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Abstract 
 
 
This paper describes the results of using genetic 
programming to evolve models that predict the 
throughput in disk arrays.  The results are 
compared to previous hand-crafted analytical and 
automatically-generated interpolation-based de-
vice models.  An analysis is performed to 
investigate the optimality of the run parameters 
chosen as well as to discover whether the 
approach has the tendency to overfit its training 
data.  The process is shown to find models that 
outperform both recently published and currently 
used models and to be sensitive to population 
size but not run length. 

1 BACKGROUND 
In the past decade, enterprises have turned to disk arrays 
both to give them sufficient storage capacity and also to 
help them attain their required availability levels.  The 
internal architectures of the arrays—and those of the 
commodity disks they contain—are becoming more and 
more complex, now including hardware and firmware 
support for a wide variety of optimizations, typically 
developed independently of one another, leading to 
interactions that are often unintuitive and difficult to 
understand.  (Uysal, et al., 2001) 
To design and configure such systems, automated tools 
such as Minerva (Alvarez, et al., 2001) attempt to predict 
the performance of a large number (tens of millions) of 
configurations under various workloads to select an 
optimal design.  Such tools require models which are 
accurate, execute extremely quickly, and are not 
inordinately expensive to build. 
Uysal, et al. (2001) developed a modular analytical model 
for predicting the throughput of a disk array and validated 
it for a particular array under two configurations and a 
number of workload conditions, achieving an overall error 
rate of approximately 15%.  Anderson (2001) investigated 
automatically constructing models based on table-driven 
interpolation between actual measured throughput values.  
He tried three algorithms: closest-point estimation, k-
nearest-neighbor averaging, and hyperplane interpolation, 

in which the prediction is based on interpolation over a 
non-degenerate hyperplane of nearby measured points.    
Anderson empirically tested each of these methods on a 
data set obtained by measuring a disk array over two 
RAID levels, three numbers of disks, and a wide variety 
of workload configurations, for a total of 1,126 
measurements.  To simplify the task, he constructed a 
separate table for each combination of RAID level, 
number of disks, and operation type (read or write).  Of 
the three methods, closest-point estimation was clearly the 
worst, and hyperplane interpolation appeared to be 
somewhat better than k-nearest-neighbor averaging. 
Anderson’s results for hyperplane interpolation for the  
695 RAID level 1 cases can be seen in Figure 1 (a 
recasting of his figure 1), showing the mean relative error 
when constructing the tables using a given fraction of the 
available data and testing on the remainder, with fifty runs 
at each point.  With 41% of the data, hyperplane 
interpolation yields a mean relative error of 20.32±1.76% 
Performance steadily improves as the number of  data 
points increases, reaching 12.45±1.53% with 60% of the 
data, 5.11±1.22% with 80% of the data and 1.24±2.04% 
with 98% of the data. 
A downside to this approach, however, is the time it takes 
to acquire the data.  Currently, each data point requires 
approximately five minutes of computer time to acquire, 

Figure 1 Mean relative error at various training levels
for hyperplane estimation, from (Anderson, 2001). 
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so the 556 cases used in the 80% test took over 46 hours 
to acquire.  It is desirable to look for techniques which 
can achieve similar results while requiring less data.  
Genetic programming is a promising candidate, as it 
appears to be good at finding general solutions to non-
linear functional numeric regression problems from a 
relatively small number of cases. 
In this paper, we will describe the use of genetic 
programming (Koza, 1990, 1992) to solve the same 
problem.  In section 2 we describe our experimental 
setup.  In section 3 we present our results, paying special 
attention to the question of overfitting.  In section 4 we 
look a bit closer at which of the experimental parameters 
seem to matter.  We then finish up with some thoughts on 
future work and conclusions. 

2 EXPERIMENTAL SETUP 
The experiments described in this paper were performed 
on the RAID-1 subset of the data used in (Anderson, 
2001).  The data was partitioned into six subsets based on 

the number of disks (2, 4, or 6) and the operation being 
performed (read or write).  The sizes of the subsets are 
shown in Table 1.  For each data point,  there are three 
input values available to the predictor, described  in 
Table 2.  In this data set, all input values were round 
powers of two.  Each subset was separately trained on  a 
randomly-chosen 20%, 40%, 60%, and 80% of the data, 
with the remainder used for testing, and ten runs were 
made at each combination, for a total of 240 runs. 
The system used was GPLab, a flexible genetic 
programming framework developed and used for data 
mining research at Hewlett-Packard Laboratories.  This 
system implements strongly-typed GP (Montana, 1995) 
with hierarchical types, so, for instance, operators 
(including variables and constants) which produce 
integers can be fed into those which require real numbers.  
Experiments were performed on a  PC with a 1.3 GHz 
Pentium 4 processor. 
The operators available to each run are shown in Table 3.  
In addition to the normal arithmetic operators over real 
numbers (with division by zero defined to return one),  we 
also provided operators to take the minimum, maximum, 
and mean of two real numbers.  Constants were provided, 
uniformly selected over the range –10 to 10 inclusive, 
both as integers and real numbers.  The run parameters 
themselves were available as integers.  Finally, a set of 
“magic number” constants used by the analytic model in 
(Uysal, 2000) were included.  Anderson (personal 
communication) informed us that the numbers we used 
may not actually describe the system on which the data 
was collected.  In particular, the value for disk size is a bit 
too high and the cache segment size is a factor of four too 
large, with several of the others difficult to measure.  Our 
expectation, however, is that the values, inaccurate as 
they might be, will be useful as “ballpark figures” 
providing seeds from which the actual values can be 
derived by combining arithmetically with numeric 
constants.  The constants specific to reads and writes were 
only provided for runs that measured those operations. 
Each run of the experiment lasted 300 reproductive 
generations with a population size of 5,000 candidates 

Table 2  Input data 

Attribute Description Range 

request 
size 

The mean length of a 
request 

2 KB to 
256 KB 

queue 
length 

The mean size of the 
device queue 16 or 64 

run count 
The number of requests 

made to contiguous 
addresses 

1 to 256 

Table 1  Subset sizes 

Subset Cases 
2-disk reads 72 
4-disk reads 144 
6-disk reads 144 
2-disk writes 92 
4-disk writes 99 
6-disk writes 144 

Table 3  Available Operators 

Operator Type 
+, –, *, / 

min(x, y), max(x, y), mean(x, y) 
Real x Real
→ Real 

Constants [–10, 10] Integer 

Constants [–10, 10]  
(step 0.0001) Real 

queue length 
request size 
run count 

Integer 

cache segment size (64 KB) 
cache size (256 MB) 

disk size (18 GB) 
max controller bandwidth (84 MB/s) 

max controller throughput 
(11,338 I/O /s) 

rotation time (6×10-3 s) 
read position time (6.37×10-3 s) 
write position time (7.00×10-2 s) 

mean read transfer rate (1.80×107 B/s) 
mean write transfer rate (1.65×107 B/s) 

Integer 



 

initially generated with a depth of no more than seven.  In 
subsequent generations, (on average) 80% of the 
candidates were produced by crossover, 8% by copying, 
8% by point mutation (replacing an operator in the tree by 
another operator with a compatible type signature), and 
4% by constant drift (incrementing or decrementing an 
integer constant or applying Gaussian drift to a real 
constant).  Traditional mutation was not used.  The best 
candidate from a generation was unconditionally copied 
to the next.  The primary fitness measure was the mean 
relative error over the training cases presented to the 
candidate during its training period.  In case of exact ties, 
the number of nodes in the candidate’s tree was 
considered as a secondary fitness measure.  Candidates 
were selected to be parents by winning 5-candidate 
tournaments.  There were no restrictions on the sizes of 
the trees resulting from crossover, but candidates who 
exceeded a 100-operator evaluation budget on any case 
were considered infinitely bad. 
The runs made use of GPLab’s dynamic fitness case 
selection feature both to avoid wasting time on very poor 
candidates and to minimize the risk of overfitting.  Each 
candidate was presented with a set of ten cases drawn 
from the complete set of training cases.  If it did 
sufficiently well on those cases, it was presented with 
another set of ten, and so on until it had seen the full set 
of training cases.  “Sufficiently well” for this experiment 
was defined as scoring within a “hit interval” on 90% of 
the cases seen.  The hit interval started at 15% and was 
reduced to be no more than 150% of the best score posted 
over all of the training cases by any candidate.  A form of 
reinforcement learning (Sutton and Barto, 1998) was used 
to bias the selection of cases presented to those which 
candidates have done relatively poorly at solving. 
While only a fraction of the training cases were seen by 
any individual candidate to provide the fitness measure 
used for determining whether a candidate became a parent 
for the next generation, the 100 best candidates (as well as 
a sample of the rest) were evaluated on the entire set of 
training cases as well as the out-of-set cases.  The overall 
leader in each generation was the one that did best on the 
complete set of training cases.  In addition, teams of the k 
best candidates in the population (2 ≤ k ≤ 30) were 
evaluated over the complete set of cases, the team’s 
prediction on each case being an unweighted average of 
the prediction of its members. 

3 RESULTS 
The overall results of the experiment are shown in 
Table 4, which shows the mean (with 95% confidence 
interval), median, maximum and minimum mean relative 
error found for each percentage level.  The means and 
medians are over all of the runs in all of the subsets at 
each percentage.  Since the same number of runs were 
done for each subset, the mean given is the same as the 
mean of the subset means, although the confidence 
interval is tighter. 

3.1 COMPARISON WITH PRIOR RESULTS 
The “weighted average” column shows the mean of the 
subset means normalized over the number of cases in 
each subset.  This is the relevant number to compare with 
the results in (Anderson, 2001, repeated in the table), as 
the results given for that experiment are the mean of the 
errors over all of the out-of-set cases. 
Looking at the results, it is apparent that genetic 
programming does substantially better than hyperplane 
interpolation when trained on 40% and 60% of the data.  
The weighted means are outside the confidence intervals 
given, and a t-test shows that the means of both runs are 
significantly (P<0.0005) better than the hyperplane 
interpolation means.  Looking at it another way, the 
hyperplane interpolation results require approximately 
57% of the data to achieve the results GP can do with 
40%.  This represents a savings of nearly ten hours in data 
collection, compared with a run time averaging about 
eight and a half minutes.  For the 60% level, the 
corresponding figures are 65% and four and a half hours. 
Anderson did not report a number for the 20% level.  To 
obtain his training sets, each element of the data set was 
chosen to be a training case with a probability equal to the 
level.  Below 40%, it was deemed too likely that one of 
the tables would have too few training examples to be 
usable.   
On the other hand, the GP results when training on 80% 
of the data are significantly worse than hyperplane 
interpolation.  More work needs to be done to investigate 
why this is so, but as the focus of the work was to do well 
with small samples, the results are encouraging. 
When compared against the analytical model presented in 
(Uysal, et al., 2001), with 40% of the data, the overall 

Table 4 Results 

Fraction Mean Median Min Max Weighted Mean Hyperplane   
Interpolation Mean 

20% 2.4×109% 16.259% 8.233% 4.0×108% 4.9×108% not given 

40% 12.604±1.615% 11.401% 5.204% 52.925% 12.380% 20.317±1.764% 

60% 10.164±0.881% 9.696% 3.396% 21.474% 10.066% 12.466±1.529% 

80% 10.765±1.666% 9.788% 3.400% 28.019% 10.375%  5.106±1.221% 



 

mean and the means of all of the subsets with the 
exception of 4-disk writes are less than the reported mean 
of 15%.  Uysal, et al. validated their model on the 4- and 
6-disk configurations using the same data, and with the 
same exception, over those subsets, only a single GP run 
produced an error greater than 15%.  Thus, it appears that 
with this approach one can expect to generate models that 
have better prediction accuracy than those developed by 
hand by experts. 

3.2 OVERFITTING 
One striking feature of Table 4 is the presence of 
enormously bad values when training on 20% of the data.  
This brings up the everpresent danger of overfitting the 
training cases.  In fact, out of 240 runs in the experiment, 
there was only one case of spectacularly overfitting the 
data.  In the second run of the 6-disk read subset using 
20% of the data, the winning candidate had a mean 
relative error of 7.45% over all the training cases—and 
2,383,190,015% over the validation cases.  In addition, 
there were two other runs with error greater than 100% 
(20% 4-disk read, run 3: 3,774% and 20% 2-disk read, 
run 6: 188%), and an additional eleven runs with error 
greater than 30%.  All but one of these runs were when 
training on 20% of the data, where the total number of 
training cases ranged from 14 to 28.  The only substantial 
overfitting seen at higher percentage levels was run 9 of 
the 4-disk write subset using 40% of the data, with an out-
of-set error of 52.925%.  
If the three outliers at the 20% level are removed, the 
mean on the remainder becomes 21.932±6.669%.  
Removing the next three (MRE > 60%) brings it down to 
19.221±4.218%.  In each of the six removed runs, an 
individual was found with out-of-set error < 35%.  (In 

three cases < 20%.)  In addition, in three of the six runs, a 
“best so far” candidate had been identified with error less 
than 20%.  This suggests that with more attention to the 
identification and selection of the winner, useful results 
should be expected with as few as 20% of the cases. 

3.3 ROOM FOR IMPROVEMENT 
Looking in depth at the 40% case, Figure 2 shows the out-
of-set performance over the six subsets as well as overall 
performance.  In each group, the center bar represents the 
candidate chosen as the winner, the left-hand bar 
represents the out-of-set best candidate that was chosen as 
leader at some point in the run, and the right-hand bar 
represents the candidate that had the best out-of-set 
performance during the entire run.1  The heights of the 
bars represent the mean, and the whiskers indicate the 
95% confidence levels.  The other levels shown are the 
maximum and minimum values for the winner. 
While the best individual seen, of course, cannot be used 
during a real run, the difference in height between the 
right and center bars is an indication of the efficacy of the 
method used for selecting the winner.  At this percentage 
level, the winning candidate is, on average 2.514±1.230% 
worse than the best candidate seen.  If the one bad 
(MRE=52.9%) run is removed, this number drops to 
1.913±0.360%.  So the method does reasonably well at 
choosing a good candidate, but there is some room for 
improvement.  A t-test over all runs at the 40% level 
confirms that the best individual seen is significantly 
(P<0.01) better than the eventual winner. 
                                                           
1 Strictly speaking, this is the candidate that had the best out-of-set 
performance of those fully tested.  Only the top 100 and a small sample 
of others were tested each generation. 
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The difference in height between the left and center bars 
is an indication of the efficacy of the termination 
condition, as it indicates that the eventual winner is 
somewhat worse than one that would have been chosen 
had we stopped at some earlier point.  Here the margin is 
1.536±1.183% (0.948±0.269% dropping the outlier) and 
the significance of the difference is P=0.054. 
One other thing apparent from Figure 2 is that there is 
substantial difference between the performance on the 
various subsets, indicating that the problems posed are not 
equally easy to solve.  A comparison of the means at the 
P<0.05 level of significance shows that 2- and 4-disk 
reads are the easiest, followed by 6-disk reads and 6-disk 
writes.  Next comes 2-disk writes, and finally, not 
surprisingly, 4-disk writes.2 

4 ANALYSIS 
We now turn to the question of the significance of the run 

                                                           
2 The mean for 6-disk writes is less than that for 2-disk writes at the 
P=0.053 level. 

parameters. 

4.1 POPULATION SIZE 
To investigate the sensitivity of the runs to population 
size, we ran 30 runs of each subset at the 40% level using 
a population of 1,000 candidates.  The resulting overall 
mean relative error was 15.220±1.108%, a difference 
significant at the P<0.005 level.  Looking at the subsets 
individually, only the 4-disk write case (with the outlier in 
the original population) failed to show a significant 
increase in error.  So this appears to be a problem that 
benefits from a larger population size. 

4.2 LENGTH OF RUN 
While large populations appear to be beneficial for this 
problem, an analysis indicates that our choice of 300 
generations for the run length may have been overly 
conservative.  At first glance, the numbers shown in 
Table 5 would seem to imply that the run is taking 
advantage of the full length of the run.  Not only are the 
winners typically selected in the last thirty generations (in 
seven cases in the final generation), but the absolute best 
individual is typically found in the last third of the run.  
When we look at runs in detail, however, we see a 
different story. 
Figure 3 shows the out-of-set mean relative error of the 
leader by generation for each of the runs at 40% on the 4-
disk read subset.  As is apparent in the figure, there is a 
precipitous drop in error for approximately the first eighty 
generations, but after that, the performance on most of the 
runs levels off,with the improvements, while continual, 

Table 5  Mean Generation Found, 40% cases 

Percent 
Used 

Winner 
Found in 

Generation 

Best Found 
in 

Generation 

Best Leader 
Found in 

Generation 

20% 287±6 160±23 125±21 

40% 278±7 221±18 195±20 

60% 277±7 247±13 229±16 

80% 271±10 231±18 195±20 
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being slight.  (It is heartening to see, however, that only 
one run made a very brief two-generation detour into 
seriously overfitting the data.) 
If we perform t-tests comparing the final result to the 
result after each generation for the 40% case, as shown in 
Figure 4, we see that a 300-generation run is only 
significantly (P<0.05) better than runs of less than 91 
generations.  In another experiment in which the length of 
run was 1,000 generations (with varying numbers of runs 
per subset), a similar test shows that 1,000 generations is 
only significantly better than runs of less that 130 
generations. 

4.3 AGGREGATION 
One somewhat unusual technique used is the aggregation 
of good members of the population into teams that vote 
on the final solution.  In this experiment, we only used the 
simplest of GPLab’s aggregation mechanisms, in which 
all sets of the k best candidates in a population (for k up to 
30) are tested as a team.  It should be noted that the 
aggregation is for purposes of selecting winners only—
the aggregates are not considered to be parents, and, 
therefore, there is no evolution of teams per se. 
In the 40% runs, the winner selected is a team 71.7% of 
the time (43 runs).  Figure 5 shows the distribution of the 
sizes of winning teams.  The intuition here is that, rather 
than converging on a single winner, there are often 
competing “subspecies”, each nearly the best, jockeying 
for the first place position.  While the winner selection 
method discussed in section 4.4 removes some of the 
problems that this can cause, especially due to overfitting, 
aggregation can allow solutions which are combinations 
of candidates from subspecies which are each good at 
solving cases in different regions of the input space. 
In another set of runs, we asked GPLab to use hill-
climbing to add and remove good candidates to and from 
the team being constructed.  While this occasionally 
resulted in leaders being chosen during the run, it did not 
appear that any final winners were constructed using hill-
climbing. 

4.4 WINNER SELECTION 
Another unusual aspect of our setup is the separation of 
the fitness measures used for parent selection and winner 
selection.  Parents were chosen as usual based on the 
performance on fitness cases seen during the training 
phase, but winners were selected based on overall 
performance of the candidates on all of the training 
cases.3  This, combined with dynamic fitness case 
selection, was an attempt to avoid the overfitting that so 
often happens in genetic programming runs, in which a 
lucky individual or overfitting subpopulation happens to 
occupy the top spot at the end of the run and gets selected 
as the winner. 
The technique appears to be useful.  For the 40% runs, 
while the winner selected on the basis of all of the 
training cases had a mean error of 12.604±1.615% on out-
of-set cases, the candidate that did best during its training 
phase had an out-of-set mean error of 18.012±5.410%, for 
a net gain of 5.408±5.450%.  The largest difference was 
157.724%, and there were four cases out of sixty in which 
the training-best candidate had better out-of-set 
performance than the winner.  That such winners should 
be easy to spot is evidenced by the fact that over all of the 
training data, winners outperformed training-best 
candidates by 9.261±5.879%.  
The picture is a bit less clear-cut when outliers are 
removed.  The one overfitting (out-of-set MRE = 
52.925%) winner was outperformed by its training-best 
runmate by 25.841%.  On the other hand, there were only 
two substantially overfitting training-best candidates (out-
of-set MREs = 169.504% and 61.890%) respectively.  If 
these runs are removed, the out-of-set difference shrinks 
to 2.445±0.683%, still significantly (P<0.001) better, but 
a less spectacular improvement. 
In early runs, we experimented with GPLab’s tripartite 
fitness case division, in which the fitness cases are 
partitioned into a training set, a testing set, and a 
validation set.  This last set, which must be considered 
“in-set data” for purposes of comparison, contains cases 
not used for purposes of selecting parents, but which may 
be used to control other run parameters during the run, 
including the decision to terminate and the selection or 
construction of a winner.  We found that using such a 
                                                           
3 But not, of course, the testing cases. 

0

0.05

0.1

0.15

0.2

50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

Generation

T-
Te

st
 P

Figure 4  Improvement for 300-generation run vs. n-
generation run 

0

1

2

3

4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Team Size

Fr
eq

ue
nc

y

Figure 5  Frequency of team size, 40% winners 



 

validation set for winner selection appeared to be better 
than using the training set—but not as good as simply 
enlarging the training set.  That is, in runs with 40% 
training cases and 20% validation cases, the winner 
selected on the basis of validation fitness tended to 
outperform the winner selected on the basis of training 
fitness, but it appeared to not do as well as the winners 
selected on the basis of training fitness from runs which 
used 60% of the cases as training cases.  We have not yet 
done enough runs to say this with any confidence, 
however. 

4.5 SAMPLE SIZE 
We now consider the impact of the size of the data set.  
One unexpected result, reported in Table 4, was that while 
the system did better when training on 60% of the data 
than it did with 40% of the data, things actually got worse 
when the sample size was increased to 80%.  Checking 
significance levels backs this up.  While it is significantly 
(P<0.001) better to have 40% of the data than 20% and 
(P<0.01) better to have 60% of the data than 40%, when 
comparing the significance levels of the 80% and 60% 
runs, we do no better than P=0.21.  Indeed, when 
comparing the 80% runs to the 40% runs, the significance 
is reduced to P=0.04.  
This is hard to account for, but it may be due to the 
increased likelihood that the now-smaller testing set is not 
representative of the space as a whole rather than some 
sort of interference from the now-larger training set. 

5 FUTURE WORK 
While the initial results are promising and bring the 
prediction accuracy into the region which makes it useful 
for design systems like Minerva, more work needs to be 
done to drop the error rate to the desired 3–5% range.  
Since population size appears to be a significant factor, an 
obvious avenue to explore is the use of even larger 
populations, perhaps recouping some of the time by 
shortening the runs, as runs of longer than about 125 
generations appear to be unnecessary. 
Another question unexplored in this paper is the impact of 
the operator set on the mechanism’s performance.  Given 
the large range of data and the fact that powers of two 
tend to be important to computer systems, one operator 
that appears to be useful, although we have not yet done 
enough runs to be able to say anything statistically sound, 
is a binary logarithm, perhaps restricted to taking its 
argument from the set of input variables.4  Other likely 
wins in this area are the addition of Boolean and relational 
operators, along with conditional branches, allowing the 
problem to be split into separate sub-cases. 

                                                           
4 The type algebra of GPLab allows the addition of arbitrary attributes to 
types, so one can, for example, talk about “Boolean input variables” and 
“Real-valued constants”.  This extends to the return values, so one can 
include an addition operator that takes two constant integers and returns 
a constant integer. 

Aggregation appears to be a promising technique, and we 
are investigating several mechanisms, including some that 
take into account candidates from prior generations.   We 
are also planning on doing experiments to test the 
sensitivity to various other runtime parameters controlling 
dynamic fitness case selection, evaluation, reproduction, 
and the decision to terminate a run. 

6 CONCLUSIONS 
Genetic programming appears to be a promising 
technique for modeling disk arrays.  In this paper we have 
shown that it is capable of producing models that 
outperform both a published analytical model and, for 
small amounts of input data, a currently-used 
interpolation-based approach, models which have 
acceptable, if not outstanding error behavior.   
A statistical analysis indicates that the problem is 
sensitive to population size but not run length (for runs 
longer than about 125 generations) and lent support to the 
use of aggregation and the method used for selecting the 
overall winner.  While there is still some danger of 
overfitting, this is less common than might be expected 
and appears to be helped by the combination of dynamic 
fitness case selection and winner selection used, although 
this was not proven. 
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