

A Generic Software Framework for
Automated Negotiation

Claudio Bartolini, Chris Preist, Nicholas R. Jennings 1

Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2002-2
January 23rd , 2002*

automated
negotiation,
electronic
marketplaces,
negotiation
protocols,
software
framework

If agents are to negotiate automatically with one another they
need to follow a shared protocol. The protocol specifies the way
in which negotiation should take place, including the flow of
messages to be used. To date, most research in this area has
focused on defining specific protocols for different kinds of
interaction. Here we propose an alternative approach. We
define a simple interaction protocol which can be used in all
circumstances, and a general interaction framework using this
protocol. This framework can be parameterized with different
negotiation rules. By choosing different sets of rules, different
negotiation mechanisms can be implemented. We present a
taxonomy of such rules, together with examples of specific
negotiation mechanisms. We also describe our implementation
of the framework using the Jade multi-agent platform
integrated with the Java Expert System Shell (Jess).

* Internal Accession Date Only Approved for External Publication
1 Dept. of Electronics & Computer Science, University of Southampton, Highfield, Southampton, UK
 Copyright Hewlett-Packard Company 2002

A Generic Software Framework for Automated Negotiation
Claudio Bartolini

HP Laboratories
Filton Road, Stoke Gifford

Bristol, UK
+ 44 117 312 8505

claudio_bartolini@hp.com

Chris Preist
HP Laboratories

Filton Road, Stoke Gifford
Bristol, UK

+ 44 117 312 8311
chris_preist@hp.com

Nicholas R. Jennings
Dept of Electronics & Computer Science

University of Southampton
Highfield, Southampton, UK

+44 23 8059 7681
nrj@ecs.soton.ac.uk

ABSTRACT
If agents are to negotiate automatically with one another they need
to follow a shared protocol. The protocol specifies the way in
which negotiation should take place, including the flow of
messages to be used. To date, most research in this area has
focused on defining specific protocols for different kinds of
interaction. Here we propose an alternative approach. We define a
simple interaction protocol which can be used in all circumstances,
and a general interaction framework using this protocol. This
framework can be parameterized with different negotiation rules.
By choosing different sets of rules, different negotiation
mechanisms can be implemented. We present a taxonomy of such
rules, together with examples of specific negotiation mechanisms.
We also describe our implementation of the framework using the
Jade multi-agent platform integrated with the Java Expert System
Shell (Jess).

Keywords
Automated negotiation; Electronic Marketplaces; Negotiation
protocols; Software framework

1. INTRODUCTION
Recently there has been much interest in the role of dynamic
negotiation in electronic business transactions. For such
negotiation to be effectively automated, parties need to use a
shared negotiation protocol. The protocol determines the flow of
messages between participants and the rules by which they must
abide during the negotiation. In addition, each agent needs a
negotiation strategy which determines how it will act within the
protocol to attempt to get a good outcome. The research we
present in this paper focuses on the shared protocol, not the
private strategy.

Various protocols are used for automated negotiation. They can be
one-to-one (such as iterated bargaining [13]), one-to-many or

many-to-many (such as auctions [18]). However, most state-of-
the-art multi-agent systems are designed with a single negotiation
protocol explicitly hard-coded in all agents (usually as finite state
machines). This leads to an inflexible environment, only able to
accept agents designed for it. An advance on this is provided by
standardization activities such as FIPA [8] and the Open Agent
Architecture [5]. These provide formal definitions of several
standard negotiation protocols. A fully FIPA-compliant agent, for
example, will be able to use any of these, and can be informed by
another agent which is to be used in a given negotiation. This
provides a limited degree of flexibility, but still requires hard-
coding of all protocols.

In this paper, we propose an alternative approach. We define a
generic interaction protocol and a general interaction framework
using this protocol. This framework can be parameterized with
different negotiation rules. Depending on the choice of rules,
different negotiation mechanisms can be implemented. We present
a taxonomy of such rules, together with examples of specific
negotiation mechanisms. This approach has two important
advantages over the state-of-the-art. Firstly, it is flexible. Only the
general interaction framework needs to be agreed in advance and
explicitly hard-coded in agents. Rules defining a specific protocol
can be defined at any time. Secondly, protocol specifications
(consisting of a small number of declarative rules) can be explicitly
passed between agents and reasoned over. This means one agent
can give another an explicit specification of the protocol it wishes
to use. This also opens the door for future research into agents
dynamically designing protocols to meet their needs, or negotiating
with others over changes in a protocol specification.

In describing the architecture of our negotiation framework we
take a layered approach (Figure 1). The bottom layer consists of a
generic agent-oriented platform (such as the ones described in [5,
8]). This frees us from having to re-define basic services for agent
communication, lifecycle management, and so on. On top of the
agent-oriented platform, our negotiation framework defines: (i) a
general negotiation protocol, (ii) a taxonomy of the rules of
negotiation, (iii) a language to define the rules of negotiation and
(iv) a language to express negotiation proposals.

In more detail, the general negotiation protocol (section 2.3)
defines the way in which the agents interact during the negotiation.
We base this protocol on an abstract model of negotiation, formed
by analyzing what is common to many different forms of

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a
fee.
AAMAS ’02, July 15-19, 2002, Bologna, Italy.

 2

negotiation (sections 2.1 and 2.2). The general protocol can be
specialized to a specific negotiation mechanism by specifying
negotiation rules (section 2.4). We define a language to express
negotiation proposals (section 3.3) that allows proposals to
specify specific acceptable outcomes, or constraints on the space
of acceptable outcomes. Finally, we introduce a declarative
language to express negotiation rules (section 4) so that
negotiation participants can reason over them. The declarative
layer can then be mapped to reusable software components
implementing the logic expressed by the rules.

Agent-Oriented Platform

Negotiation
Rules

General Negotiation Protocol

Negotiation
Proposals Negotiating

Agent
Negotiation

Host

Figure 1: Abstract Architecture of Negotiation Framework

2. THE ABSTRACT ARCHITECTURE
In this section we present an abstraction of the negotiation
process, developed from role-based analysis of many examples of
different kinds of negotiations. From this, we identify the key
abstract roles and their responsibilities and develop a general
protocol for the negotiation framework.

2.1 An Abstract Negotiation Process
Negotiation takes place by parties communicating via a negotiation
locale. This locale is an abstraction of the messaging system that is
used by the negotiation participants to address each other. After
admission to negotiation, a participant is given access to the locale.
This locale may already exist, or may be specially created. Each
participant can send proposals by sending a message to the
negotiation host. Reliable delivery and security are enforced by the
underlying messaging infrastructure. The negotiation host
determines which of the participants should see the message and
multicasts the message appropriately. This allows us to model
one-to-one negotiation as a particular case of many-to-many.

To be able to negotiate with one another, parties must initially
share a negotiation template. This specifies the different
parameters of the negotiation (e.g. product type, price, supply
date etc). Some parameters may be constrained (e.g. product type
will almost always be constrained in some way), while others may
be completely open. A negotiation locale has a negotiation
template associated with it and this defines the object of
negotiation within the locale.

As part of the admission process to the negotiation, participants
must accept the negotiation template. A potential participant may
also need to meet other admission policies, such as providing
certain credentials, before starting negotiation.

The process of negotiation is the move from a negotiation
template to an acceptable agreement. A single negotiation may
involve many parties, resulting in several agreements between
different parties and some parties who do not reach agreement.
For example, a stock exchange can be viewed as a negotiation
where many buyers and sellers meet to trade a given stock. Many
agreements are formed between buyers and sellers, and some
buyers and sellers fail to trade (see section 4.2 for more details).

During negotiation, the participants exchange proposals
representing the agreements currently acceptable to them. Each
proposal will contain constraints over some or all of the
parameters expressed in the negotiation template. These proposals
are sent to the negotiation host. However, before a proposal is
accepted by the locale, it must be valid. To be valid, it must
satisfy two criteria:

• It must be a valid restriction of the parameter space defined
by the negotiation template. The constraints represent the
values of parameters that are currently acceptable. Often, a
constraint will consist of a single acceptable value.

• The proposal must be submitted according to the set of rules
that govern the way the negotiation takes place. These rules
specify (among other things) who can make proposals, when
they can be made, and what proposals can be submitted in
relation to previous submissions. (For example, auctions
often have a ‘bid improvement’ rule that requires any new
proposal to buy to be for a higher price than previous
proposals). Such rules are specified and agreed at the
admission stage.

An agreement is formed according to the agreement formation
rules associated with the negotiation locale. When the proposals in
the locale satisfy certain conditions, they are converted by these
rules into agreements, and returned to the proposers. The end of a
negotiation is determined by termination rules.

This abstract process can be specialised to many different
negotiation styles. For example, in one-to-one bargaining,
participants take turns in exchanging proposals in a previously
agreed format. The rules in this case are simple. Any proposal can
be made, as long as it is consistent with the negotiation template
and made in turn. The negotiation terminates when the same
proposal is returned unchanged (which we take as declaration of
acceptance) or when one party leaves the negotiation locale. In the
former case, an agreement identical to the last proposal is formed.
In an English auction, the proposals specify the price of the good,
every other parameter being fully instantiated in the negotiation
template. Negotiation rules state that every new proposal (bid)
will be valid only if it is an improvement over the current best
proposal. Termination occurs at a deadline, and the agreement
formed will contain the specification of the good as expressed in
the negotiation template, at the price specified in the winning bid.

 3

2.2 Roles in Negotiation
There are two main roles in negotiation – participant and host
(Figure 2). The former are those who wish to reach agreement. The
latter is the role responsible for enforcing the protocol and the
rules of negotiation. The agent playing the host role may also play
a participant role (e.g. in one-to-one negotiation) or may be non-
participatory (e.g. the auctioneer in an auction). In some cases, the
role of negotiation host may alternate between different entities as
the negotiation progresses.

The Negotiation Participant can post proposals according to the
rules provided by the negotiation host.

The Negotiation Host is responsible for the creation and
enforcement of rules governing participation, execution, resolution
and termination of a negotiation. It has the following sub-roles:

• Gatekeeper: Enforces policy governing admission to the
negotiation.

• Proposal validator: Ensures that a proposal is well formed
with respect to the negotiation template.

• Protocol enforcer: Ensures that participants’ proposals are
posted and withdrawn according to the negotiation rules.

• Agreement maker: Ensures that agreements are formed
according to the rules.

• Information updater: Notifies participants of current state of
the negotiation, according to the visibility and display rules.

• Negotiation terminator: Declares negotiation over according
to what is specified in the termination rule.

Participant

Infrastructure
Provider

Protocol
Enforcer

Proposal
Validator

Agreement
Maker

Information
Updater

Gatekeeper

Negotiation
Rules

Agreement
Template

Agreement
Rules

Admission
Rules

Negotiation Locale
ProposalProposal

Proposal

Negotiation Host

ParticipantParticipant

Figure 2: Abstract architecture: sub-roles & relationships

2.3 The General Negotiation Protocol
We now present the general negotiation protocol, showing how
these roles interact. We do this using UML diagrams enhanced
with swim-lanes (which give the views of each of the actors).

Figure 3 shows the negotiate activity.1 We assume that a
negotiation locale and a negotiation template exist. The negotiation
host declares the negotiation open. Participants can then be
admitted to the negotiation process if they meet the admission
requirements.

The participants now submit proposals by posting them to the
negotiation locale. This continues until termination is reached, as
defined by the termination rules. Termination may occur after
agreement formation (as in one-to-one bargaining), before
agreement formation (as in a sealed-bid auction) or may be
independent (as in a continuous double auction.) Each time a
participant submits a proposal (Figure 4) the negotiation host, in
the role of proposal validator, checks that it is a constrained form
of the negotiation template and is syntactically well formed. If the
proposal is not valid, it is rejected. If the proposal passes this first
stage of validation, the negotiation host (playing here the role of
protocol enforcer) checks that it satisfies the negotiation rules.
These rules define the way in which the negotiation should take
place and may include restrictions on when a proposal can be
made (e.g. participants must take turns to submit) and semantic
requirements on valid proposals (e.g. requirements that a proposal
must improve on previous ones). If the proposal passes this
second validation stage, the current set of proposals and
associated data structures are updated accordingly and
participants are notified. Who is notified, and the structure of the
notification, is defined by the visibility rules and display rules.

1 In this paper we will describe the negotiate activity only. See [2]

for a full description of the general negotiation protocol,
including the activities of admission, proposal withdrawal,
initialization and finalization of the negotiation infrastructure.

 4

Initialize negotiation
infrastructure

Agreement
formation

Finalize negotiation
infrastructure

Update
information

Agreement
formation
may trigger
Termi nation

Start

Negotiation
open

Negotiation closed

Admission to
negotiation

Admission granted

Submit
proposal Withdraw

proposal

Withdraw from
negotiation

Agreement possible

Update information

Participant Negotiation Host and
Collaborators

Termination

Figure 3: Negotiate Activity Diagram
An agreement formation process can be triggered at any time
during negotiation, according to the agreement formation rules. The
negotiation host (in the agreement maker role) then looks at the
current set of proposals to determine whether agreements can be
made. Agreements can potentially occur whenever two or more
negotiating parties make compatible proposals. If this is the case,
agreement formation rules determine exactly which proposals are
matched and the final instantiated agreement that will be used.

Proposal
submission

Start

Proposal
well formed

Proposal accepted
Proposal rejected

Proposal well-formed -ness
validation

[Proposal is well formed]

[Proposal is not well formed]
Validation against
negotiation rules

[Proposal does not comply with negotiation rules]
[Proposal complies with negotiation rules]

Notify
participants

Information
Updater

Protocol
Enforcer

Proposal
Validator

Participant

Figure 4: Proposal Submission Activity Diagram

Agreement rules may state, for example, that the highest priced
offer to buy should be matched with the lowest priced offer to sell
and that the final agreement will take place at the average price.
Often, tie breaking agreement rules will be defined that will be
used if the main agreement rules can be applied in several ways.
For example, earlier posted offers may take priority over later
ones. When the agreement formation rules have been applied to
determine exactly which agreements are made, the negotiation host

(information updater) notifies the participants. Figure 5 illustrates
the agreement formation utility diagram.

Start

End

Determine
agreements

Apply
tie-break rules

[Conflicts in determining agreements]

Create
agreements

[No conflicts in determining agreements]

Notify
participants

Information
Updater

Agreement
Maker

Figure 5: Agreement Formation Activity Diagram

Having defined the general protocol for negotiation, we now show
how it can be specialized in a variety of different ways. We do
this firstly by presenting a taxonomy of negotiation rules and then
(in the context of our prototype implementation) example rules
for different negotiation mechanisms.

2.4 A Taxonomy of rules for negotiation
Our analysis has identified the following categories of negotiation
rules, together with the roles responsible for them.

Rules for admission of participants

Responsible role: Gatekeeper

Admission rules: Govern admission to negotiation

Rules for proposal validity

Responsible role: Proposal Validator

Validity rule: Ensures that any submitted proposal has to be
compliant with the negotiation template

Rules for protocol enforcement

Responsible role: Protocol Enforcer

Posting rule: Determines circumstances in which a participant may
post a proposal

Improvement rule: Specifies, given a set of existing proposals,
what new proposals may be posted

Withdrawal rule: Specifies if and when proposals can be
withdrawn, and policies over the expiration time of proposals

Rules for updating status and informing participants

Responsible role: Information Updater

Update rules: Specifies how the parameters of the negotiation
change on occurrence of certain events

Visibility rule: Specifies which participants can view a given
proposal

Display rule: Specifies if and how the information updater notifies
the participants that a proposal has been submitted or an

 5

agreement has been made – either by transmitting the proposal
unchanged or by transmitting a summary of the situation

Rules for lifecycle of negotiation

Responsible role: Negotiation Terminator

Termination rule: Specifies when no more proposals may be
posted (e.g. a given time, period of quiescence)

Rules for agreement formation

Responsible role: Agreement Maker

Agreement formation rules: Determine, given a set of proposals of
which at least two are compatible, which agreements should be
formed

Tie-breaking rule: Specific agreement formation rule applied after
all others

3. IMPLEMENTING THE FRAMEWORK
In this section we present an exemplar embodiment of the abstract
architecture described in section 2. In this case, the negotiation
host and its sub-roles are implemented as a multi-agent system
using a blackboard to communicate. The negotiation participants
are autonomous agents which can access portions of this
blackboard, though this access is mediated by the negotiation host.

The main task of the negotiation host agents is to evaluate
negotiation rules and take actions as a consequence of the result.
To do so, they use the blackboard that contains information about
the negotiation as a whole (e.g. valid proposals, participants,
status of the negotiation). Each of the agents is loaded with
negotiation rules that it is responsible for enforcing. They execute
rules either in response to a message or in response to changing
data on the blackboard.

We have implemented the negotiation framework using the Jade
multi-agent platform. Jade [4] is compliant with the FIPA abstract
architecture [8]. The main abstractions in Jade are agents and
behaviours (section 3.1) Agents communicate using messages in
the FIPA Agent Communication Language (ACL) [7]. Jade
provides tools for inspecting these messages and also provides a
library of interaction protocols and generic agent behaviours,
which we have used as the basis of our implementation. The
natural way of designing the negotiation host agents is as a rule
engine. To do this we use the Java Expert System Shell (Jess).
Following [11], we associate a Jess rule engine with a Jade agent.
We implement our negotiation rules in the Jess rule language. The
agent’s behaviour monitors changes on the blackboard and
incoming messages, and executes rules in response to these events.
Agents may write information about the negotiation on the
blackboard (section 3.2). Proposals are also stored on the
blackboard, provided they satisfy the negotiation template
(section 3.3).

3.1 Agents and Behaviours
Our prototype system consists of a Negotiation Host agent and
its sub-ordinate agents: Gatekeeper, Proposal Validator, Protocol
Enforcer, Information Updater , Negotiation Terminator and
Agreement Maker . Any agent can join as a negotiation participant,
provided it conforms to the general negotiation protocol described
in section 2.

The Negotiation Host initializes the blackboard and creates the
sub-ordinate agents. It acts as a first level contact for the
negotiation participants. It receives proposals and forwards them
to the Protocol Enforcer. Upon termination of the negotiation, it
performs finalization tasks such as putting the agents to sleep.

Each of the other agents has an associated Jess engine. When
certain events occur (eg a new message or a change on the
blackboard) they evaluate their rules and take the associated
actions.

The Gatekeeper implements an agent-based version of a
credentials-based access control system [2]. On receiving an
ACL.REQUEST message from the Negotiation Host containing
information on participant identity and credentials, it evaluates the
admission rules to decide whether the participant should be
admitted to negotiation.

The Proposal Validator receives proposals (ACL.PROPOSE)
from the Negotiation Host. It validates them against the
negotiation template. If a proposal is valid, it forwards it to the
Protocol Enforcer. Otherwise, it informs the submitter with an
ACL.REJECT_PROPOSAL message.

When the Protocol Enforcer receives a proposal from the Proposal
Validator, it checks that the proposal satisfies the posting and
improvement rules. It does this by invoking the Jess engine and
accessing associated proposal data on the blackboard. If this
succeeds, it declares the proposal valid and asserts it on the
blackboard. The submitter is informed through an
ACL.CONFIRM message with a proposal id. Otherwise it sends
an ACL.REJECT_PROPOSAL message to the submitter. The
Protocol Enforcer also processes withdrawal requests
(ACL.REQUEST, where the payload is a proposal withdrawal
referring to a valid proposal id), provided they satisfy the
conditions of the withdrawal rules.

The Negotiation Terminator regularly checks the termination rule
to determine whether the negotiation should end. The termination
rule is a Jess rule stating the conditions under which termination
should occur (e.g. a time-out or following agreement formation).
On negotiation termination, it notifies the Negotiation Host.

At regular intervals or when a new proposal is posted on the
locale, the Information Updater updates information on the
blackboard appropriately. It may forward proposals to those
participants eligible to see them (according to the visibility rules)
and/or send a digest of the current state of the negotiation
(according to the display rules).

 6

The Agreement Maker applies the agreement formation rules to
determine which agreement can be made, given the valid proposals
on the blackboard. It then notifies the interested participants that
an agreement has been formed (ACL.INFORM). Its action can be
triggered by an internal clock, or by an event such as a new
proposal arriving or the negotiation terminating.

3.2 Assertions on the Blackboard
We now give details of the knowledge base used by the agents and
then give details of the negotiation proposal language and
negotiation rule language which make use of this. This knowledge
base is stored in the negotiation locale and is accessible by the
negotiation host and its sub-agents. All examples are given as Jess
assertions and rules.

3.2.1 Facts about the negotiation
The negotiation is assigned a unique ID at its start:
(negotiation (id Negotiation-Id))

Other parameters of the negotiation are asserted in the form
(negotiation
 (id Negotiation-Id)
 (negotiation-parameter Value))

For example, parameters associated with an English auction can be
specified in the following way:
(negotiation
 (id auction-37)
 (seller-proposal Alice-37)
 (bid-increment 5)
 (termination-window 30min)
 (currently-highest-bid 0))

This states that auction-37 is selling a good described in proposal
Alice-37 (See section 3.3), with an auction bid increment of 5. The
first four fields will remain fixed, while the fifth will be updated
regularly.

3.2.2 Facts about participants
When a participant is admitted, the gatekeeper asserts relevant
facts in the knowledge base. The participant is assigned an ID,
and associated with a negotiation.
(participant
 (id Participant-Id)
 (negotiation-id Negotiation-Id))

Other parameters of the participants are asserted in the format:
(participant
 (id Participant-Id)
 (negotiation-id Negotiation-Id)
 (participant-attribute-name, Value))

For example, based on a participant’s credentials, the gatekeeper
may assign them a credit limit:
(participant
 (id Claudio)
 (negotiation-id Auction37)
 (creditLimit 10000))

3.2.3 Facts about Proposal Status

Facts are asserted which specify the current status of proposals
on the blackboard. For example, when a proposal is first received,
its submission time is asserted by the Gatekeeper as:

 (submission-time 01/10/01:18:37
 (proposal-id Proposal-Id))

When the proposal validator has checked a proposal, it asserts:
(valid-proposal
 (proposal-id Proposal-Id))

In a negotiation where new proposals can supersede old ones
(such as an English auction), the Information Updater will assert
facts specifying which are active currently (and retract this if the
proposal is superseded.)
(active-proposal
 (proposal-id Proposal-Id))

3.3 Negotiation Proposals and Templates
The negotiation template is expressed as a collection of Jess facts
and predicate constraints. In order to express complex objects, the
facts may make reference to Jess templates. In them we declare
which fields must appear in every proposal and which are
optional. We also define the type of each field and constraints on
its value. For example, a negotiation host wishing to conduct
auctions of cars could define the parameters as:
(deftemplate proposal
 (slot submitter (type STRING))
 (slot role (type STRING))
 (slot automobile (type OBJECT))
 (slot price (type INTEGER)))

and constrain the initial parameter space as:
(proposal
 (submitter ?S&:(participant
 (id ?S)
 (negotiation-id ?NEG))
 (role Buyer|Seller)
 (automobile ?A)
 (price ?P))

Negotiation participant agents can send proposals as
ACL.PROPOSE messages containing a collection of facts and
predicate constraints. The Proposal Validator applies a variant of
the subsumption algorithm described in [16] to determine whether
the proposal is valid with respect to the negotiation template. An
example of a proposal that is valid with respect to the template
presented above is:
(proposal
 (proposal-id Alice-37)
 (submitter Alice)
 (role Seller)
 (object
 (automobile
 (make FIAT)
 (model Punto)))
 (price ?P&:(>= 3000 ?P)))

 7

This states that Alice wishes to sell a Fiat Punto for at least
£3000. The proposal ID is added by the Negotiation Host. In the
next section we give guidelines on how to write negotiation rules
for various negotiation mechanisms.

4. NEGOTIATION RULES
Agents have standard rule templates, where the rule asserts
information in their private fact base. The agent responds to this
information, executing appropriate actions and sending messages
according to the General Negotiation Protocol.

The display rule in the Information Updater has the format:
(defrule display-rule
 (negotiation
 (extract_relevant_parameters))
 (process_relevant_parameters)
 => (assert
 (information-digest
 (processed_parameters)))

The visibility rules have a similar format, and act as filters on new
proposals. They determine which participants can view which
parameters of a new proposal. The information they assert is used
by the Negotiation Host to mediate the view that different
negotiation participants have on the blackboard.
 (defrule visibility-rule
 (valid-proposal
 (extract_relevant_parameters))
 (process_relevant_parameters)
 (test (required_condition))
 => (assert
 (visible-proposal
 (processed_parameters)))

The termination rule in the Negotiation Terminator has the format:
(defrule termination-rule
 (extract-required-parameters)
 (test (termination-condition))
 => (assert
 (terminate negotiation-id)))

Rules in the Protocol Enforcer have a different format. Both when
receiving protocols and withdrawal requests, the agent must check
whether a series of conditions are all true to determine its action.
Because of Jess’s cumbersome mechanism to support backward
chaining, we implement these rules in the format:
(defrule rule-name
 (proposal
 (proposal-id ?Proposal-id)
 (extract_other_required_parameters))
 (test not(required_condition))
 (assert (failed rule-name ?proposal-id)))

The Protocol Enforcer has a meta-rule which rejects the proposal
if there are any such assertions in the database after the rules have
executed, and accepts it otherwise. It executes appropriate actions
and sends messages as defined in the General Negotiation
Protocol.

4.1 Single Item English Auction
Assume a Negotiation Host has advertised an agreement template
as per section 3.3, and has been contacted by Alice to sell her Fiat
Punto via auction. The Host starts a new negotiation, with id
auction-37, to sell it. It generates an associated agreement
template, which is a specialized version of the one in 3.3, with the
automobile slot instantiated with details of her Fiat Punto. The
Host asserts facts about the auction on the blackboard.

The negotiation rules which apply to the seller state that they
make a single proposal, and then remain silent. In the interests of
space, we omit these. The proposal Alice makes is as specified in
section 3.3. This confirms the details of the good she is selling, and
specifies her reservation price of £3000. Facts about the auction
are updated, and now appear as in section 3.2.1.

After this, buyers place bids in the form of proposals that satisfy
the buyer proposal validation rules. These are applied by the
Protocol Enforcer, and have the format described above (beginning
of this section). The conditions are:

[Posting rule] This tests that, if a buyer is posting a proposal,
then the seller has already posted one.
(test (equal ?Role buyer)
 (exists
 (active-proposal
 (…………)
 (role seller)))

[Improvement rule] The price field of the buyer’s proposal must
be a certain increment above the value of all previously posted
buyer proposals. Hence the improvement rule contains the test:
(test (> ?Price
 (+ ?Currently-Highest-Price
 ?bid-increment)))

[Withdrawal rule] Auctions do not allow bids to be withdrawn
once submitted. Hence, the withdrawal rule (in format specified in
Section 5) contains (test FALSE) and so always fails when
executed.

[Visibility rules] The seller’s initial proposal is visible to all the
buyers. However, the field in which the seller constrains the price
to be above their reservation price cannot be viewed:
(defrule visibility-rule
 (active-proposal
 (proposal-id ?PID)
 (role seller))
 (test
 (TRUE))
 => (assert
 (visible-proposal
 (proposal-id
 (value ?PID)
 (visibility all))
 (price
 (value ?Price)
 (visibility none))
 (………)))

 8

 A similarly structured rule states that all active buyer proposals
are visible to all participants. Optionally, the identity of a bidder
can be maintained private.

[Display rule] The currently highest bid price is notified to all
participants.
(defrule display-rule
 (negotiation
 (………)
 (currently-highest-bid ?CHB))
 => (assert
 (information-digest
 (currently-highest-bid ?CHB)))

[Termination rule] Termination occurs if the auction is inactive for
longer than the termination window specified in the negotiation
fact base. Hence the rule, in the format specified in the beginning
of this section, contains the test:
(test (> ?Current-Time
 (+ ?Active-Proposal-Time
 ?Termination-Window))

Together with the information asserted in section 3.2, this results
in Alice’s auction terminating if it is inactive for 30 minutes.

Agreement formation rules

When negotiation terminates, an agreement is formed between the
currently active buyer and the seller. The agreement states that the
item specified in the template is sold to the buyer at the price
specified in the currently active proposal.
(defrule agreement-formation-rule
 (active-proposal
 (proposal-id ?PID)
 (submitter ?BUYER)
 (role Buyer)
 (price ?PRICE))
 (active-proposal
 (proposal-id ?PID)
 (submitter ?SELLER)
 (role Seller)
 (price ?RES-PRICE))
 (test
 (> PRICE RES-PRICE))
 => (assert
 (agreement
 (buyer ?BUYER)
 (seller ?SELLER)
 (price ?PRICE))))

4.2 The Continuous Double Auction
A many-to-many Continuous Double Auction can be
implemented in our framework by straightforward modification of
the rules above. For example, the improvement rule requires new
bids/offers to be higher/lower than the currently active bid/offer.
We have one rule which matches with seller proposals, with test:

(test (> ?Price ?Currently-Lowest-Offer))
and a simlar rule for buyer proposals with test:

(test (> ?Price ?Currently-Highest-Bid))

The posting rule is modified to allow both buyer and seller
proposals at any time. In addition to the highest bid, the
information digest also contains the lowest offer. Termination
occurs at a fixed time, so the test becomes:

(test (> ?Current-Time ?End-Time))

The only substantial change is in the agreement formation rule.
Agreement is formed whenever there is a bid greater than an offer.
Highest bids are matched with lowest offers, with the agreement at
the midpoint.

 (defrule agreement-formation-rule
 (active-proposal
 (proposal-id ?Seller-PID)
 (price ?Seller-price))
 (active-proposal
 (proposal-id ?Buyer-PID))
 (price ?Buyer-price))
 (currently-highest-bid ?Buyer-Price)
 (currently-highest-ask ?Seller-Price)
 => (assert
 (agreement
 (proposals
 (?Seller-PID ?Buyer-PID))
 (price (= (/ 2 (+ (?BP ?SP))…)))

After an agreement is made, the Information Updater will declare
the next highest/lowest bid/offer to be active. This may result in
more agreements being formed immediately.

5. RELATED WORK
Research on agent negotiation protocols has primarily focussed on
the specification of specific protocols, often using conversations
[1] specified as finite state machines. For example, Parsons et. al.
define a flexible protocol for one-to-one bargaining using this
approach [13]. The FIPA agent standardization effort has defined
various interaction protocols, including English and Dutch
auctions, as interchanges of messages in FIPA ACL [9]. These are
effectively a set of one-to-one conversations which must be
coordinated. Pitt et. al.[12] define a semantic framework around
FIPA ACL to allow the easier specification of multi-party
interactions by adding structured conversation identifiers and a
richer representation of protocol states. Our approach differs from
these in that rather than defining a library of protocols, we define a
general protocol that can be parameterized with rules.

Esteva et.al. [6] have defined a formal approach to specifying
electronic institutions in which agents interact. This goes beyond
other work on protocols in the additional abstractions it provides.
It associates different protocols to scenes, and provides means for
specifying transition conditions from one scene to another
together with normative rules associated with transition. Our
work is complementary to this, in that our focus is primarily on a
single scene (negotiation) and providing flexibility within it.

Wurman et. al. [17] carried out a thorough analysis of the auction
design space, classifying auction mechanisms according to
different parameters. This work, focussing primarily on auction

 9

rules, provided valuable input to our analysis. Reeves et. al. [14]
have also built on this to configure a general auction server with
auction rules and contract templates. Their architecture is server-
based, rather than agent-based, and participant agents must still be
hard-coded with specific protocols. Our general negotiation
protocol allows us to handle richer negotiation mechanisms than
they support.

6. CONCLUSIONS AND FUTURE WORK
We have presented a general negotiation protocol and have shown
how it can be parameterized with different rules to implement a
variety of negotiation mechanisms. We believe this approach to
agent-based negotiation has the potential to produce significantly
more open and flexible multi-agent systems. Negotiation protocols
no longer need to be hard-coded into the agents. Instead, agents
can carry an explicit representation of a protocol (in the form of a
small number of rules), passing it to new agents as they arrive.
Furthermore, this explicit representation opens up the potential
for future research into agents which dynamically manipulate
these protocols, designing them on the fly and negotiating with
other agents over which rules to use.

Because of our use of Jade and Jess to implement our system, we
have presented these rules as Jess assertions. However, if our
system is to be truly open, this is not adequate. We are currently
working on a platform-independent specification of templates,
proposals and rules in DAML+OIL [10]. (Our work on templates
and proposals is presented in [16]). This will also provide
additional exp ressivity. We are also working on extending our
framework to cover multi-party agreements, linked negotiations
such as the contract net [15] and hope to extend it to cover
argumentation-based negotiation [13] in the future.

7. ACKNOWLEDGEMENTS
David Trastour helped with the design of the proposal language.
Kannan Govindarajan provided valuable feedback during the ideas
inception phase. We’d also like to thank David Bell, Naiem Dathi,
Kemal Guler and Alan Karp for discussions.

8. REFERENCES
[1] Barbuceanu, M. and Fox, M.S. COOL: A language for describing

coordination in multi-agent systems. In Proc. First
International Conference on Multi-Agent Systems, MIT Press,
1995.

[2] Bartolini, C. and Casassa-Mont M, Digital Credentials and
Authorization to Enhance Trust in Negotiation within E-
Services Marketplaces. In Proc. 7th HP Openview University
Association Plenary Workshop, 2000.

[3] Bartolini, C. and Preist, C. A Framework for Automated
Negotiation. HPL Technical Report 2001-90.

[4] Bellifemmine, F., Poggi, A., and Rimassa, G. Jade - A FIPA
compliant Agent Framework. In Proc. 4th International
Conference on Practical Applications of Intelligent Agents and
Multi-Agent Systems, 1999.

[5] Cheyer, A. and Martin, D. The Open Agent Architecture. In
Journal of Autonomous Agents and Multi-Agents Systems 4
(1/2), 143-148 2001.

[6] Esteva, M., Rodriguez, J. A., Sierra, C., Garcia, P., Arcos, J. L.,:
On the formal specifications of electronic institutions, In (F.
Dignum and C. Sierra eds.) Agent-mediated Electronic
commerce (The European AgentLink Perspective), Springer
LNAI, 2000.

[7] Foundation for Physical Agents. FIPA ACL Message Structure
Specification, 2000.

[8] Foundation for Physical Agents. FIPA abstract architecture,
2000.

[9] Foundation for Physical Agents. FIPA Interaction Protocol
Library Specification, 2000.

[10] van Harmelan, F. and Horrocks, I. Reference Description of the
DAML+OIL Markup Language. Available from www.daml.org,
2000.

[11] Hoffmann, O., Stumptner, M. and Chalabi, T. A Perspective
Based Approach to Design, in Proc. Workshop on Planning
Scheduling and Configuration, KI2001, 2001.

[12] Pitt, J., Guerin, F. and Stergiou, C. Protocols and Intentional
Specifications of Multi-Party Agent Conversations for
Brokerage and Auctions. In Proc. Fourth International
Conference on Autonomous Agents, ACM Press, 2000.

[13] Parsons, S., Sierra, C. and Jennings, N. R. Agents that Reason
and Negotiate by Arguing. In Journal of Logic and
Computation, 8 (3), 261-292, 1998.

[14] Reeves, D., Wellman, M. and Grosof, B. Automated
Negotiation from Declarative Contract Descriptions. In Proc.
Fifth International Conference on Autonomous Agents, 2001.

[15] Smith, R.G. The Contract Net Protocol: High-level
communication and control in a distributed problem solver.
IEEE. Trans. Computing 29, 1104-1113, 1980.

[16] Trastour, D and Bartolini C., A Semantic Web Approach to
Service Description for Matchmaking of Services. In Proc.
Semantic Web Working Symposium, The World Wide Web
Consortium, 2001.

[17] Wurman, P, Wellman, M. and Walsh W. A Parameterization of
the Auction Design Space, in Games and Economic Behavior,
35, 2001.

[18] Wurman, P, Wellman, M. and Walsh W. The Michigan
Internet AuctionBot: A Configurable Auction Server for Human
and Software Agents. In Proc. Second International Conference
on Autonomous Agents, 301-308, 1998.

