

Bootstrapping Semantic Web Languages using a UML
Meta-Modeling Approach

Sherif Yacoub
Information Infrastructure Laboratory
HP Laboratories Palo Alto
HPL-2002-200
July 15th , 2002*

E-mail: sherif_yacoub@hp.com

RDF, UML,
Semantic
Web, meta
modeling

RDF Schema (RDFS) and RDF are evolving as the de facto
languages for the Semantic Web. Whereas RDFS can be used to
define concepts in a domain ontology, RDF can be used to define
instances of that ontology. In an attempt to make these modeling
languages evolvable and extensible, the current languages lack a
clear semantic support. While RDF and RDFS are easy to use, they
are hard to understand and difficult to validate and extend as a
result of their ambiguous semantics. In this paper, we use UML
modeling and meta modeling concepts to resolve some of semantic
ambiguities and provide support for validation and extension. We
describe a UML meta modeling approach that defines five modeling
layers and identify how RDFS and RDF as Semantic Web
languages fit into the architecture. The approach also defines the
meta languages required to create RDFS and RDF and to support
extensions to both languages and their constructs. The meta
modeling approach is based on concepts inspired by the UML meta
modeling architecture. Moreover, we use UML to bootstrap the
modeling hierarchy and we use the UML extension mechanisms to
describe the models developed at each layer including the RDFS
and RDF language constructs.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1

Bootstrapping Semantic Web Languages using a UML
Meta-Modeling Approach

Sherif Yacoub

Hewlett-Packard Labs, MS 1126,
1501 Page Mill Rd.,

Palo Alto, CA 94304, USA
sherif_yacoub@hp.com

Abstract. RDF Schema (RDFS) and RDF are evolving as the de facto lan-
guages for the Semantic Web. Whereas RDFS can be used to define concepts in
a domain ontology, RDF can be used to define instances of that ontology. In an
attempt to make these modeling languages evolvable and extensible, the current
languages lack a clear semantic support. While RDF and RDFS are easy to use,
they are hard to understand and difficult to validate and extend as a result of
their ambiguous semantics. In this paper, we use UML modeling and meta
modeling concepts to resolve some of semantic ambiguities and provide support
for validation and extension. We describe a UML meta modeling approach that
defines five modeling layers and identify how RDFS and RDF as Semantic
Web languages fit into the architecture. The approach also defines the meta lan-
guages required to create RDFS and RDF and to support extensions to both
languages and their constructs. The meta modeling approach is based on con-
cepts inspired by the UML meta modeling architecture. Moreover, we use UML
to bootstrap the modeling hierarchy and we use the UML extension mecha-
nisms to describe the models developed at each layer including the RDFS and
RDF language constructs.

Keywords: RDF, RDF Schema, Semantic Web, UML, and Meta Modeling.

1 Introduction

The vision of the Semantic Web is to create a web environment in which machines
understand and interpret information on the web in a way similar to what web users
do. To make this a reality, information has to be presented in a form that can be proc-
essed by machines. The Semantic Web approach defines and creates languages for
expressing information in a machine readable and processable form [7]. These lan-
guages should provide consistent and stable means to create information and reason
about this information. To provide such capability, Semantic Web uses a layered data
model approach to present data on the web. Each layer provides some semantic infor-
mation using a data representation language. As a result a four-layer architecture has
been developed for data presentation and interpretation [7,5]:

2

a) The data layer, which presents the data itself such as the web pages or user data.
b) The metadata layer, which describes information about the data such as the

creator of the web page and its date of creation. A simple model has been pro-
posed that uses resources and properties to describe the metadata. For this pur-
pose, the Resource Description Framework (RDF) Syntax and Model [2] is cre-
ated as the general language for metadata description.

c) The schema layer. It was clear that the metadata layer is not sufficient because
there are no common ways to describe metadata in general. To solve this prob-
lem, we need to define metadata for a particular context (or domain) and de-
scribe that domain using another language. For this purpose, the RDF Schema
[1] has been created.

d) The ontology layer. At this layer, more comprehensive ontology languages are
used to describe and reason about the meaning of the resources defined by the
schema layer. The Ontology Information Language (OIL) [3,6] and the DARAP
Agent Markup Language (DAML) [4] and their combination (DAML-OIL) [14]
are examples of such languages.

The Semantic Web community recognizes that ontologies play an important role in
this data model architecture. The ontology languages build on top of the two main and
fundamental data modeling languages, the RDF and the RDF Schema (RDFS).

However, the RDF and RDFS specifications are difficult to read and formalize as
acknowledged in [5,15] for a variety of reasons, which we summarize as follows:

- Mingling RDFS and RDF constructs. RDFS elements are defined in terms of
RDF elements and vice versa. For example rdf:Property is a subclass of
rdfs:Resource. This makes the two languages dependent on one another and
makes it hard to describe one language on its own. This is one reason the specifi-
cation is hard to read.

- Self-Instantiation and Referencing. For instance, in RDFS the rdfs:Class is
an instance of itself which makes it difficult for object oriented developer to ac-
cept that a construct is a class and an object at the same time!

- Ambiguous Relationships. In RDFS, an element can be an instance of another
element, which is a subclass of the first. For example, rdfs:Class is a subclass
of rdfs:Resource but rdfs:Resource is an instance of rdfs:Class.

- Layer Mistake for Classes. Using the current specification, the user can define his
own class, which will be treated at the same level as a class describing the lan-
guage itself. For example, if the user creates a resource Mammal as an instance of
rdfs:Class and a subclass of rdfs:Resource, we end up with the Mam-
mal and the rdfs:Class at the same modeling level while the first is a user
defined class and the later is an RDFS defined class.

- Layer Mistake for Properties. Similar to the layer mistake with classes, the RDFS
has a layer mistake in using properties. For example, the rdfs:domain and
rdfs:range properties are used in defining constraints in the RDFS language
itself and at the same time could be used by a user to define constraints on his
domain ontology.

To solve some of these problems, a proposal is developed by Pan et.al [5] to dis-
tinguish metadata models from meta modeling by creating a fixed architecture for

3

modeling languages in the Semantic Web. Though their proposal is inspired by the
Unified Modeling Language (UML) meta modeling architecture[13], Pan et.al. build
their architecture using Directed Label Graphs (DLG) and not using the UML itself. In
addition, the top layer in their architecture is not bootstrapped from any other lan-
guage; this leaves it to varieties of interpretations. Pan et.al. only address a subset of
the RDFS constructs. They do not address RDF constructs or the full RDFS syntax.

In this paper, we develop a meta modeling approach for the Semantic Web that is
based on UML concepts. We use: a) the UML meta modeling concepts to structure
the Semantic Web meta modeling layers, b) the UML models and extension mecha-
nisms to develop the languages at each layer of the meta model, and c) the UML mod-
eling elements to bootstrap the top layer of the meta model. We describe all elements
of the RDFS and the RDF languages and identify their relevance to other meta model-
ing layers. Hence, UML modeling concepts, extension mechanism, and meta modeling
proves to provide a solid foundation for analyzing Semantic Web languages.

Section 2 describes the layers of the meta model. In sections 3 through 7, we use
UML to describe each of those layers. In Section 8, we discuss the usefulness and
applications of the meta modeling approach. Finally, we summarize related work and
ideas for future research in sections 9 and 10.

2 The Meta Modeling Approach

Figure 1 illustrates the various layers for the meta modeling approach.
Layer 0: The Instance Layer. At this level, we express instances and objects of

concepts from a specific domain. These are the concrete objects or documents that we
want to specify using RDF. This layer could also be called the User Objects layer. As
an example, at this level we can create statements such as: the homepage (property) of
“http://hpl.hp.com/staff#John” (subject) is “http://hpl.hp.com/~john” (object) or
“Mary”(subject) has a friend (property) called “John “ (Object).

Layer 1: The Ontology Layer. At this level, we abstract the concepts and proper-
ties in a particular domain and represent them using a domain modeling language.
The developed concepts and relationships are represented in what is called an ontol-
ogy. An ontology is developed for each particular domain. It represents the common
terms and language used to describe instances (Layer 0) in that domain. For example,
in an ontology for species we may define the concepts Mammal and Human. An in-
stance of a Human (layer 1) could be John (layer 0) and Mary (layer 0). Similarly
we capture property concepts such as homepage. Whereas layer 1 resembles a class
model in UML, layer 0 resembles an object model.

Layer 2: The Modeling Layer. At the modeling layer, we define the languages
that we will use to develop an ontology. RDFS and RDF represent two languages that
are defined at this layer. Constructs from both languages are used to define an ontol-
ogy (this is based on the two specifications as they currently stand). On creating an
instance (at layer 0) the user not only uses the ontology created at layer 1 but also he
uses the RDF language constructs defined at layer 2.

4

Layer 3: The Meta Modeling Layer. At this layer, we identify the concepts that
tie together all the constructs and elements used in the modeling layer. It defines the
meta language that we use to create modeling languages such as RDFS and RDF. This
layer is useful if we want to create new languages at the modeling layer and tie them to
the RDFS and RDF languages at a higher level. For example, the creation of other
languages such as OIL [3,6] and DAML [4] should relate to each other and to the
RDFS and RDF languages by using meta models defined at this layer.

Layer 4: The Meta-Meta Modeling Layer. This is a set of simple primitives that
we use in creating the meta modeling layer. This layer was not recognized in [5]. In
this layer, we find it useful to capture all the concepts used to create meta modeling
constructs as discussed later.

Layer 5: The UML layer. Finally, we need a well-defined language with syntax
and semantics to describe the elements at layer 4. For example, we should be able to
look at any element in layer 4 and easily identify what it means because it is repre-
sented in a well-defined language. We choose the UML language to be the top layer
of the meta model.

Fig. 1 Various Layers of the meta model

The rationale behind pursuing a meta modeling approach lies in:

The UML Language

Meta-Meta Modeling Layer

Meta Modeling Layer

Modeling Layer
RDF Language RDFS

Language

Ontology Layer

Instance (Document) Layer

derives

derives

Uses

derives

Uses

Uses Uses derives

Uses Uses
derives

Uses

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Layer 0

5

1) Separation of Concern. Using the meta modeling approach, we can distinguish
between constructs used at different levels.

2) Resolution of the Layer Mistake. The meta modeling approach provides a solution
for the class and property layer problems discussed in section 2, by defining the re-
sponsiblies and the functions of elements at each layer.

3) Extensibility. With this approach, we are able to distinguish and define where
extensions to a language should be made. If we want to develop other modeling
languages that uses RDFS and RDF languages we are able to determine whether
modifications and extensions are made at the modeling or meta-modeling levels.

4) UML for Ontology Modeling. We illustrate how UML could be used in describ-
ing the various layers. We also promote the research in using UML to model an
ontology and instance of that ontology [9,10].

In the following sections we illustrate how we start from well-formed UML con-

structs to reach a low level instance of some domain ontology. In developing this
meta-modeling approach, we started from low-level models such as RDF documents.
We then abstracted those instances up to the modeling layers; i.e. what RDFS and
RDF languages offer as building constructs. Then we abstracted the elements needed
in those two languages and so on. At some level, we realize that we need to stop by
using some predefined modeling constructs. We used the UML constructs for top
level. While the development of the meta-modeling approach started from bottom
layers and developing abstraction layers on top of it, we find it easier to explain using
top down approach as illustrated in the sequel.

3 Layer 5: Bootstrapping using UML

3.1 UML Models

The top layer of the meta model starts with a predefined semantics using UML.
UML offers some useful constructs that we will use in developing the lower level
layers. We are specifically using the following UML constructs to bootstrap the meta
modeling layers:
• Class. A Class is an abstraction of instances that represent the same concept and

carry the same features. A class has attributes and methods. For simplicity we elimi-
nate the placeholder for attributes and methods.

• Inheritance relationship. Inheritance is a relationship that shows that a child
class is a subclass of the parent. It has all the properties of the parent in addition to
some other child-specific features.

• Association relationship. An association defines a semantic relationship be-
tween two classes. The type of relationship is captured in the names and roles of the
association. Each of the two classes plays a role in the association. Associations
are directed relationships.

6

3.2 UML Presentation Notation for the Next Layer

UML defines specific presentation notation for each of its modeling elements. Fig-
ure 2 illustrates the modeling notations for the modeling elements Class, Inheri-
tance, and Association. For more details about UML syntax and semantics we
refer to the official UML web site [13].

Fig. 2 UML constructs used to bootstrap the meta model

4 Layer 4: Meta-Meta Modeling Layer

At this level we define some constructs that we will use to build elements in the
meta modeling layer (the layer below). To build this layer, we use the three elements
that we selected from UML: Class, Inheritance, and Association.

4.1 UML Class Diagram for the Meta-Meta Modeling Layer

At this abstraction level, we define five elements:
• MMClass. The MMClass is the top-level element that is used to derive any

modeling constructs in the layers below. An instance of the MMClass defines a
construct in the meta-modeling layer; it does not define a relationship, however.

• MMRelationship. MMRelationship is an abstraction for all permissible
relationships between the instances of the MMClass. It defines a relationship be-
tween two and only two instances of MMClass in the layer below. MMRela-
tionship is an abstract class. Concrete implementations of the MMRela-
tionship define the nature and semantics of the relationship. MMRelation-
ship is a directed relationship between two MMClass instances, which means
one instance will play the role of a source and another instance will play the role
of the destination.

• MMSubClassOf. MMSubClassOf is a concrete implementation of the MMRe-
lationship class. MMSubClassOf defines the relationship between two
MMClass instances in which one instance is a sub class of the other. It specifies a
subset/superset relation between MMClass instances.

• MMDomain. MMDomain is a concrete implementation of the MMRelation-
ship class. MMDomain defines a relationship between two MMClass instances
in which the source requires a domain on input value, which will be restricted to
constructs of the destination type.

ClassName

ParentClass

ChildClass

ClassA

ClassB
A UML Class

A UML Inheritance relationship A UML Association relationship

7

• MMRange. MMRange is a concrete implementation of the MMRelationship
class. MMRange defines a relationship between two MMClass instances in which
the source produces output values whose type should be restricted constructs of
the destination type.

To model the above construct, we use UML Class constructs to model each of the
MMClass, MMRelationship, MMDomain, MMRange, and MMSubClassOf
classes. We use UML inheritance construct to represent the subclassing mecha-
nism between MMRelationship and MMDomain, MMRange, and MMSubClas-
sOf. Finally, MMRelationship has two UML associations with the MMClass to
represent the source and destination references. Figure 3 illustrates the UML class
diagram that captures the meta-meta modeling layer.

Fig. 3 The UML class diagram for the Meta-Meta Modeling layer

4.2 UML Presentation Notation for the Next Layer

Figure 3 defines the modeling constructs and their relationships at the meta-meta
modeling layer using UML class diagram and using the UML constructs: Class, In-
heritance, and Association and their representation as described in figure 2.

Instances of those constructs will be used to develop the models for the next layer.
We will use UML modeling notation (similar to the notations previously illustrated in
Figure 3) to develop a model for the next layer. To be able to develop those models
we have to define how instances of the constructs defined at this layer will look like in
the next layer. This means we need to define presentation notation for instances of
MMClass, MMDomain, MMRange, and MMSubClassOf. To be consistent, in-
stances of MMClass will have the same presentation, instances of the MMDomain
will have the same presentations, and so on.

Since we adopted the UML as our modeling language, we look for presentation
symbols in UML to present those instances. UML has predefined set of elements that
constitute the core of the UML language. However, UML also provides extension
mechanisms by which one can define his own elements and give them different nota-
tions. This extension mechanism is called Stereotype. Stereotypes are used by de-
signer to adapt the meaning and the look of some UML modeling construct to suit
specific application domain. We use UML Stereotypes to define instances of the
meta-meta modeling layer constructs as follows.
• Instance of the MMClass will be the basic building blocks of the meta modeling

layer. We use a UML class to represent an instance of MMClass. In this case, we
find a UML construct that best represents our needs. We will add the stereotype la-
bel “MMClass“ to make it explicit that this is a class from the previous meta mod-
eling layer and not a user UML class.

MMRange MMDomain MMSubClassOf

MMClass MMRelationship
Source

Destination

8

• An instance of MMSubClassOf relationship has an inheritance meaning. There-
fore we use the UML inheritance symbol but we will add the stereotype label
“MMSubClassOf” to make it explicit that this is a relationship defined in a previ-
ous meta modeling layer and not a user-defined inheritance relationship.

• An instance of MMDomain relationship defines a relationship between two
MMClass instances. We use a UML dependency relationship stereotyped by the
label “MMDomain“ to model instances of the MMDomain construct.

• An instance of MMRange relationship defines a relationship between two
MMClass instances. We use a UML association relationship stereotyped by the la-
bel “MMRange“ to model instances of the MMRange construct. We used associa-
tion for MMRange instance and dependencies for MMDomain to have distinct pres-
entation.

The following figure illustrates the legend that we use in modeling instances of the
MMClass, MMSubClassOf, MMDomain, and MMRange constructs. This notation
will be used to construct the UML class diagram for the meta modeling layer (the
layer below).

Fig. 4 Legend for instance of the meta-meta modeling layer constructs to be used in the
meta modeling layer

5 Layer 3: The Meta Modeling Layer

In this layer we define constructs that we will use to build modeling elements of the
RDFS and RDF languages (the modeling layer). To build this layer, we use instances
of the four elements that we defined in the previous layer; i.e. instances of MMClass,
MMDomain, MMRange, and MMSubClassOf. We also use their presentation nota-
tion that we developed in Figure 4.

5.1 UML Class Diagram for the Meta Modeling Layer

In this layer, we capture all the elements that are used in defining the RDFS and the
RDF languages and their language constructs. To define those meta modeling con-
struct we abstract elements from the RDFS and RDF specifications [1,2] and identify
the relationships between the elements at the meta-modeling layer rather than the
language layer. Every element that we use in this layer should be an instance of

MMClassInctance
<<MMClass>>

MMClassInctanceB

<<MMClass>>

<<MMDomain>>

MMClassInctanceA

<<MMClass>>

MMClassInctanceB

<<MMClass>>

<<MMRange>>

MMClassInctanceA

<<MMClass>>

MMClassInctanceB

<<MMClass>>

<<MMSubClassOf>>

MMClassInctanceA

<<MMClass>>

9

MMClass and every relationship should be an instance of one of the predefined rela-
tionships: MMDomain, MMRange, and MMSubClassOf.
We identify the following elements for the meta modeling layer:
• MResource. MResource is the top super class for this layer.
• MClass. Captures an abstraction of the every Class concept used in the RDFS

and RDF languages. It is a subclass of MResource. Since the only valid rela-
tionships at this layer should come from the layer above, we will use the MMSub-
ClassOf relationship to implement sub classing.

• MProperty. MProperty captures an abstraction of every property used in the
RDFS and RDF languages. It is an MMSubClassOf the MResource construct.

• MConstrainedProperty. This has a direct map to the Constrained-
Property defined in the RDFS language.

• MSubClassOf and MSubPropoertyOf. These two MMClass instances
represent abstraction of the inheritance mechanism used in the RDFS and the
RDF languages. MSubClassOf is used to define inheritance between elements
in the RDFS and RDF languages that are instances of the MClass construct.
MSubPropoertyOf is used to define inheritance between elements in the
RDFS and RDF languages that are instances of the MProperty construct.

• MDomain and MRange. Define two constrained relationship between RDFS and
RDF language constructs. Note that these two are different from the
rdfs:domain and rdfs:range. Whereas MDomain and MRange con-
straints are applied to the constructs used to develop the RDFS and RDF lan-
guages, rdfs:domain and rdfs:range are actual constructs of the RDFS
and RDF languages that can be used by the user.

If we investigate the relationships between these constructs, we find the following
(note that any relationship defined here should either be MMSubClassOf, MMDo-
main, or MMRange):
• MClass, MProperty, and MConstrianedProperty classes are MMSub-

ClassOf of the MResource class.
• MConstrainedProperty is MMSubClassOf of both MProperty and

MconstrainedResource.
• The MMDomain and MMRange for the MSubClassOf are of type MClass.
• The MMDomain and MMRange for the MSubPropoertyOf are of type

MProperty.
• The MMDomain of the MDomain construct or the MRange construct is of type

MProperty.
• The MMRange of the MDomain construct or the MRange construct is of type

MClass.
We defined the modeling constructs and their relationships at this layer. The fol-

lowing UML class diagram illustrates the meta modeling layer constructs and relation-
ships. We used the presentation notations defined in Figure 4 to create this UML class
diagram.

10

Fig. 5 The UML Class diagram for the Meta Modeling layer

5.2 UML Presentation Notation for the Next Layer

Figure 5 defines the modeling constructs and their relationships at the meta model-
ing layer using UML class diagram and using the stereotyped UML constructs:
MMClass, MMSubClassOf, MMDomain, and MMRange.

Instances of constructs defined in Figure 5 will be used to develop the models for
the next layer. We will use UML modeling notations (similar to those notations de-
fined in Figure 5) to develop a UML model for the RDFS and RDF languages. To be
able to develop those models we have to define how instances of the constructs de-
fined at this layer will look like in the next layer. For the purpose of the RDFS and
RDF languages, we need to define presentation notations for instances of the follow-
ing constructs: MClass, MProperty, MConstrainedProperty, MDomain,
MRange, MSubClassOf, and MSubPropertyOf.

Since we adopt the UML as our modeling language, we look for model elements in
UML to present those instances. Similar to the discussion in section 4.2, we use UML
stereotype mechanisms to define instances of the meta modeling layer constructs.
• Instance of the MClass will be presented using a UML class stereotyped with the

label MClass.
• For MProperty we create a new stereotype shaped as a solid ellipse.
• For MConstrainedProperty we create a new stereotype shaped as a dotted

ellipse.
• MRange translates into a relationship between two instances of MClass. For
MRange we create a UML associations with a stereotype labeled as “MRange”.

• MDomain translates into a relationship between two instances of MClass. For
MDomain we use a UML dependency with a stereotype labeled with “MDomain”.

• MSubClassOf translated into a relationship between two instances of MClass.
For MSubClassOf we use the UML inheritance symbol labeled with “MSub-
TypeOf”.

• MDomain translates into a relationship between two instances of MProperty. For
MSubProportyOf we create a symbol similar to inheritance symbol but has a
dotted boundary and labeled with “MSubPropertyOf”

MResource
<<MMClass>>

MConstrainedResource
<<MMClass>>

<< MMSubClassOf >>

MConstrainedProperty
<<MMClass>>

<< MMSubClassOf >> << MMSubClassOf >>

MProperty
<<MMClass>>

MSubPropertyOf
<<MMClass>>

<<MMDomain>>

<<MMRange>>

MSubClassOf
<<MMClass>>

MDomain
<<MMClass>>

<<MMDomain>>

MClass
<<MMClass>>

<<MMDomain>>

<<MMRange>>

<<MMRange>>

MRange
<<MMClass>>

<<MMDomain>>

<<MMRange>>

11

The following figure illustrates the legend that we will use in modeling instances of
MClass, MProperty, MConstrainedProperty, MSubClassOf, MSub-
PropertyOf, MDomain, and MRange. This notation will be used to construct the
UML class diagram for the modeling layer (the layer below).

Fig. 6 Legend for instance of the meta modeling layer constructs to be used in develop-
ing the modeling Layer.

Figure 6 resembles a toolkit of tools that will be used to define the RDFS and the
RDF languages while Figure 5 defines the relationship between these tools.

6 Layer 2: Modeling Layer

In this layer we define constructs that are part of the RDFS and RDF languages by
instantiating elements from the meta modeling layer. To build this layer, we use in-
stances of the elements that we defined in the previous layer; i.e. instances of
MClass, MProperty, MConstrainedProperty, MDomain, MRange, MSub-
ClassOf, and MSubPropertyOf. We also use their presentation notation that we
developed in Figure 6.

We will capture all elements defined in the RDFS and the RDF languages. To cap-
ture those constructs, we inspect the RDF and the RDFS language specification [1,2].
Every element that we use in this layer should be an instance of one of the predefined
classes: MClass, MProperty, or MConstrinedProperty. Every relationship
should be an instance of one of the predefined relationships: MDomain, MRange,
MSubClassOf, or MSubPropertyOf.

6.1 UML Model for the RDFS Language

We start first with the RDFS language. We capture the following classes.
• We extract RDFS constructs that are instances of MClass. These classes will be
rdfs:Resource, rdfs:Class, rdfs:Container, rdfs:Literal, and
rdf:Property. Note that rdf:Property is defined within the RDF scope but
is used in defining the RDFS language.

• We extract RDFS constructs that are instance of MProperty. The following
RDFS properties are instances of MProperty: rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:comment, rdfs:label, rdfs:seeAlso,
and rdfs:isDefinedBy.

PropertyInstanceA

PropertyInstanceB

<<MSubPropertyOf>>

<<MDomain>>

<<MRange>>

<<MClass>>
MClassInstance

<< MSubClassOf >>

<<MClass>>
MClassInstanceA

<<MClass>>
MClassInstanceB

PropertyInstance

ConstrainedPropertyInstance

12

• Then, we extract RDFS constructs that are instances of MConstrainedProp-
erty. The following are RDFS properties that are instance of MConstrianted-
Property: rdfs:domain and rdfs:range

We then capture the relationships between RDFS constructs using one of the relations
predefined in the meta modeling layer (i.e. MDomain, MRange, MSubClassOf, or
MSubPropertyOf)

• rdfs:Class, rdfs:Container, and rdf:Property classes are MSub-
ClassOf of the rdfs:Resource class.

• rdfs:isDefinedBy property is an MSubProprtyOf of the rdfs:seeAlso
property.

• We then define the constraints (MDomain and MRange) on the various RDFS
properties. For instance:

o The MDomain constraint and the MRange constraints for the rdfs:seeAlso
property is an rdfs:Resource class.

o The MDomain constraint for the properties rdfs:label and rdfs:comment
is the rdfs:Resource class and their MRange is rdfs:Literal.

o The property SubPropertyOf has MDomain and MRange as the
rdf:Property class.

The following UML class diagram illustrates the modeling layer constructs and re-
lationships for the RDFS language. We use the modeling notations for the classes and
relationships as defined in Figure 6.

Fig. 7 The UML class diagram for the RDFS language

Container
<<MClass>>

subPropertyOf

rdf:Property
<<MClass>>

<<MDomain>>

<<MRange>>

<< MSubClassOf >>

domain

<<MDomain>>

range

<<MDomain>>

Class
<<MClass>>

<<MRange>>

<<MRange>>

subClassOf

<<MDomain>>

<<MRange>>

isDefinedBy

label
Literal

<<MClass>>
<<MRange>>

comment

<<MRange>>
Resource

<<MClass>>

<<MDomain>>

<<MDomain>>
seeAlso

<<MSubPropertyOf>>

<<MRange>>

<<MDomain>>

13

6.2 UML Model for the RDF Language

We can also define the RDF language using instances form the meta modeling con-
structs. We capture the following elements for the RDF language.
• We extract RDF constructs that are instances of MClass. These classes are

rdf:Property, rdf:Statement, rdf:Seq, rdf:Bag, and rdf:Alt.
• We extract RDF constructs that are instance of MProperty. The following RDF

properties are instances of MProperty: rdf:object, rdf:subject,
rdf:predicate, rdf:type, and rdf:value.

We then capture the relationships between RDF constructs using one of the rela-
tionships defined in the meta modeling layer (i.e. MDomain, MRange, MSubClas-
sOf, or MSubPropertyOf)

• The rdf:Statement class is an MSubClassOf of the rdfs:Class class.

• The classes rdf:Seq, rdf:Bag, and rdf:Alt are MSubClassOf of the
rdfs:Container class.

• We then define MDomain and MRange constrains on the various properties. For
instance:

o The MDomain constraint for the properties rdf:object, rdf:subject, and
rdf:predicate is an rdf:Statement class.

o The MRange constraint for rdf:type property is as rdfs:Class class.

The following UML class diagram illustrates the modeling layer constructs and re-
lationships for the RDF language. We use the modeling notations defined in Figure 6.

Fig. 8 The UML class diagram for the RDF language

6.3 UML Presentation Notation for the Next Layer

The elements of the RDFS and RDF languages will be instantiated to develop the
ontology for a particular domain. There are several presentation options for an ontol-
ogy. UML is one of these options [9,10]. To be able to present ontologies using UML

rdfs:Container
<<MClass>>

<<MSubClassOf>>

Statement
<<MClass>>

<< MSubClassOf>>

object

<<MDomain>>

subject

<<MDomain>>

rdfs:Resource
<<MClass>><<MRange>>

predicate

<<MDomain>>

Property
<<MClass>>

<<MRange>>

seq
<<MClass>>

bag
<<MClass>>

alt
<<MClass>>

<<MSubClassOf>>type

rdfs:Class
<<MClass>><<MRange>>

value

14

constructs we need to find presentation notations that complies with UML syntax and
semantics and at the same time provide support for all the elements of the RDFS and
RDF languages.

It is not the purpose of this paper to define a mapping between UML models and
RDF and RDFS language constructs. A subset of this mapping is sufficient to illus-
trate the use of UML as an ontology modeling language. Therefore, we have selected
the following UML elements to present a subset of the RDFS and RDF languages:
• An rdfs:Class is presented with a UML class and is stereotyped with

“rdfs:Class” label.
• An rdf:Property is presented using a UML class which is stereotyped to a

round ellipse graphical presentation.
• An rdfs:subClassOf is presented using a UML inheritance relationship and

stereotypes with “rdfs:subClassOf”
• An “rdf:subPropertyOf” is presented using a UML inheritance relationship

which is stereotyped to have a dotted presentation and a label “rdfs:subPropertyOf”
• An rdfs:domain will be presented by a UML dependency that is stereotyped

with “rdfs:domain” label.
• An rdfs:range will be presented by a UML association relationship that is

stereotyped with “rdfs:range” label.
The UML presentation for these constructs is shown in Figure 9.

Fig. 9 Legend for instance of the RDFS and RDF language constructs

7 Ontology and Instance Layers

7.1 Layer 1: Ontology Layer

As mentioned in the previous section, it is not the purpose of this discussion to
show that UML suffices for describing ontologies. We illustrate an example of model-
ing some elements of the RDFS and RDF language in UML and using them to develop
a simple ontology.

As an example, we assume that we want to model the ontology of human race. We
define a concept of “Human” which is a subset of another concept “Mammal”. Using
RDFS language, a Human and a Mammal will be instances of the rdfs:Class
construct and a Human will be an rdfs:subClassOf a Mammal. We now add two
properties for a Human, a “hasFriend” and a “hasCloseFriend”. These two properties
only apply to a Human and hasCloseFriend is a subset of hasFriend. Using RDFS and
RDFS language, the two properties will be instances of rdf:Property and has-

ClassName

<<rdfs:Class>>

ClassName
<<rdfs:Class>>

ClassName
<<rdfs:Class>>

<<rdfs:subClassOf>>

propertyName

<<rdfs:range>>

<<rdfs:domain>>

propertyName

<<rdfs:SubPropertyOf>>

propertyName

15

CloseFriend will be an rdfs:subPropertyOf hasFriend. Moreover, we add the
constraint that hasFriend has an rdfs:domain and rdfs:range of type Human
and not Mammal. To present this example in UML, we use the UML constructs de-
fined in Figure 9. Figure 10 illustrates the UML class diagram for the example.

7.2 Layer 0: Instance Layer

To instantiate an ontology, we use UML object diagrams to create instances of
elements in Figure 10. For example, Figure 11 illustrates a simple example were we
created the objects “John”, “Mary”, and “Sarrah” as instances of the “Human” ontol-
ogy class and the two properties of “John” “hasFriend” and “hasCloseFriends” which
point to “Mary” and “Sarrah” respectively. We emphasize here that we only use this
for illustration and more work will be required to model the instantiation of RDFS and
RDF constructs to model domain instances[9,10].

Fig. 10 The UML class diagram for the example

Fig. 11 UML object diagram to represnet an instance of the example ontology

8 Discussion

The UML meta modeling approach described in the previous sections has several
benefits and applications. It reveals some properties about the Semantic Web lan-
guages.
a) The layered approach provides explicit separation between different levels of ab-

stractions. The only relationship between elements form one layer and elements
form the previous layer is that the lower level layer can only be an instance of ele-
ments from the upper layer (i.e. their types are defined by those at the upper layer).
This separation of abstraction levels is useful in identifying how Semantic Web lan-
guages are represented and how they are used to drive other languages.

b) The UML modeling language is useful in bootstrapping the meta modeling layer.
Without an initial top-level starting point, the layers could be infinite and hence
sources of ambiguities would be more likely.

Mary :
Human

John :
Human

Sarra :
Human

hasFriend

hasCloseFriend

Mammal
<<rdfs:Class>>

Human
<<rdfs:Class>>

hasFriend

<<rdfs:Range>>

hasCloseFriend

<<rdfs:SubPropertyOf>>

Monkey
<<rdfs:Class>>

<<rdfs:subClassOf>>

<<rdfs:Domain>>

16

c) The UML-based meta modeling approach solves the problem of self referencing
and instantiation. For example, the rdfs:Class can be an instance of itself in the
original specification. In the meta modeling approach, rdfs:Class is an instance
of MClass which is a construct at a the meta modeling layer and not the RDFS lan-
guage layer.

d) The UML-based meta modeling approach solves the layer mistake problem for
classes. For example, in the RDFS specification, the rdfs:Class is a subclass of
rdfs:Resrource while rdfs:Resrource is an instance of rdf:Class. In the
meta modeling approach, rdfs:Class is a subclass of rdfs:Resoruce but
rdfs:Resoruce is an instance of MClass and not rdfs:Class.

e) The meta modeling approach solves the layer mistake problem for properties. For
example, in the RDFS specification, the rdfs:domain and rdfs:range are used
to describe constraints on the modeling elements of RDFS language and at the same
time are used by the user in the ontology level. In the meta modeling approach,
rdfs:domain and rdfs:Class are only used by the user to define constraints on
elements of his ontology while MDomain and MRange are used to define con-
straints on elements of the RDFS and RDF languages.

f) Using the meta modeling approach, we are now able to construct valuators for a
specific Semantic Web language. For example, assume we defined RDFS as illus-
trated in figure 7. We can check whether the language is a valid language or not by
validating the language constructs and their relationships using the meta modeling
elements define in the layer above. For example, a rule from the meta modeling
layer (as illustrated in figure 5) states that an instance of the MSubClassOf de-
fines a relationship between two instances of MClass. Hence, the MSubClassOf
relationship between rdfs:Class and rdfs:Resoruce is a valid relationship
(as shown in figure 7) while and MSubClassOf relationship between
rdfs:Class and rdfs:seeAlso would have been invalid since the later if of
type MProperty. As another example, from figure 5 we find that an instance of
MDomain relationship should have a domain as an instance of type MProperty.
Using this rule, we can check for every MDomain relationship in the RDFS lan-
guage (figure 7) and make sure that the source is an instance of MProperty.

g) As discussed earlier, we find that there is no clear separation between the con-
structs used in the RDFS and the RDF languages. Some constructs from the RDFS
are used to define other constructs in the RDF language such as rdfs:Container
is the super class of rdf:Seq and rdf:Bag. Similarly, rdf:Property is used in
defining the constructs used in the RDF language. Using the meta modeling ap-
proach, we can clearly define these elements and their abstractions for future treat-
ment (if desired).

h) From a meta modeling data-oriented perspective, we find that the RDF language is
used to describe the metadata and the RDFS language is used to describe the
schema for the metadata which is considered to be a higher level in terms of the
metadata model [7]. From a meta modeling language-oriented perspective, we find
that RDF and RDFS languages are at the same level, the language level and they are
both used in driving the ontology.

17

9 Related Work

The work presented in this paper is related to research in Semantic Web languages;
namely the RDF [2] and RDF Schema [1] languages and other ontology languages
building on top of them such as DAML[4], OIL[3] , and DAML+OIL [14].

The problems with RDF and RDF Schema and their formal definition are recog-
nized by several researchers [5, 15,17]. The research in [16] provides an initiative to
capture the intended semantics of RDF in first-order logic in an attempt to provide
RDF with a formalization allowing its full exploitation as a key ingredient of the
evolving Semantic Web.

There are also several ongoing researches on the relationship between UML and
the Semantic web. An early synopsis of the relationship between UML and RDF
Schema is presented in [7]. One research direction is concerned with using UML for
Semantic Web languages. For instance, Cranefield et.al. [10] investigate using UML
and its associated constraint language (the Object Constraint Language, OCL) to
model ontologies and they proposed UML as an ontology language in [9]. Application
of UML to Semantic Web activities is described in [11]. Another research direction is
to extend UML to make it suitable to web activities. Melnik [12] discuss how to ex-
tend and represent UML in RDF syntax. Baclawski et.al. [18] extend UML to support
ontology engineering for the Semantic Web. They compare DAML elements with
UML modeling capabilities and identify similarities and differences between UML
and DAML. For similarities, they define the mapping and for incompatibilities they
highlight the differences and limitations.

However none of the work mentioned above addresses the problem of defining a
meta model for the modeling languages as opposed to meta models for data. The idea
and rational for meta modeling for Semantic Web languages is introduced by Kamp-
man et.al. [19] and is further studied by Pan et.al. [5]. Pan et.al. proposed a fixed meta
modeling architecture called RDFS(FA). We find the following advantages in the
proposed meta modeling techniques as compared to RDFS(FA):
• The proposed meta modeling approach is bootstrapped using a well-formed lan-

guage that has a well-defined semantics; i.e. the UML. RDFS(FA) does not have a
bootstrap layer which would allow multi layering on top of its top level layer and
hence would become a source of ambiguity.

• RDFS(FA) uses a Directed Label Graph (DLG) to describe layers. We used UML
syntax and extension mechanisms to develop UML models for each layer. UML
models are more expressive than DLGs and they are easier to understand and codify
by software architect, designers, and developers. By virtue of using stereotyping one
can easily distinguish the type of an element (i.e. which element in the above layer
that it is instance of). DLG does not provide this visual effect.

• RDFS(FA) was developed based on RDFS and to solve problems in RDFS specifi-
cation. The proposed meta modeling is based on RDF and RDFS and can be further
used to identify the integration of other languages such as OIL or DAML.

• RDFS(FA) describes a portion of the RDFS specification. We describe all elements
of the RDFS and RDF languages.

18

RDFS(FA) has an advantage over the proposed approach, it used a model theoretic
semantic to interpret data model of RDFS(FA) which could be more formal than UML
semantics.

10 Conclusion

The Semantic Web cannot possibly become a reality unless it has carefully per-
fected the necessary technologies for modeling information in a machine understand-
able format. Semantic Web modeling languages, in turn, cannot be successful and
widely adopted unless we clearly adopt a meta modeling layered approach that de-
fines: a) the scope of a Semantic Web language, b) formal or semi-formal definition of
the language constructs, c) relationships between languages and their constructs, and
d) a common meta modeling for languages and a common meta model for data.

In this paper, we presented a meta modeling approach for Semantic Web languages
that is inspired by the UML meta modeling architecture. We described the constructs
of RDFS and RDF: how they fit into the model and the elements used to create those
languages. We used UML syntax and extension mechanisms to model the elements at
each layer. We illustrated the benefits of using UML and the meta model to: solve the
layer mistake of classes, solve the layer mistake of properties, describe element of
Semantic Web languages such as RDF and RDFS, and solve the self instantiation and
the ambiguous relationship problems.

In this paper, we focused on creating the meta model using UML and using the
RDFS and RDF language for illustrating how Semantic Web languages can fit into the
meta model. Future research work will include investigation of how other Semantic
Web languages such as DAML+OIL could build on top of the meta modeling ap-
proach.

References

[1] D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Speciation 1.0. W3C Candidate Recommendation, URL http://www.w3.org/TR/rdf-
schema, Mar. 2000.
[2] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3C Recommendation, February 1999
[3] The Ontology Information Language, OIL. http://www.ontoknowledge.org/oil/,
2002.
[4] The DARPA Agent Markup Language, DAML. http://www.daml.org, 2002.
[5] J. Pan and I. Horrocks. Metamodeling architecture of web ontology languages. In
Proceedings of the First Semantic Web Working Symposium (SWWS'01), pages 131-
149. CEUR (http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-
WS/), 2001.

19

[6] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-
Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE Intelligent
Systems, 16(2):38-45, 2001
[7] T. Berners-lee. Semantic Web Road Map. W3C Design Issues. URL
http://www.w3.org/DesignIssues/Semantic.html, Oct. 1998.
[8] W. Chang. A Discussion of the Relationship Between RDF-Schema and UML.
W3C Note, URL http://www.w3.org/TR/NOTE-rdf-uml/, Aug. 1998.
[9] S. Cranefield and M. Purvis. UML as an Ontology Modeling Language. In IJCAI
Workshop on Intelligent Information Integration, 1999.
[10] S. Cranefield. Networked Knowledge Representation and Exchange using UML
and RDF. Journal of Digital Information, 1(8), Feb. 2001.
[11] S. Cranefield. UML and the Semantic Web, Feb. 2001.
http://divcom.otago.ac.nz/infosci/pubs/publications.htm
[12] S. Melnik. Representing UML in RDF. URL http://www-
db.stanford.edu/~melnik/rdf/uml/, 2000.
[13] The Unified Modeling Language, resources homepage. http://omg.org/uml
[14] F. van Harmelen, P. Patel-Schneider, and I. Horrocks. Reference description of
the DAML+OIL ontology markup language. March 2001,
http://www.daml.org/2001/03/reference.html
[15] J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I. Horrocks.
Enabling Knowledge Representation on the Web by Extending RDF Schema. Pro-
ceedings of the tenth World Wide Web conference WWW'10, pages 467-478, May
2001.
[16] W. Conen and R. Klapsing. A Logical Interpretation of RDF. In Electronic Arti-
cles n Computer and Information Science, 5(13), 2000.
http://www.ep.liu.se/ea/cis/2000/013
[17] W. Nejdl, M. Wolpers, and C. Capelle. The RDF Schema Specification Revis-
ited. Modelle und Modellierungssprachen in Informatik und Wirtschaftsinformatik,
Modellierung 2000, April 2000.
[18] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski,
and M. Aronson. Extending UML to Support Ontology Engineering for the Semantic
Web. The Fourth International Conference on UML (UML 2001), Toronto, October
1-5, 2001
[19] A. Kampman and F. van Harmelen. Sesame’s interpretation of RDF Schema.
Aidministrator Nederland Note, URL http://sesame.aidministrator.nl/doc/rdf-
interpretation.html, Apr. 2001.

