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Abstract 
We advocate the need for integrating semantic 
information into a file system. We demonstrate 
the benefits of this in Sedar, a deep archival file 
system. Sedar is the first archival file system that 
integrates semantic storage and retrieval 
capabilities. In addition, Sedar introduces several 
novel features: the notion of semantic-hashing to 
reduce the storage consumption that is robust 
against misalignment of documents; virtual 
snapshots of the namespace, and conceptual 
deletions of files and directories. Sedar exposes a 
semantic catalogue that allows other semantic-
based tools (e.g., visualization and statistical 
analysis) to be built.  It uses a decentralized P2P 
storage utility enabling horizontal scalability. 

1. Introduction 
Fundamentally, computers are tools to help people 
with their everyday activity. CPU cycles are the 
extension to our reasoning capability and disks are 
the extension to our memory. But the gap between 
the human memory and the simple hierarchical 
namespace of existing file systems makes it hard to 
use. Human brains remember objects based on their 
contents or features. When you run into a friend in 
elementary school, you may not remember her 
name, but you can recognize her by features like the 
round face and shinny smile. We call these features 
semantics. Semantic information can be derived 
from various types of data. For instance, people use 
Singular Value Decomposition to extract features 
from text documents and images; and use various 
extractors to derive frequency, amplitude, and tempo 
feature vectors from the music data.  

To bridge this gap, people have used either 
separate tools or file systems that integrate 
rudimentary search capabilities. Tools such as grep 
and other local search engines have to exhaustively 
search every document and match the pattern. File 
systems such as SFS [1] and HAC [2] provide only 
simple keywords-based searches and they do not 
maintain any indices to speedup the retrieval. 
According to Gartner [3], there is a shift from 

simple search (e.g, keyword) to more-complex 
techniques that leverage natural language processing 
and cognitive concepts. These advanced approaches 
have a much better likelihood to find the content 
people are interested in.  

We argue that the semantic information should be 
directly embedded into the file system itself. This 
not only makes it easier to use but also can improve 
efficiency with respect to storage usage and data 
access. If the documents stored in the system are 
already organized according to their semantics, we 
only need to look at the documents that are close in 
semantics. Moreover, embedding a single flexible 
semantic index in the file system can remove the 
redundancy among indices kept by separate tools.  

In this paper, we focus on demonstrating the 
benefits of integrating semantic information in a 
deep archival file system. With the cost and density 
of the random access devices approaching those of 
the magnetic tapes, it is affordable to archive each 
individual version of a file. With disks, old versions 
of a document can be recovered instantly without 
much of human intervention in contrast to 
traditional tape-based solutions.  

The biggest headache in restoring a backed up 
version is to find the right document and the right 
version. Currently the only way to locate the version 
is by remembering the date that the version was 
produced.  In many cases, people are interested in 
files produced by other people, and are interested in 
versions with certain features. For example, in a 
digital movie studio, an artist may make many 
variations to the clips; to produce a variant the artist 
goes through several tries to get the right “look and 
feel”. In the process the artist may go back to 
previous versions (may not be the latest version). 
Also, the artist may need to incorporate scenes 
produced by other artists, but the only thing she may 
know is that these files have certain semantics. Such 
things also happen in other environments e.g. 
universities, research laboratories, and medical 
institutions. 



Integrating semantic information into a deep 
archival system offers the following advantage over 
current techniques: 
• Easy to locate the appropriate versions using 

semantic-based retrieval capabilities and 
provides the basis for understanding the 
semantic evolution of the documents.   

• Clustering documents that are semantically 
close for the purposes of finding related 
materials and purging. 

• A novel use of semantic information is to 
eliminate duplicate information through the 
notion of semantic hashing (see section 3.2). A 
naïve block-level content hashing using, e.g., 
SHA-1 can remove duplicates of only identical 
blocks, but does not work well when there are 
misalignments in the documents (e.g. source 
code ports, video and audio clips with personal 
edits, different releases). 

In this paper we propose a semantic-based deep 
archival system Sedar. To our knowledge, Sedar is 
the only system that provides the following features. 
(i) It uses semantic information to organize and 
retrieve files. (ii) It uses semantic hashing to reduce 
the storage consumption that is robust against 
misalignments. (iii) Storage is provided over 
completely decentralized Peer-to-Peer storage utility 
allowing horizontal scalability. (iv) It provides high 
availability using erasure-coding techniques. 

2.  Related Work 
Semantic files systems [1] and HAC [2] provides 
support for maintaining orthogonal namespace by 
executing queries and constructing the namespace to 
organize the query results. These systems provide 
support only for simple keyword-based queries and 
requires some level of support from the applications. 
Also, these two systems do not address deep 
archival capability and availability. 

venti  [4] provides versioning capability through a 
block level interface. It uses block level hashing to 
avoid storing redundant copies of block data.  
SnapMirror [5] provides versioning by taking 
advantage of meta-data stored in the underlying file 
system. The Elephant file system [6] provides 
versioning capability and retention policies that can 
be applied at a file level. However, none of the 
above techniques provide semantic storage and 
retrieval capabilities. Besides, approaches based on 

the block-level hashing does not handle 
misalignments in the objects.  

SFSRO [8] uses block level hashing by applying 
SHA-1 recursively to build data-structure to support 
distribution of read-only contents. This system 
focuses on security not on providing deep archival 
capability.  

OceanStore [7] provides versioning of objects 
and reliability using erasure-coding technique. Like 
the other systems, it does not provide any capability 
to store, retrieve and manipulate files using semantic 
information.  

3. Architecture 
Sedar is a semantic-based deep archival system. In 
Sedar, each time a file is modified and closed, a new 
version of the file is produced. Different instances 
of the same file will be given a different version 
number. The metadata, however, is not versioned, 
but we support a notion of virtual snapshot using 
timestamps that allows accessing the namespace 
arbitrary back in time. The system provides a 
semantic-based interface that allows clients to locate 
files according to the semantics in the files. The 
system can create materialized views of the results 
by presenting them through the traditional file 
system abstraction. 
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Figure 1: Major system components in Sedar 

3.1 Major System Components 
The architecture of Sedar is shown in Figure 1.  The 
major components of Sedar include a NFS server 
module, a semantic catalogue, a registry of semantic 
extractors, the distributed storage module, and the 
Sedar semantic utility. We describe each of the core 
components below: 



NFS loop-back server:  To access the file system, 
client mounts Sedar, which presents a standard NFS 
interface. 
    Catalogue: Catalogue in Sedar contains an index 
of the files based on their semantic vectors (SV) 
derived from the contents of the files. A semantic 
vector is a vector of file type specific features 
extracted from file contents. For instance, the vector 
space model [9] extracts the term frequency 
information from text documents and latent 
semantic indexing [10] use matrix decomposition 
and truncation to discover the semantic underlying 
terms and documents.  Welsh et.al [11] derive 
frequency, amplitude, and tempo features from 
encoded music data. In the catalogue, the index for a 
file contains the Inode number of the file and a 
version number. Rather than storing the SV for each 
individual version of a file, we store only 
representative SVs. Each representative SV will be 
associated with files whose SV are very close to the 
representative SV (e.g, the difference between them 
is below a threshold).   
    Extractor registry: For each known data type, 
Sedar uses an external plug-in called extractor to 
derive the semantic vector; for data of unknown 
types, it uses statistical analysis to derive features 
from the bit stream. Similarly, for each data type, a 
different diff function can be introduced. The 
extractor registry provides an extensible interface 
that allows new extractor and diff functions to be 
added. 

Sedar distributed storage (SDS): SDS provides 
basic support for storing and retrieving files, 
directories and the catalogue. We are implementing 
SDS on top of distributed peer-peer storage utility, 
CAN [12], which provides a logical abstraction to 
aggregate physical storage resources.  The “root” of 
Sedar is kept at a well-known location in the storage 
utility. When a SDS module starts, it contacts the 
node that contains the “root” of the system and 
presents the namespace to the client during the 
mount time. 

Sedar semantic utility: The Sedar semantic utility 
offers semantic-based retrieval capabilities. It 
interacts with the file system to generate 
materialized views of query results and users can 
access these materialized views as regular file 
system objects. For example, a user can issue 
commands to create results of a query into a 
directory. 

sdr-mkdir cn
sdr-cp “similar to ‘hawaii.jpg’” cn 
The directory cn contain links to files that that 

are semantically close to the sample file, 
hawaii.jpg. Directories like ‘cn’ are called 
“semantic directories”; they can be accessed as the 
“regular” directories. Sedar supports semantic based 
retrieval capability. Queries themselves can be 
arbitrary text of bit stream whose features will be 
extracted by the appropriate extractor to produce 
SVs to be used by the catalogue for query. This is 
analogous to query-by-example (QBE) in the 
database system, but is much more powerful. 

Similar to database queries, queries in Sedar can 
be constrained. The typical constraints include time 
and namespace. When a query is not time 
constrained, it provides the capability to restore 
contents that are deleted “conceptually” (see section 
4.3). 

To give a flavor of how the constrained queries 
look like, we show few examples. A user can 
specify that she is only interested in documents that 
are created after 1/1/1999, by issuing a command 
like sdr-ls “after 1/1/1999”. Similarly, 
she can specify that she is only interested in 
documents that are under a list of directories 
(e.g., sdr-ls “’computer networks’
under /etc, cn/; before 1/1/1999”).  
The directories themselves can be “semantic 
directories”. 
3.2 Important Data Structures 
The directory structure in Sedar is similar to that of 
a traditional UNIX based file system. Directory 
entries contain the name of the object, type of the 
object and a unique identifier “Inode” that 
references the object. An Inode can be derived, for 
example, by hashing the name of the object.   

In Sedar, an Inode of a directory file does not 
contain version information. However, we use 
timestamp to handle namespace changes (see section 
4.3 for more details). Inode of a file contains entry 
for each version of the file, Inode of the base 
document and the ID of the “diff” (Figure 2). 
Applying the diff to the base document will produce 
the whole document. One way to compute an ID for 
a diff is to hash its content using consistent hash 
such as SHA-1. The Inode is responsible for 
computing the SV of a document by invoking the 
appropriate extractor depending on the file type. It is 



also responsible for reassembling the documents. 
Once a SV is computed, the Inode contacts the 
catalogue to locate the semantically closest files to 
compute the diff. 

Version_number: x  
Pointer to data 

 
Version_number: y  

Pointer to data 
 

Version_number: z 
Pointer to data 

……. 

{ 
    Object-id of the base document, 
    Version_number of the base document,
     Idi=SHA-1(diff) 
} 

 
Figure 2: Sedar Inode layout 

Sedar employs a novel technique to condense 
storage utilization based on the semantic vector of a 
document. The basic idea is to use SV of a 
document to locate a document that is closest to the 
current document in the semantic space. We 
hypothesize that documents that are close in the 
semantic space will also be very close in the actual 
contents, i.e., they will produce a small diff.  We 
call this semantic hashing. 

Sedar produces better storage utilization than 
techniques such as RCS that produces diff between 
current version and the most recent version. For 
example, you might work on a copy that is several 
version behind the most recent version, to get the 
maximum benefit in terms of storage utilization 
ideally it should be diffed with the version it was 
produced from. Even if we do an exhaustive-search 
using RCS to reduce the diff, it could still be a time 
consuming process as it may need to go through 
several hundreds of versions. In our case, we only 
need to locate the version that has the closest 
semantic vector. Besides, comparing two semantic 
vectors can be much more efficient than comparing 
two documents because the dimension of a semantic 
vector is typically only 200-300. 

The catalogue in Sedar is a distributed index that 
provides functionality such as retrieving IDs of 
objects that are semantically close given a semantic 
vector. One way to implement and store the 
catalogue is to partition the vector space into 
multiple regions, each region is assigned to a node 
in SDS in a way that indices that are semantically 
close to each other are also close to each other in 
network distance. In a related paper [13], we 
describe a technique that can place SVs that are 
semantically close to each other logically close in 
CAN (Figure 3 illustrates this). 

SVof a file 

Partition of the 
vector space 

SVs that are semantically  
close in the vector space 

Figure 3: An example implementation of Sedar 
catalogue using CAN 

3.3 Important File System Operations 
In this section we describe few important file 
operations done in Sedar.   

3.3.1 Mount 
When the mount is performed at the client, Sedar 
NFS Server receives request from the client through 
the loop-back interface. It then contacts the node at a 
“well-known” location in the SDS.  

3.3.2 Create/ Mkdir 
Create or Mkdir is done using the Inode of the 
parent object and the name of the file or directory 
that needs to be created. Figure 4 illustrates the 
protocol of create/Mkdir operation. 

Client

Inode of the 
Parent 

Directory 

Inode of the 
object 

2 1

3 4

 
Figure 4: Illustration of Create/Mkdir protocol.  (1) The 
client contacts the parent directory (2) The parent directory 
checks to see if the entry already exists, if so it contacts the 
“Inode” to assign a version number. Otherwise, a new Inode is 
created. (3) Inode assigns a new version and returns it back to 
the parent directory. (4) The parent directory returns the Inode 
number and the version of the object to the client. 

3.3.3  Lookup 
Lookup is typically done before reading or writing 
to a file. To perform a lookup, the client must first 
obtain the Inode of the parent object and then 
perform the lookup using the parent Inode and the 
name of the component to perform lookup on.  For 
example, to perform lookup on “/etc/hosts”, the 
client must first resolve “/etc”. Lookup returns the 
Inode of the object and the latest version number of 
the object. User or application can override the 



version number by specifying any valid version 
number when the file is accessed. 

3.3.4 Read  
For reading a file, client passes the Inode of the file, 
the version number, offset and the number of bytes 
to read.  When Inode receives the request, it 
assembles the whole version of the file using the 
base document and the corresponding diff if it does 
not exist locally. Inode returns the requested number 
of bytes back to the client from the assembled file.  

3.3.5 Write 
Parameters for the write are the same as in read. 
Writes in Sedar are buffered at the Inode until the 
client “closes” the file. Once the file is closed, Sedar 
computes the diff between the current version of the 
file and the version from which it is derived. If the 
size of the diff is above a threshold, Sedar passes the 
whole file to an extractor that derives the semantic 
information from the document and generates a 
semantic vector. This semantic vector is used to 
locate the best base document that is “closest” in the 
semantic space using the catalogue service. Once the 
base document is located, Sedar compares them to 
create a diff. The diff is stored in SDS by 
performing content hashing on the diff. Sedar then 
stores the Inode of the base document and the ID of 
the diff under the entry for the new version and 
creates a new catalogue entry for that version of the 
file. 

In the case of concurrent writers, multiple 
versions of the same file are created. Assigning non- 
conflicting version numbers is done at the Inode of 
that file. To prevent concurrent access, lease or lock 
service can be used.  

4. Advanced Features 
In this section we touch upon some advanced issues 
to improve the usability of Sedar. 

4.1 Erasure Coding for Fault-Resiliency 
and Availability 

To improve the availability of Sedar, we plan to 
apply erasure code(s) to store the data to provide 
fault-resiliency and availability of the system. It has 
been shown that erasure code(s) provides better 
availability then simple replication with the same 
amount of space overhead [14]. 

4.2 Virtual Snapshot of Namespace 
In Sedar, directories are not versioned. This is done 
to avoid recursive update leading all the way to the 
root (as is the case with venti and SnapMirror) when 
any namespace change occurs. As a result, it is 
difficult to restore a snapshot of the entire file 
system at any particular instance of a time. To 
remedy this effect, we introduce the notion of virtual 
snapshot using timestamps. The basic idea is to use 
timestamps to identify directory entries that are 
created before the requested snapshot time. For a 
directory, its timestamp is the time it was created, 
and the timestamp will never change.  For a file, it 
may have multiple versions, therefore multiple 
timestamps.  Rather than making a copy of the 
metadata during snapshot, we only need to record 
the timestamp of the snapshot.  

To access any particular snapshot, the file system 
will show only the entries that were created before 
the timestamp of the snapshot. In Sedar, it is 
sufficient to just keep the timestamp of the snapshot 
time because all versions of the files are kept in the 
system, and unique IDs are used to identify each 
individual version of each file. 

For this scheme to work, we require time to be 
loosely synchronized at the boundary of seconds. 
We believe this should not be a major issue. To 
make accessing a snapshot efficient, we employ 
some caching scheme to improve the access latency. 
4.3 Conceptual Deletion 
Not being able to modify the name space would be 
too rigid a requirement. In Sedar, we introduce the 
notion of conceptual deletion that make directories 
or files invisible to the users and applications 
without permanently removing them from the 
system.  

To implement conceptual deletion, we introduce 
an additional timestamp for an entry to be removed. 
This timestamp is called invisible_after. The file 
system will hide these entries and items beneath 
them in the name space, if the timestamp specified 
by the request is later than the invisible_after 
timestamp.  We also change the object name by 
appending the invisible_after timestamp to it. In this 
way, we allow object names to be reused without 
permanently deleting old objects. To make these 
files or directories visible, the users use the semantic 



utility.  Figure 5 explains how the timestamps are 
used to view of the system at any point of time.  

 

T5 T3 T7 T4 T6 T2 T1 
time 

object  with 
name Y  is 

created 

object  with 
name X is 

created 

object with 
name X is 

deleted 

object with 
name X is 

created again

Only X is 
visible 

X and Y 
are both 
visible 

Only Y is 
visible Virtual 

Snapshots 

Lifetime of object Y  

Figure 5: Example showing the conceptual deletion of 
objects and snapshots of name spaces 

5. Open Issues 
There are still quite a few open issues to be 
addressed. One is to understand the benefit of using 
“semantic hashing”. There can be many files that 
have the similar SVs, how to find the file that can 
produce a small diff is a challenge. There are several 
possibilities to tackle this.  In fact, we do not need to 
find the best base document to produce the smallest 
diff. Storing a reasonable size diff is still a win over 
storing the entire document. We can use a two-step 
process to find a base document: (i) we sample 
several files with close SVs; (ii) we randomly 
sample fragments of these files and compare the 
sample fragments with the those of the new 
document. The file that produces the smallest total 
diff is picked as the base document. If the size of the 
diff is big, we can repeat this process. This approach 
only compares a small number of fragments, and can 
be efficient. Another way is to increase the 
dimension of the SVs or devise special extractors 
that can capture the differences in contents. As a 
final resort, we can use block-level content hashing. 

Another issue is to understand the overhead 
involved in the system, especially that involves in 
computing diff, reassembling the documents, and 
the distributed metadata operations. 

6. Conclusion 
In this paper, we argued the need for integrating 
semantic information into a file system. We 
demonstrate the benefits using Sedar, a semantic 
deep archival file system. Sedar provides several 

novel features such as virtual snapshot, conceptual 
deletion, and semantic hashing. It also provides 
horizontal scalability in addition to semantic 
retrieval capability. 
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