function RANDBETWEEN(1,120)); check this

random number against the master list of all 120 possible sequences, and retrieve

the sequence that corresponds to the sequence number thus generated. Also, gen-

erate a random starting bid from the set of integers f1; 2; � � � ; 5g (using the Excel

function RANDBETWEEN(1,5) or some other desired statistical patterns).
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Step 2: Generate the bid history given the bidder sequence. For each bidder in the bidder

sequence, starting from the �rst bidder, its price will be recorded if the price is

strictly greater than all the previous bids AND greater than or equal to the starting

bid.

Some bid history will contain only 1 bid (price 5, if the bidder with the highest bid

happens to be the �rst one in the bidder sequence), some bid history will contain

all K = 5 bids (if the bidders arrive based on sorted order of their bid prices)

Step 3: Repeat Steps 1 and 2 for S = 25 times (or S = 100, where S is the sample size of

bid histories). We obtain a list of S bid histories.

Step 4: Summary statistics. On the list of S bid histories, for each price i = 1 through

5, we count the number of times the price i occurred, and the number of auctions

where the starting bid is less than or equal to i (this number is Si). Divide the two

numbers, we obtain the relative frequency fi.

Step 5: Reverse engineering. For p = 1 through K, output E[D(p)] and Var[D(p)] following

the equations in Section 2.8.

Step 6: Veri�cation of E[D(p)]. Check the output E[D(p)] against the originally assigned

prices to the 5 bidders. For example, if A,B,C,D,E is assigned prices 1,2,3,4,5

respectively, then the originally assigned demand function is D(1) = 1, D(2) = 0:8,

D(3) = 0:6, D(4) = 0:4, D(5) = 0:2. The reverse engineered E[D(p)] might be 1,

0.805, 0.597, 0.402, 0.201, respectively for p = 1; 2; 3; 4; 5.

Step 7: Veri�cation of Var[D(p)]. We derive the variance by repeating Steps 1 through

5, say, 250 times. Each of the 250 times produces an estimated vector (E[D(1)],

E[D(2)], E[D(3)], E[D(4)], E[D(5)]). The variance among the 250 E[D(1)] values

is the standard error of E[D(1)]; and so on for E[D(2)], E[D(3)], E[D(4)], E[D(5)].

We check these 5 variances against the reverse engineered Var[D(p)].

2.10 Extending the Basic Model (2): English Auctions or Second-

Price Auctions

Based on our �rst extension of the basic model to auctions with starting bids, we now

extend further to auctions more resembling the eBay auction. The basic assumptions
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(A4) through (A7) are now changed as follows:

(A4) (Known current second-highest bid) The currently second-highest bid (but not

necessarily the bidder identity) is announced to all bidders.

(A5) (Second price auction) The winner will pay what the second-highest bidder bids.

(A6) (Ascending price auction) A bid is recorded only if it is strictly greater than the

previous second-highest bid.

(A7) (Non-Zero starting bid) The �rst bid is required to be equal to or greater than a

known starting bid.

Note that Assumption (A8) (negligible bid increment) still holds here. For non-zero bid

increment, Assumption (A5) can be modi�ed to \the winner will pay what the second-

highest bidder bids plus the bid increment" as eBay auction rules stipulate. Also, on eBay

auctions, the winner may actually pay what he bids; this occurs when the second-highest

bidder happens to bid the same price as the winner (eBay rules stipulate that in case of

such a tie, the earlier bidder wins).

We note that in this type of auction, the bids recorded might not be increasing over time;

i.e. a lower bid than a previous bid might actually be recorded as long as it is greater

than the previous second-highest bid. In the �rst-price auction, we would always observe

increasing bids.

There are essentially two approaches to handle this new situation. One approach is to

start a new model speci�cally for the second-price auction. Another approach is to �rst

convert the second-price bid history into an equivalent �rst-price bid history, then apply

our previously developed models and results to it. We opted for the second approach.

The Bid History Conversion Algorithm. Given a second-price bid history of length

n, denoted by (b1; b2; � � � ; bn) sorted by time of bid, we convert it into a �rst-price bid

history (b01; b
0

2; � � � ; b
0

`) by the following procedure:

1. Step 0. Set ` = 1; set b01 = b1.

2. Step 1. For i = 2 to n: If bi > b
0

` Then (` = `+ 1; b0` = bi); Next i.
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3. Step 2. Output ` and history (b01; b
0

2; � � � ; b
0

`).

Again, the above reverse engineering approach to obtain E[D(p)] and Var[D(p)] has been

veri�ed by a simulation code.

3 The Poisson Arrival Model

3.1 Model Description and Assumptions

Consider bidders arriving at the auction site one at a time, with inter-arrival times

following the statistical distribution of negative exponential, which is used extensively

in the theories of queues and telecommunications. We shall call this arrival process by

\Poisson arrivals", as the number of bidders to arrive during any �xed time interval

follows the Poisson distribution.

Instead of assuming �xed and known sizes of price segments (bidder pools), we work with

arrival rate, denoted by �i, for bidders who are willing to bid price i.

Again, we make the following basic assumptions, and will attempt to relax or extend

some assumption in later sections.

(B1) (Independent arrival streams) The arrival process of bidders with bid price i is

independent of the arrival processes of all other bidders with bid prices.

(A2) (True valuation bid) Each bidder will bid exactly (not above or below) his or her

true willingness-to-pay.

(A3) (No-wait bid) Each bidder will attempt to submit his bid as soon as he arrives

at the auction ; he will not \wait and see" (till the last minute of the scheduled

auction ending time, for example) to submit his bid.

(A4) (Known current high bid) The currently highest bid (but not necessarily the bidder

identity) is announced to all bidders.

(A5) (First price auction) The winner will pay what he bids.

(A6) (Ascending price auction) A bid is recorded only if it is strictly greater than the

previous bid.
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(A7) (Zero starting bid) The �rst bid is required to be greater than zero.

(A8) (Negligible bid increment) Any bid that is strictly greater than the currently highest

bid is recorded; the required increment of the new bid over the current high bid is

assumed to be negligible.

We will �rst present some analytical results on the characteristics of the bid histories,

then discuss how we can derive the demand function through a statistical estimation

procedure. The organization is similar to the section on the �xed population model.

3.2 Probability That Price i Is Recorded in Bid History

A convenient approach is to think in terms of bidders segmented by their bid price. We

call a bidder who is willing to bid price i as a bidder of type i (or segment i).

De�ne additional notation: Xi as the arrival time of the �rst bidder of type i. Then Xi

follows an exponential distribution with mean 1=�i (recall that �i is the arrival rate of

bidders of type i). Let T be the duration of the auction (known and �xed before the

auction starts). Then

PrfPrice i is recorded in bid historyg

= PrfFirst bidder of type i arrives before any bidders of types i + 1 and higher

AND �rst bidder of type i arrives before auction endsg

= PrfXi < min
j>i

Xj AND Xi � Tg

Before proceeding further, denote �i �
PK

j=i �j as the aggregate arrival rate of bidders

willing to pay price i or higher. From a basic results on the exponential distribution,

minj>iXj is another exponentially distributed random variable with rate
P

j>i �j. Con-

ditioning on the arrival time Xi, we obtain

PrfPrice i is recorded in bid historyg

=
Z
1

x=0
PrfXi < min

j>i
Xj AND Xi < T

��� Xi = xg � �ie
��ix dx

=
Z T

x=0
PrfXi < min

j>i
Xj

��� Xi = xg � �ie
��ix dx

=
Z T

x=0
e
�

P
j>i

�jx � �ie
��ix dx
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=
Z T

x=0
�ie

��ix dx

=
�i

�i

h
1� e

��iT
i

Unlike the previous �xed population model, in which the highest recorded bid is always

K, in the Poisson arrival model we might observe a random highest bid recorded. The

probability that price i is recorded as the highest bid is as follows:

PrfHighest bid recorded is ig = PrfXi � T AND min
j>i

Xj > Tg

=
Z
1

x=0
PrfXi � T AND min

j>i
Xj > T

��� Xi = xg � �ie
��ix dx

=
Z T

x=0
e
�

P
j>i

�jT � �ie
��ix dx

= e
�(�i��i)T (1� e

��iT ):

It is clear that as T !1, the above probability approaches 1 if i = K (as �i � �i = 0),

and approaches 0 if i < K.

3.3 Maximum Likelihood Estimation Procedure

We now propose a statistical procedure to estimate the Poisson arrival rates �1; �2; � � � ; �K.

We will derive the Maximum Likelihood Estimator (MLE). Let Xi be the time of arrival

of the �rst bidder from price segment i. Then we have Xi is exponentially distributed

with rate �i.

3.3.1 Two Bidders

Auction Outcome. When the auction is completed, we will observe the following:

BidderID, Bid Amount (i), and Time of Bid (Xi). In addition, we observe the duration

of the auction, T . There could be no bidders, one bidder, two bidders, and more than

two bidders in the recorded bid history. For the sake of exposition, let's assume that

there are no more than two potential bidders. The mathematical derivation and result

applies to any number of bidders, as we will show subsequently.

Outcome 2: Exactly two bidders recorded, with bid amount i and j (i < j), and time of
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bid xi and xj (xi < xj), respectively. The likelihood for this situation to occur is

Prfxi < Xi � xi + dxi; xj < Xj � xj + dxjg = �ie
��ixi �je

��jxj dxi dxj:

Outcome 1(i): Exactly one bidder is recorded, and it is bid i at time xi. The likelihood

for this to occur is

Prfxi < Xi � xi + dxi; X2 > Tg = �ie
��ixi dxi e

��2T :

Outcome 1(j): Exactly one bidder is recorded, and it is bid j at time xj. The likelihood

for this to occur is

PrfXi > Xj; xj < Xj � xj + dxjg = PrfXi > xj; xj < Xj � xj + dxjg = e
��ixj �je

��jxj dxj:

Outcome 0: No bidder is recorded. The likelihood for this to occur is

PrfXi > T;Xj > Tg = e
��iT e

��jT :

Likelihood Function from Multiple, Independent Auctions. Now assume that

we have observed a series of independent auctions, with realized outcomes falling into

any one of the above four outcomes. For example, let's say we observed four completed

auctions, the outcomes of the four auctions are: (x
(1)
i ; x

(1)
j ); (x

(2)
j ); (x

(3)
i ; x

(3)
j ); Empty (no

bids). Then the likelihood function is

L(�i; �j) = �ie
��ix

(1)

i �je
��jx

(1)

j � e��ix
(2)

j �je
��jx

(2)

j � �ie
��ix

(3)

i �je
��jx

(3)

j � e��iT
(4)

e
��jT

(4)

:

The (�i; �j) that maximizes lnL is

�i =
2

x
(1)
i + x

(2)
j + x

(3)
i + T (4)

;

�j =
3

x
(1)
j + x

(2)
j + x

(3)
j + T (4)

:

3.3.2 More Than Two Bidders

From the above two-bidder case, we see that for each bid price p = 1; 2; � � � ; K, we might

or might not see p in the recorded bid history. If p appears in the bid history, then it
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will contribute a multiplicative term, �pe
��pxp, to the likelihood function. If p does not

appear in the bid history, then we conclude that (1) bidder p arrives later than the next

higher recorded bidder i (i.e. Xp > Xi), in which case it contributes a multiplicative term

e
��pxi to the likelihood function; or (2) bidder p arrives later than the auction ending

time T (if there are no recorded bidders higher than p), in which case it contributes a

multiplicative term e
��pT to the likelihood function. Summarizing (1) and (2): If we

denote Xp+ as the arrival time of the next higher recorded bidder or the auction ending

time T if no higher bidders are recorded, then the contribution of price p to the likelihood

function, if price p is not recorded in the bid history, is simply e��pxp+.

For example, let a recorded bid history be 3 bidders (Pi; Pj; Pk) with auction duration T .

Note that i; j; k might not be consecutive. Then the likelihood of having observed this

auction is

PrfX1 > xi; X2 > xi; � � � ; Xi = xi; Xi+1 > xj; Xj = xj; Xj+1 > xj; Xk = xk; Xk+1 > Tg

= e
��1xie

��2xi � � � e�i�1xi � �ie
��ixi � e��i+1xj

��je
��jxj � e��j+1xk

��ke
��kxk � e��k+1T :

Finally, we multiply together the likelihood terms from multiple (total S, independent

auctions, and solve for the optimal �p which maximizes lnL, we obtain the general result

�p =
Number of auctions in which price p was recorded

x
(1)
p+ + x

(2)
p+ + � � �+ x

(S)
p+

where x
(s)
p+ denotes the arrival time of bidder p in the s-th auction if bidder p is recorded

in the s-th auction, or the arrival time of the next higher bidder, or the auction duration

if no bidder higher than p is recorded.

For numerical stability issues, we refer to our discussion in Appendix C.

4 Conclusions, Implementation and Future Research

We have considered two models of the bidding process of on-line auctions. Both models

account for the di�erent outcomes in the recorded bids due to randomness in the bidder

arrivals; the equally likely bid sequence model makes reference with only the relative
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timing and not the exact timing of the bids, while the Poisson arrival model takes into

consideration of the lengths of the intervals between two bids. From this, we are able to

derive estimates of the relative proportions of bidders at each price level.

We have ignored the strategic bidding behavior that is possible in an on-line auction.

Prior research has shown that the optimal bidding strategy for a bidder may not be to

bid his true valuation; this points to further research of demand-price estimation due to

random arrivals with individually optimal bidding strategy.

We have also ignored the fact that there are usually multiple on-line auctions for the

same item, and that a bidder can bid more than once in the same auction, and bid in

more than one auction, simultaneously or sequentially. We are currently working on the

model with a single auction but multiple bids from the same bidder.

The implementation of the models has been carried out in a software prototype. Since the

bid amounts in a real auction can be continuous (in cents), the bids are �rst discretized.

The computation time for the estimation is found satisfactory, with almost instantaneous

output of the demand curve once the data has been collected. These results are promising

for future re�nements of the models we presented here.
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A Proof of Combinatorial Identity

We prove a slightly more general identity: For k � 1,

kX
j=0

(a+ j)!

j!
=
a!

0!
+
(a+ 1)!

1!
+
(a+ 2)!

2!
+
(a+ 3)!

3!
+ � � �+

(a+ k)!

k!
=

(a+ 1 + k)!

(a+ 1) � k!
:

Consider the sum of the �rst two terms (j = 0 and j = 1):

a!

0!
+
(a+ 1)!

1!
= a!(1 + a+ 1) = a!(a+ 2) =

(a + 2)!

a+ 1
:

Now consider the sum of the �rst three terms (j = 0; 1; 2):

(a + 2)!

a+ 1
+
(a + 2)!

2!
= (a+ 2)!

�
1

a+ 1
+

1

2!

�
= (a+ 2)!

(a + 3)!

(a+ 1) � 2!
=

(a + 3)!

(a+ 1) � 2!
:

Now consider the sum of the �rst four terms (j = 0; 1; 2; 3):

(a + 3)!

(a+ 1) � 2!
+
(a+ 3)!

3!
= (a + 3)!

 
1

(a+ 1) � 2!
+

1

3!

!
= (a + 3)!

(3 + a + 1)

(a+ 1) � 3!
=

(a+ 4)!

(a + 1) � 3!
:

Now we can easily apply induction on k. Assume that this identity holds for k. For k+1,

we have

k+1X
j=0

(a + j)!

j!
=

kX
j=0

(a+ j)!

j!
+
(a+ k + 1)!

(k + 1)!

=
(a+ 1 + k)!

(a+ 1) � k!
+
(a+ k + 1)!

(k + 1)!

= (a+ 1 + k)!

"
1

(a+ 1) � k!
+

1

(k + 1)!

#

= (a+ 1 + k)!

"
(k + 1) + (a+ 1)

(a+ 1) � (k + 1)!

#

= (a+ 1 + k)!
a + 1 + k + 1

(a+ 1) � (k + 1)!

=
(a + 1 + k + 1)!

(a+ 1) � (k + 1)!
:

For our intended summant,

M+1X
j=1

(N � j)!

(M � j + 1)!
=

(N �M � 1)!

0!
+
(N �M)!

1!
+ � � �+

(N � 1)!

M !
;
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we have a � N �M � 1 and k � M , hence a + 1 � N �M and a + 1 + k = N . The

result is

(a+ 1 + k)!

(a+ 1) � k!
=

N !

(N �M) �M !
:

B Length of Bid History

By Lemma 1, we can compute the expected length of the bid history (number of bids

recorded) of an auction as

E[Length of bid history] =
KX
i=1

PrfPrice i is in bid historyg =
KX
i=1

mi

mi + � � �+mK

:

We next derive the complete probability distribution of the length of the bid history, in

a recursive procedure. But �rst, we introduce a preliminary result.

B.1 A Preliminary Result

Given m bidders who must appear in a prede�ned sequence. Now we want to add n

bidders, so that in the new bidding sequence thus formed, we will maintain the prede�ned

sequence of the original m bidders. In how many possible ways can we form the new

sequence?

Example: Given 3 bidders A, B and C who must appear in the sequence A before B before

C. We now add 2 bidders D and E, so that the new sequence ABCDE, or DEABC, or

AEBDC, is a legitimate sequence. How many legitimate sequences are there?

Answer: (m + 1)(m+ 2) � � � (m+ n) (total n terms in the multiplication).

Proof: Consider adding one new bidder in the prede�ned sequence of m bidders. There

are (m+1) possible positions for the new bidder without upsetting the original sequence.

Now consider adding the second new bidder to any one of the (m+ 1) sequences formed

with the �rst new bidder. There are (m+ 1) + 1 positions for the second new bidder.

So on and so forth. QED.

In the above example, m = 3, n = 2, hence we will have 4 � 5 = 20 legitimate sequences.

There are total 5! = 120 possible sequences.
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B.2 The Main Result on the Length of Bid History

Question: How many bidder sequences will result in a bid history of length h?

Solution: We �rst solve the simplest case: h = 1. The bid history will contain only

one bid if and only if the �rst bidder in a bidder sequence is price K. Since there are

mK bidders with price K, the number of bidder sequences beginning with K will be

mK � (N � 1)!. The probability of observing a bid history of only 1 bidder is therefore

mK � (N � 1)!=N ! = mK=N .

Now, consider the general case h > 1. Let f(h;m1; m2; : : : ; mK) be the number of bidder

sequences that will result in a bid history of length h from bidder groups m1; m2; : : : ; mK.

We derive f(�; �) recursively.

Consider the �rst bidder in a bidder sequence. The �rst bidder can be any integer between

(and including) 1 and K.

If the �rst bidder is 1, then we take the N � m1 bidders whose bid prices are greater

than 1 and form a history of length h � 1; adding the remaining m1 � 1 bidders whose

bid price is 1 to any of the subsequence with history of length h� 1, we will obtain a bid

history of length h.

The number of possible bidder sequences if the �rst bid is 1 is:

f(h� 1;m2; � � � ; mK) if m1 = 1;

m1 � f(h� 1;m2; � � � ; mK) � (N �m1 + 1)(N �m1 + 2) � � � (N � 1) if m1 > 1:

De�ning
0Y
i=1

� 1 and noting N = m1 +m2 + � � �+mK , we can rewrite the above as

f(h� 1;m2; � � � ; mK) �m1

m1�1Y
i=1

(i +m2 + � � �+mK):

If the �rst bid is 2, then we take the N �m1 �m2 bidders whose bid prices are greater

than 2 and form a history of length h � 1; adding the remaining m1 + m2 � 1 bidders

whose bid prices are 1 or 2 to any of the subsequence with history of length h � 1, we

will obtain a bid history of length h.

The number of possible bidder sequences if the �rst bid is 2 is:

m2 � f(h� 1;m3; � � � ; mK) � (N �m1 �m2 + 1) � � � (N � 2)(N � 1)
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= f(h� 1;m3; � � � ; mK) �m2

m1+m2�1Y
i=1

(i+m3 + � � �+mK):

If the �rst bid is K�h+1, then we take the N �m1�m2�� � ��mK�h+1 bidders whose

bid prices are greater than K � h + 1 and form a history of length h � 1; adding the

remaining m1 +m2 + � � �+mK�h+1 � 1 bidders whose bid prices are less than or equal

to K � h+1 to any of the subsequence with history of length h� 1, we will obtain a bid

history of length h.

The number of possible bidder sequences if the �rst bid is K � h + 1 is:

mK�h+1 � f(h� 1;mK�h+2; � � � ; mK) � (N �m1 � � � � �mK�h+1 � 1) � � � (N � 2)(N � 1)

= f(h� 1;mK�h+2; � � � ; mK) �mK�h+1

m1+���+mK�h+1�1Y
i=1

(i +mK�h+2 + �+mK):

If the �rst bid is greater than K � h + 1, then it is impossible to form a bid history

of length h. Hence, the total number of possible bidder sequences with a bid history of

length h is the sum of all the above expressions:

f(h;m1; � � � ; mK) =

f(h� 1;m2; � � � ; mK) �m1

m1�1Y
i=1

(i +m2 + � � �+mK) +

+f(h� 1;m3; � � � ; mK) �m2

m1+m2�1Y
i=1

(i +m3 + � � �+mK) +

+ � � �+

+f(h� 1;mK�h+2; � � � ; mK) �mK�h+1

m1+���+mK�h+1�1Y
i=1

(i +mK�h+2 + �+mK):

The boundary condition is f(1;mj; � � � ; mK) = mK � (mj + � � � + mK � 1)! (as we have

shown previously).

Example 1: We have N = 3 bidders named Alex, Bob, Chuck. Their bid prices are

1,1,2, respectively. Then K = 2; m1 = 2 and m2 = 1.

We start with h = 1:

f(1; m1; m2) = m2 � (m1 +m2 � 1)! = 1 � (1 + 2 � 1)! = 2 (Chuck, Alex, Bob or Chuck,

Bob, Alex; the bid history contains one bidder { Chuck).

30



f(1; m2) = m2 � (m2 � 1)! = 1 � � � (1� 1)! = 1.

Next, consider h = 2:

f(2; m1; m2) = f(1; m2) �m1 � (1 +m2) = 1 � 2 � 2 = 4. (ABC, ACB, BAC, BCA).

h = 3: Impossible because h now exceeds K = 2.

Example 2: We have N = 4 bidders named Alex, Bob, Chuck and Dirk (A,B,C,D).

Their reservation prices are 1,1,2,2, respectively. Then K = 2; m1 = 2, m2 = 2.

We start with h = 1:

f(1; m1; m2) = m2 �(m1+m2�1)! = 2 � � � (4�1)! = 12 (they are: CABD, CADB, CBAD,

CBDA, CDAB, CDBA, DABC, DACB, DBAC, DBCA, DCAB, DCBA).

f(1; m2) = m2 � (m2 � 1)! = 2 � (2� 1)! = 2 (they are: CD, DC).

Next, consider h = 2:

f(2; m1; m2) = f(1; m2) �m1 � (1 +m2) = 2 � 2 � (1 + 2) = 12 (they are: ABCD, ACBD,

ACDB, ABDC, ADBC, ADCB, BACD, BADC, BCAD, BCDA, BDAC, BDCA).

Since we have assumed that each of the N ! arrival sequences is equally likely, the proba-

bility of observing a bid history of length h is simply f(h; �)=N !.

C Numerical Stability Issues in the Poisson Arrival

Model

We have derived a relationship between the rate at which bids of a certain value �i arrive

and pi, the probability of seeing a bid with a value of i in an auction of duration T . We

are interested in the �is because they can be translated into the demand curve.

The formula is

pi =
�i

�i + i

�
1� e

�(�i+i)T
�
;

where

i =
NX

j=i+1

�j:
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If we assume that the probabilities, pi, are measured, we can compute the rates, �i. The

purpose of this exercise is to understand how uncertainties in the probabilities a�ect the

accuracy with which we can �nd the rates.

The normal problem is that round-o� errors grow exponentially or as some large power

of the number of terms in the recursion. That's not the issue here. Here, pi is a sampled

value, and getting even a few percent accuracy is a problem. Hence, even modest growth

factors can give values for the �i with no precision at all.

There are two problems. First, we need to make sure that the error in any one of the pis

isn't magni�ed too much. Secondly, we need to make sure that each step in the recursion

doesn't multiply the error from previous steps by too much.

C.1 Start of Recursion

We can �nd all the �is using a recursive procedure starting with i = N . Let's look at

the error in computing �N . Clearly, N = 0, so we have

pN = 1� e
��NT :

We want to know how much an error in pN a�ects the value of �N , so we write

pN + �p = 1� e
�(�N+��)T :

We can rearrange terms to get

�N + �� = �
1

T
ln(1� pN � �p):

Expanding the logarithm, and noting that �NT = � ln(1� pN) gives

�� =
1

T

�p

1� pN
=
�p

T
e
�NT :

The problem is that pN may be arbitrarily close to 1, as will be the case when T is large

or when there are many bidders at bid N . (Question: How does �p change as pN ! 1?)

In other words, the error in �N can be quite a bit larger than the error in pN . Fortunately,

we can save the day by using the probability of not �nding bid N , ~pN . The result is

�� = �
1

T

�~p

~p
;
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which relates the error in the rate to the relative error in the probability, a quantity

controlled by how the statistics are gathered.

C.2 In�nite Auctions

Of course, there's no such thing as an in�nitely long auction.1 However, any auction in

which all parties are given an opportunity to bid can be considered in�nite. In this limit,

Dirk's equation becomes

pi =
�i

�i + i
:

We need a recursive solution starting with pN , but there's a problem; that equation carries

no information. Since the highest bid is guaranteed to appear in an in�nite auction, the

equation becomes simply pN = 1, which has no dependence on �N . In other words, �N

is undetermined.

We have another problem for in�nite auctions, the scale. For a �nite auction, the duration

T sets the scale. We can solve both our problems by using �N to set the scale. In what

follows, I'll take �N = 1, but I'll still write �N so the formulas look more like the ones

that follow.

Let's look at N � 1, namely

pN�1 =
�N�1

�N�1 + �N
;

and look at the errors,

pN�1 + �p =
�N�1 + ��

�N�1 + �� + �N
:

Expanding and dropping terms of order �2 gives

��

�N�1 + �N
=

�p

1� pN�1

= �p

 
1 +

�N�1

�N

!
:

which has a problem since �N�1 > �N . Fortunately, we can use the same cure as before,

namely,
��

�N�1 + �N
= �

�~p

~p
:

1I'll pay $10,000 for the best joke. No time limit.
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or
��

�N�1

=
�N�1 + �N

�N�1

�~p

~p
:

This result is even nicer than the last one because it gives the relative error in �N�1.

What about other values of i? The expansion becomes

pi + �p =
�i + ��

�i + �� + i + �
:

As before, I'll expand and drop terms of order �2 to get

�� =
�i + i

1� pi
�p +

pi

1� pi
� ;

which reduces to
��

�i
=
�i + i

�i

�~p

~p
+
�

i

which nicely bounds the error. In other words, there is no accumulation in the relative

error of i.

C.3 Full Equation

Now we can look at the behavior of the full equation

p =
�

�+ 
(1� e

�(�+)T );

where I've dropped the subscript for clarity. We can write this as

(�+ )T = � ln(1� p
�+ 

�
):

Rearranging a bit gives

(�+ )T = ln�� ln(�� p�� p):

Next, we add the error in each of �, , and p to get

(�+ )T + (�� + �)T = ln(�+ ��)� ln(�� p�� p + �� � p�� � ��p � p� � �p):

Factoring, expanding the logarithms, and eliminating terms gives

(�� + �)T =
��

�
�
�� � p�� � ��p � p� � �p

�� p�� p
:
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We can now solve for the unknown error, ��, in terms of the know errors, �p and � .

��

�

 
�T � 1 +

1� p

1� p� p=�

!
= �p

1 + =�

1� p� p=�
+
�

�

 
p

1� p� p=�
� �T

!
:

We can now subsitute for some of the terms. For example,

1� p� p=� = e
�(�+)T

:

We now have
��

�

" 
�T � 1�

�

�+ 

!
e
�(�+)T +



�+ 

#
=

�+ 

�
�p +

�

�

"
�

�+ 
+

 
�

�+ 
� �T

!
e
�(�+)T

#
;

which is quite a mess.

Could it possibly be right? Let's let T !1 and see if we get the in�nite auction result.

We see that


�+ 

��

�
=
�+ 

�
�p +

�

�+ 

�

�

becomes
��

�
=
�+ 

�

�+ 


�p +

�


:

In this limit, =(�+ ) = 1� p, so we end up with

��

�
=
�+ 

�

�p

1� p
+
�


;

which is the in�nite auction result.

C.4 The Gotcha

All of this looks good, but there's a progressive problem.2 Let's look at the in�nite

auction result.
��i

�i
=
�i + i

�i

� ~pi

~pi
+
�i

i
;

where I've added subscripts on the error terms. The problem is the last term because

�i =
NX

j=i+1

��j ;

2How many gifts did my true love give me on the twelfth day of Christmas?
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and ��j has a term �j .

In order to save some space, I'll de�ne

�i = (�i + i)
� ~pi

~pi
;

and use

��i = �i +
�i

i
�i :

Substituting for �i gives

��i = �i +
�i

i

NX
j=i+1

��j

which is

��i = �i +
�i

i

NX
j=i+1

 
�j +

�j

j
�j

!
:

Continuing we get

��i = �i +
�i

i

NX
j=i+1

0
@�j + �j

j

NX
k=j+1

��j

1
A ;

and

��i = �i +
�i

i

NX
j=i+1

2
4�j + �j

j

NX
k=j+1

(�k + �k)

3
5 :

We keep going until we reach the point where the only term left is �N , which is zero. At

that point, we'll have �i+1 appearing once, �i+2 twice, etc. In other words, the error in

�pN appears N � 2 times in the error for ��1 ; the error for �pN�1
appears N � 3 times,

and so on.

The factors �i=i might save the day, since each subsequent term is multiplied by the

product of the preceding �i=is. Unfortunately, there is no way to guarantee that �i=i <

1. Hence, some of these factors, e.g., those for steep parts of the demand curve, may

magnify the errors. We can monitor this factor during the recurrence procedure, but

there will still be demand curves where we have a problem.

We conclude that the recursive procedure will not be useful for more than a few points

on the price curve. The situation can be improved by binning. Instead of taking each

price as a separate point, break the interval into 5 or so bins and aggregate the statistics.

This approach has two bene�ts. The statistics are improved so that the relative error in

pi is reduced, and the recurrence is shorter, leading to less error build up. Besides, 5-8

points should be more than enough precision on the price curve.
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