

Modeling Disk Arrays Using
Genetic Programming

Evan Kirshenbaum
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-20
January 29th , 2002*

E-mail: kirshenbaum@hpl.hp.com

genetic
programming,
machine
learning,
storage
systems

This paper describes the results of using genetic programming
to evolve models that predict the throughput in disk arrays.
The results are compared to previous hand-crafted analytical
and automatically-generated interpolation-based device models.
An analysis is performed to investigate the optimality of the
run parameters chosen as well as to discover whether the
approach has the tendency to overfit its training data. The
process is shown to find models that outperform both recently
published and currently used models and to be sensitive to
population size but not run length.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Modeling Disk Arrays Using Genetic Programming

 Evan Kirshenbaum

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

kirshenbaum@hpl.hp.com

Abstract

This paper describes the results of using genetic
programming to evolve models that predict the
throughput in disk arrays. The results are
compared to previous hand-crafted analytical and
automatically-generated interpolation-based de-
vice models. An analysis is performed to
investigate the optimality of the run parameters
chosen as well as to discover whether the
approach has the tendency to overfit its training
data. The process is shown to find models that
outperform both recently published and currently
used models and to be sensitive to population
size but not run length.

1 BACKGROUND
In the past decade, enterprises have turned to disk arrays
both to give them sufficient storage capacity and also to
help them attain their required availability levels. The
internal architectures of the arrays—and those of the
commodity disks they contain—are becoming more and
more complex, now including hardware and firmware
support for a wide variety of optimizations, typically
developed independently of one another, leading to
interactions that are often unintuitive and difficult to
understand. (Uysal, et al., 2001)
To design and configure such systems, automated tools
such as Minerva (Alvarez, et al., 2001) attempt to predict
the performance of a large number (tens of millions) of
configurations under various workloads to select an
optimal design. Such tools require models which are
accurate, execute extremely quickly, and are not
inordinately expensive to build.
Uysal, et al. (2001) developed a modular analytical model
for predicting the throughput of a disk array and validated
it for a particular array under two configurations and a
number of workload conditions, achieving an overall error
rate of approximately 15%. Anderson (2001) investigated
automatically constructing models based on table-driven
interpolation between actual measured throughput values.
He tried three algorithms: closest-point estimation, k-
nearest-neighbor averaging, and hyperplane interpolation,

in which the prediction is based on interpolation over a
non-degenerate hyperplane of nearby measured points.
Anderson empirically tested each of these methods on a
data set obtained by measuring a disk array over two
RAID levels, three numbers of disks, and a wide variety
of workload configurations, for a total of 1,126
measurements. To simplify the task, he constructed a
separate table for each combination of RAID level,
number of disks, and operation type (read or write). Of
the three methods, closest-point estimation was clearly the
worst, and hyperplane interpolation appeared to be
somewhat better than k-nearest-neighbor averaging.
Anderson’s results for hyperplane interpolation for the
695 RAID level 1 cases can be seen in Figure 1 (a
recasting of his figure 1), showing the mean relative error
when constructing the tables using a given fraction of the
available data and testing on the remainder, with fifty runs
at each point. With 41% of the data, hyperplane
interpolation yields a mean relative error of 20.32±1.76%
Performance steadily improves as the number of data
points increases, reaching 12.45±1.53% with 60% of the
data, 5.11±1.22% with 80% of the data and 1.24±2.04%
with 98% of the data.
A downside to this approach, however, is the time it takes
to acquire the data. Currently, each data point requires
approximately five minutes of computer time to acquire,

Figure 1 Mean relative error at various training levels
for hyperplane estimation, from (Anderson, 2001).

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

Percent of Sample Used For Training

M
ea

n
R

el
at

iv
e

Er
ro

r

so the 556 cases used in the 80% test took over 46 hours
to acquire. It is desirable to look for techniques which
can achieve similar results while requiring less data.
Genetic programming is a promising candidate, as it
appears to be good at finding general solutions to non-
linear functional numeric regression problems from a
relatively small number of cases.
In this paper, we will describe the use of genetic
programming (Koza, 1990, 1992) to solve the same
problem. In section 2 we describe our experimental
setup. In section 3 we present our results, paying special
attention to the question of overfitting. In section 4 we
look a bit closer at which of the experimental parameters
seem to matter. We then finish up with some thoughts on
future work and conclusions.

2 EXPERIMENTAL SETUP
The experiments described in this paper were performed
on the RAID-1 subset of the data used in (Anderson,
2001). The data was partitioned into six subsets based on

the number of disks (2, 4, or 6) and the operation being
performed (read or write). The sizes of the subsets are
shown in Table 1. For each data point, there are three
input values available to the predictor, described in
Table 2. In this data set, all input values were round
powers of two. Each subset was separately trained on a
randomly-chosen 20%, 40%, 60%, and 80% of the data,
with the remainder used for testing, and ten runs were
made at each combination, for a total of 240 runs.
The system used was GPLab, a flexible genetic
programming framework developed and used for data
mining research at Hewlett-Packard Laboratories. This
system implements strongly-typed GP (Montana, 1995)
with hierarchical types, so, for instance, operators
(including variables and constants) which produce
integers can be fed into those which require real numbers.
Experiments were performed on a PC with a 1.3 GHz
Pentium 4 processor.
The operators available to each run are shown in Table 3.
In addition to the normal arithmetic operators over real
numbers (with division by zero defined to return one), we
also provided operators to take the minimum, maximum,
and mean of two real numbers. Constants were provided,
uniformly selected over the range –10 to 10 inclusive,
both as integers and real numbers. The run parameters
themselves were available as integers. Finally, a set of
“magic number” constants used by the analytic model in
(Uysal, 2000) were included. Anderson (personal
communication) informed us that the numbers we used
may not actually describe the system on which the data
was collected. In particular, the value for disk size is a bit
too high and the cache segment size is a factor of four too
large, with several of the others difficult to measure. Our
expectation, however, is that the values, inaccurate as
they might be, will be useful as “ballpark figures”
providing seeds from which the actual values can be
derived by combining arithmetically with numeric
constants. The constants specific to reads and writes were
only provided for runs that measured those operations.
Each run of the experiment lasted 300 reproductive
generations with a population size of 5,000 candidates

Table 2 Input data

Attribute Description Range

request
size

The mean length of a
request

2 KB to
256 KB

queue
length

The mean size of the
device queue 16 or 64

run count
The number of requests

made to contiguous
addresses

1 to 256

Table 1 Subset sizes

Subset Cases
2-disk reads 72
4-disk reads 144
6-disk reads 144
2-disk writes 92
4-disk writes 99
6-disk writes 144

Table 3 Available Operators

Operator Type
+, –, *, /

min(x, y), max(x, y), mean(x, y)
Real x Real
→ Real

Constants [–10, 10] Integer

Constants [–10, 10]
(step 0.0001) Real

queue length
request size
run count

Integer

cache segment size (64 KB)
cache size (256 MB)

disk size (18 GB)
max controller bandwidth (84 MB/s)

max controller throughput
(11,338 I/O /s)

rotation time (6×10-3 s)
read position time (6.37×10-3 s)
write position time (7.00×10-2 s)

mean read transfer rate (1.80×107 B/s)
mean write transfer rate (1.65×107 B/s)

Integer

initially generated with a depth of no more than seven. In
subsequent generations, (on average) 80% of the
candidates were produced by crossover, 8% by copying,
8% by point mutation (replacing an operator in the tree by
another operator with a compatible type signature), and
4% by constant drift (incrementing or decrementing an
integer constant or applying Gaussian drift to a real
constant). Traditional mutation was not used. The best
candidate from a generation was unconditionally copied
to the next. The primary fitness measure was the mean
relative error over the training cases presented to the
candidate during its training period. In case of exact ties,
the number of nodes in the candidate’s tree was
considered as a secondary fitness measure. Candidates
were selected to be parents by winning 5-candidate
tournaments. There were no restrictions on the sizes of
the trees resulting from crossover, but candidates who
exceeded a 100-operator evaluation budget on any case
were considered infinitely bad.
The runs made use of GPLab’s dynamic fitness case
selection feature both to avoid wasting time on very poor
candidates and to minimize the risk of overfitting. Each
candidate was presented with a set of ten cases drawn
from the complete set of training cases. If it did
sufficiently well on those cases, it was presented with
another set of ten, and so on until it had seen the full set
of training cases. “Sufficiently well” for this experiment
was defined as scoring within a “hit interval” on 90% of
the cases seen. The hit interval started at 15% and was
reduced to be no more than 150% of the best score posted
over all of the training cases by any candidate. A form of
reinforcement learning (Sutton and Barto, 1998) was used
to bias the selection of cases presented to those which
candidates have done relatively poorly at solving.
While only a fraction of the training cases were seen by
any individual candidate to provide the fitness measure
used for determining whether a candidate became a parent
for the next generation, the 100 best candidates (as well as
a sample of the rest) were evaluated on the entire set of
training cases as well as the out-of-set cases. The overall
leader in each generation was the one that did best on the
complete set of training cases. In addition, teams of the k
best candidates in the population (2 ≤ k ≤ 30) were
evaluated over the complete set of cases, the team’s
prediction on each case being an unweighted average of
the prediction of its members.

3 RESULTS
The overall results of the experiment are shown in
Table 4, which shows the mean (with 95% confidence
interval), median, maximum and minimum mean relative
error found for each percentage level. The means and
medians are over all of the runs in all of the subsets at
each percentage. Since the same number of runs were
done for each subset, the mean given is the same as the
mean of the subset means, although the confidence
interval is tighter.

3.1 COMPARISON WITH PRIOR RESULTS
The “weighted average” column shows the mean of the
subset means normalized over the number of cases in
each subset. This is the relevant number to compare with
the results in (Anderson, 2001, repeated in the table), as
the results given for that experiment are the mean of the
errors over all of the out-of-set cases.
Looking at the results, it is apparent that genetic
programming does substantially better than hyperplane
interpolation when trained on 40% and 60% of the data.
The weighted means are outside the confidence intervals
given, and a t-test shows that the means of both runs are
significantly (P<0.0005) better than the hyperplane
interpolation means. Looking at it another way, the
hyperplane interpolation results require approximately
57% of the data to achieve the results GP can do with
40%. This represents a savings of nearly ten hours in data
collection, compared with a run time averaging about
eight and a half minutes. For the 60% level, the
corresponding figures are 65% and four and a half hours.
Anderson did not report a number for the 20% level. To
obtain his training sets, each element of the data set was
chosen to be a training case with a probability equal to the
level. Below 40%, it was deemed too likely that one of
the tables would have too few training examples to be
usable.
On the other hand, the GP results when training on 80%
of the data are significantly worse than hyperplane
interpolation. More work needs to be done to investigate
why this is so, but as the focus of the work was to do well
with small samples, the results are encouraging.
When compared against the analytical model presented in
(Uysal, et al., 2001), with 40% of the data, the overall

Table 4 Results

Fraction Mean Median Min Max Weighted Mean Hyperplane
Interpolation Mean

20% 2.4×109% 16.259% 8.233% 4.0×108% 4.9×108% not given

40% 12.604±1.615% 11.401% 5.204% 52.925% 12.380% 20.317±1.764%

60% 10.164±0.881% 9.696% 3.396% 21.474% 10.066% 12.466±1.529%

80% 10.765±1.666% 9.788% 3.400% 28.019% 10.375% 5.106±1.221%

mean and the means of all of the subsets with the
exception of 4-disk writes are less than the reported mean
of 15%. Uysal, et al. validated their model on the 4- and
6-disk configurations using the same data, and with the
same exception, over those subsets, only a single GP run
produced an error greater than 15%. Thus, it appears that
with this approach one can expect to generate models that
have better prediction accuracy than those developed by
hand by experts.

3.2 OVERFITTING
One striking feature of Table 4 is the presence of
enormously bad values when training on 20% of the data.
This brings up the everpresent danger of overfitting the
training cases. In fact, out of 240 runs in the experiment,
there was only one case of spectacularly overfitting the
data. In the second run of the 6-disk read subset using
20% of the data, the winning candidate had a mean
relative error of 7.45% over all the training cases—and
2,383,190,015% over the validation cases. In addition,
there were two other runs with error greater than 100%
(20% 4-disk read, run 3: 3,774% and 20% 2-disk read,
run 6: 188%), and an additional eleven runs with error
greater than 30%. All but one of these runs were when
training on 20% of the data, where the total number of
training cases ranged from 14 to 28. The only substantial
overfitting seen at higher percentage levels was run 9 of
the 4-disk write subset using 40% of the data, with an out-
of-set error of 52.925%.
If the three outliers at the 20% level are removed, the
mean on the remainder becomes 21.932±6.669%.
Removing the next three (MRE > 60%) brings it down to
19.221±4.218%. In each of the six removed runs, an
individual was found with out-of-set error < 35%. (In

three cases < 20%.) In addition, in three of the six runs, a
“best so far” candidate had been identified with error less
than 20%. This suggests that with more attention to the
identification and selection of the winner, useful results
should be expected with as few as 20% of the cases.

3.3 ROOM FOR IMPROVEMENT
Looking in depth at the 40% case, Figure 2 shows the out-
of-set performance over the six subsets as well as overall
performance. In each group, the center bar represents the
candidate chosen as the winner, the left-hand bar
represents the out-of-set best candidate that was chosen as
leader at some point in the run, and the right-hand bar
represents the candidate that had the best out-of-set
performance during the entire run.1 The heights of the
bars represent the mean, and the whiskers indicate the
95% confidence levels. The other levels shown are the
maximum and minimum values for the winner.
While the best individual seen, of course, cannot be used
during a real run, the difference in height between the
right and center bars is an indication of the efficacy of the
method used for selecting the winner. At this percentage
level, the winning candidate is, on average 2.514±1.230%
worse than the best candidate seen. If the one bad
(MRE=52.9%) run is removed, this number drops to
1.913±0.360%. So the method does reasonably well at
choosing a good candidate, but there is some room for
improvement. A t-test over all runs at the 40% level
confirms that the best individual seen is significantly
(P<0.01) better than the eventual winner.

1 Strictly speaking, this is the candidate that had the best out-of-set
performance of those fully tested. Only the top 100 and a small sample
of others were tested each generation.

7.
15

4%

8.
50

1%

10
.5

78
%

12
.5

38
%

16
.4

26
%

11
.2

10
%

11
.6

08
%

8.
70

7%

11
.3

42
%

13
.8

36
%

20
.8

65
%

11
.7

42
%

6.
42

8%

9.
99

8%

10
.8

53
%

14
.9

49
%

10
.2

50
%

12
.6

04
%

9.
13

2%

10
.0

90
%

8.
06

4%

15.332%

11.416%
13.009%

14.117%

18.681%

52.925%

16.462%

52.925%

5.204%

8.761%8.984%

5.579% 5.204%

8.493%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

2-disk reads 4-disk reads 6-disk reads 2-disk w rites 4-disk w rites 6-disk w rites Overall

M
ea

n
R

el
at

iv
e

Er
ro

r
Best Leader Winner Best Min Max

Figure 2 Out-of-set performance by subset, 40% case.

The difference in height between the left and center bars
is an indication of the efficacy of the termination
condition, as it indicates that the eventual winner is
somewhat worse than one that would have been chosen
had we stopped at some earlier point. Here the margin is
1.536±1.183% (0.948±0.269% dropping the outlier) and
the significance of the difference is P=0.054.
One other thing apparent from Figure 2 is that there is
substantial difference between the performance on the
various subsets, indicating that the problems posed are not
equally easy to solve. A comparison of the means at the
P<0.05 level of significance shows that 2- and 4-disk
reads are the easiest, followed by 6-disk reads and 6-disk
writes. Next comes 2-disk writes, and finally, not
surprisingly, 4-disk writes.2

4 ANALYSIS
We now turn to the question of the significance of the run

2 The mean for 6-disk writes is less than that for 2-disk writes at the
P=0.053 level.

parameters.

4.1 POPULATION SIZE
To investigate the sensitivity of the runs to population
size, we ran 30 runs of each subset at the 40% level using
a population of 1,000 candidates. The resulting overall
mean relative error was 15.220±1.108%, a difference
significant at the P<0.005 level. Looking at the subsets
individually, only the 4-disk write case (with the outlier in
the original population) failed to show a significant
increase in error. So this appears to be a problem that
benefits from a larger population size.

4.2 LENGTH OF RUN
While large populations appear to be beneficial for this
problem, an analysis indicates that our choice of 300
generations for the run length may have been overly
conservative. At first glance, the numbers shown in
Table 5 would seem to imply that the run is taking
advantage of the full length of the run. Not only are the
winners typically selected in the last thirty generations (in
seven cases in the final generation), but the absolute best
individual is typically found in the last third of the run.
When we look at runs in detail, however, we see a
different story.
Figure 3 shows the out-of-set mean relative error of the
leader by generation for each of the runs at 40% on the 4-
disk read subset. As is apparent in the figure, there is a
precipitous drop in error for approximately the first eighty
generations, but after that, the performance on most of the
runs levels off,with the improvements, while continual,

Table 5 Mean Generation Found, 40% cases

Percent
Used

Winner
Found in

Generation

Best Found
in

Generation

Best Leader
Found in

Generation

20% 287±6 160±23 125±21

40% 278±7 221±18 195±20

60% 277±7 247±13 229±16

80% 271±10 231±18 195±20

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Generation

M
ea

n
R

el
at

iv
e

Er
ro

r

0%

5%

10%

15%

20%

25%

30%

35%

40%

Figure 3 Out-of-set error for leader, 4-disk reads, 40%

being slight. (It is heartening to see, however, that only
one run made a very brief two-generation detour into
seriously overfitting the data.)
If we perform t-tests comparing the final result to the
result after each generation for the 40% case, as shown in
Figure 4, we see that a 300-generation run is only
significantly (P<0.05) better than runs of less than 91
generations. In another experiment in which the length of
run was 1,000 generations (with varying numbers of runs
per subset), a similar test shows that 1,000 generations is
only significantly better than runs of less that 130
generations.

4.3 AGGREGATION
One somewhat unusual technique used is the aggregation
of good members of the population into teams that vote
on the final solution. In this experiment, we only used the
simplest of GPLab’s aggregation mechanisms, in which
all sets of the k best candidates in a population (for k up to
30) are tested as a team. It should be noted that the
aggregation is for purposes of selecting winners only—
the aggregates are not considered to be parents, and,
therefore, there is no evolution of teams per se.
In the 40% runs, the winner selected is a team 71.7% of
the time (43 runs). Figure 5 shows the distribution of the
sizes of winning teams. The intuition here is that, rather
than converging on a single winner, there are often
competing “subspecies”, each nearly the best, jockeying
for the first place position. While the winner selection
method discussed in section 4.4 removes some of the
problems that this can cause, especially due to overfitting,
aggregation can allow solutions which are combinations
of candidates from subspecies which are each good at
solving cases in different regions of the input space.
In another set of runs, we asked GPLab to use hill-
climbing to add and remove good candidates to and from
the team being constructed. While this occasionally
resulted in leaders being chosen during the run, it did not
appear that any final winners were constructed using hill-
climbing.

4.4 WINNER SELECTION
Another unusual aspect of our setup is the separation of
the fitness measures used for parent selection and winner
selection. Parents were chosen as usual based on the
performance on fitness cases seen during the training
phase, but winners were selected based on overall
performance of the candidates on all of the training
cases.3 This, combined with dynamic fitness case
selection, was an attempt to avoid the overfitting that so
often happens in genetic programming runs, in which a
lucky individual or overfitting subpopulation happens to
occupy the top spot at the end of the run and gets selected
as the winner.
The technique appears to be useful. For the 40% runs,
while the winner selected on the basis of all of the
training cases had a mean error of 12.604±1.615% on out-
of-set cases, the candidate that did best during its training
phase had an out-of-set mean error of 18.012±5.410%, for
a net gain of 5.408±5.450%. The largest difference was
157.724%, and there were four cases out of sixty in which
the training-best candidate had better out-of-set
performance than the winner. That such winners should
be easy to spot is evidenced by the fact that over all of the
training data, winners outperformed training-best
candidates by 9.261±5.879%.
The picture is a bit less clear-cut when outliers are
removed. The one overfitting (out-of-set MRE =
52.925%) winner was outperformed by its training-best
runmate by 25.841%. On the other hand, there were only
two substantially overfitting training-best candidates (out-
of-set MREs = 169.504% and 61.890%) respectively. If
these runs are removed, the out-of-set difference shrinks
to 2.445±0.683%, still significantly (P<0.001) better, but
a less spectacular improvement.
In early runs, we experimented with GPLab’s tripartite
fitness case division, in which the fitness cases are
partitioned into a training set, a testing set, and a
validation set. This last set, which must be considered
“in-set data” for purposes of comparison, contains cases
not used for purposes of selecting parents, but which may
be used to control other run parameters during the run,
including the decision to terminate and the selection or
construction of a winner. We found that using such a

3 But not, of course, the testing cases.

0

0.05

0.1

0.15

0.2

50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

Generation

T-
Te

st
 P

Figure 4 Improvement for 300-generation run vs. n-
generation run

0

1

2

3

4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Team Size

Fr
eq

ue
nc

y

Figure 5 Frequency of team size, 40% winners

validation set for winner selection appeared to be better
than using the training set—but not as good as simply
enlarging the training set. That is, in runs with 40%
training cases and 20% validation cases, the winner
selected on the basis of validation fitness tended to
outperform the winner selected on the basis of training
fitness, but it appeared to not do as well as the winners
selected on the basis of training fitness from runs which
used 60% of the cases as training cases. We have not yet
done enough runs to say this with any confidence,
however.

4.5 SAMPLE SIZE
We now consider the impact of the size of the data set.
One unexpected result, reported in Table 4, was that while
the system did better when training on 60% of the data
than it did with 40% of the data, things actually got worse
when the sample size was increased to 80%. Checking
significance levels backs this up. While it is significantly
(P<0.001) better to have 40% of the data than 20% and
(P<0.01) better to have 60% of the data than 40%, when
comparing the significance levels of the 80% and 60%
runs, we do no better than P=0.21. Indeed, when
comparing the 80% runs to the 40% runs, the significance
is reduced to P=0.04.
This is hard to account for, but it may be due to the
increased likelihood that the now-smaller testing set is not
representative of the space as a whole rather than some
sort of interference from the now-larger training set.

5 FUTURE WORK
While the initial results are promising and bring the
prediction accuracy into the region which makes it useful
for design systems like Minerva, more work needs to be
done to drop the error rate to the desired 3–5% range.
Since population size appears to be a significant factor, an
obvious avenue to explore is the use of even larger
populations, perhaps recouping some of the time by
shortening the runs, as runs of longer than about 125
generations appear to be unnecessary.
Another question unexplored in this paper is the impact of
the operator set on the mechanism’s performance. Given
the large range of data and the fact that powers of two
tend to be important to computer systems, one operator
that appears to be useful, although we have not yet done
enough runs to be able to say anything statistically sound,
is a binary logarithm, perhaps restricted to taking its
argument from the set of input variables.4 Other likely
wins in this area are the addition of Boolean and relational
operators, along with conditional branches, allowing the
problem to be split into separate sub-cases.

4 The type algebra of GPLab allows the addition of arbitrary attributes to
types, so one can, for example, talk about “Boolean input variables” and
“Real-valued constants”. This extends to the return values, so one can
include an addition operator that takes two constant integers and returns
a constant integer.

Aggregation appears to be a promising technique, and we
are investigating several mechanisms, including some that
take into account candidates from prior generations. We
are also planning on doing experiments to test the
sensitivity to various other runtime parameters controlling
dynamic fitness case selection, evaluation, reproduction,
and the decision to terminate a run.

6 CONCLUSIONS
Genetic programming appears to be a promising
technique for modeling disk arrays. In this paper we have
shown that it is capable of producing models that
outperform both a published analytical model and, for
small amounts of input data, a currently-used
interpolation-based approach, models which have
acceptable, if not outstanding error behavior.
A statistical analysis indicates that the problem is
sensitive to population size but not run length (for runs
longer than about 125 generations) and lent support to the
use of aggregation and the method used for selecting the
overall winner. While there is still some danger of
overfitting, this is less common than might be expected
and appears to be helped by the combination of dynamic
fitness case selection and winner selection used, although
this was not proven.

ACKNOWLEDGEMENTS
We would like to thank Eric Anderson for his help in
posing the problem, for helping us acquire and understand
the data, and for his comments on an earlier draft. We
would also like to thank Jaap Suermondt for his
comments and Jerry Shan for his help in understanding
the statistics.

References
Alvarez, Guillermo A.; Borowsky, Elizabeth; Go, Susie;

Romer, Theodore H.; Becker-Szendy, Ralph;
Golding, Richard; Merchant, Arif; Spasojevic,
Mirjana;, Veitch, Alistair; and Wilkes, John. 2001.
Minerva: an automated resource provisioning tool for
large-scale storage systems. Technical Report HPL-
2001-139, Hewlett-Packard Laboratories, June, 2001.
To appear in ACM Transactions on Computer
Systems.

Anderson, Eric. 2001. Simple table-based modeling of
storage devices. Hewlett-Packard Laboratories
Storage Systems Project technical memo HPL-SSP-
2001-4. July 14, 2001.

Koza, John R. 1990. Genetic Programming: A Paradigm
for Genetically Breeding Populations of Computer
Programs to Solve Problems. Stanford University
Computer Science Department Technical Report
STAN-CS-90-1314. June, 1990.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA, MIT Press.

Montana, David J. 1995. Strongly typed genetic
programming. Evolutionary Computation 3(2):199–
230.

Sutton, Richard S; and Barto, Andrew G. 1998 Rein-
forcement Learning: An Introduction. Cambridge,
MA, MIT Press.

Uysal, Mustafa; Alvarez, Guillermo A.; and Merchant,
Arif. 2001. A modular, analytical throughput model
for modern disk arrays. Proceedings of the Ninth
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems (MASCOTS-2001), p. 183–192, August 15–
18, 2001, Cincinnati, OH.

