

Towards a Semantic, Deep Archival File System

Mallik Mahalingam, Chunqiang Tang, Zhichen Xu
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-199
July 12th , 2002*

E-mail: {mmallik, chunqian, zhichen} @hpl.hp.com

semantic
archival, deep
archival
storage, P2P,
Sedar,
semantic
retrieval

We advocate the need for integrating semantic information into a
file system. We demonstrate the benefits of this in Sedar, a deep
archival file system. Sedar is the first archival file system that
integrates semantic storage and retrieval capabilities. In addition,
Sedar introduces several novel features: the notion of semantic-
hashing to reduce the storage consumption that is robust against
misalignment of documents; virtual snapshots of the namespace,
and conceptual deletions of files and directories. Sedar exposes a
semantic catalogue that allows other semantic-based tools (e.g.,
visualization and statistical analysis) to be built. It uses a
decentralized P2P storage utility enabling horizontal scalability.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Towards a Semantic, Deep Archival File System

Mallik Mahalingam, Chunqiang Tang, Zhichen Xu †

Hewlett-Packard Laboratories
1501 Page Mill Rd, Palo Alto, CA94304, USA

{mmallik, chunqian, zhichen}@hpl.hp.com

† Author names in alphabetical order

Abstract
We advocate the need for integrating semantic
information into a file system. We demonstrate
the benefits of this in Sedar, a deep archival file
system. Sedar is the first archival file system that
integrates semantic storage and retrieval
capabilities. In addition, Sedar introduces several
novel features: the notion of semantic-hashing to
reduce the storage consumption that is robust
against misalignment of documents; virtual
snapshots of the namespace, and conceptual
deletions of files and directories. Sedar exposes a
semantic catalogue that allows other semantic-
based tools (e.g., visualization and statistical
analysis) to be built. It uses a decentralized P2P
storage utility enabling horizontal scalability.

1. Introduction
Fundamentally, computers are tools to help people
with their everyday activity. CPU cycles are the
extension to our reasoning capability and disks are
the extension to our memory. But the gap between
the human memory and the simple hierarchical
namespace of existing file systems makes it hard to
use. Human brains remember objects based on their
contents or features. When you run into a friend in
elementary school, you may not remember her
name, but you can recognize her by features like the
round face and shinny smile. We call these features
semantics. Semantic information can be derived
from various types of data. For instance, people use
Singular Value Decomposition to extract features
from text documents and images; and use various
extractors to derive frequency, amplitude, and tempo
feature vectors from the music data.

To bridge this gap, people have used either
separate tools or file systems that integrate
rudimentary search capabilities. Tools such as grep
and other local search engines have to exhaustively
search every document and match the pattern. File
systems such as SFS [1] and HAC [2] provide only
simple keywords-based searches and they do not
maintain any indices to speedup the retrieval.
According to Gartner [3], there is a shift from

simple search (e.g, keyword) to more-complex
techniques that leverage natural language processing
and cognitive concepts. These advanced approaches
have a much better likelihood to find the content
people are interested in.

We argue that the semantic information should be
directly embedded into the file system itself. This
not only makes it easier to use but also can improve
efficiency with respect to storage usage and data
access. If the documents stored in the system are
already organized according to their semantics, we
only need to look at the documents that are close in
semantics. Moreover, embedding a single flexible
semantic index in the file system can remove the
redundancy among indices kept by separate tools.

In this paper, we focus on demonstrating the
benefits of integrating semantic information in a
deep archival file system. With the cost and density
of the random access devices approaching those of
the magnetic tapes, it is affordable to archive each
individual version of a file. With disks, old versions
of a document can be recovered instantly without
much of human intervention in contrast to
traditional tape-based solutions.

The biggest headache in restoring a backed up
version is to find the right document and the right
version. Currently the only way to locate the version
is by remembering the date that the version was
produced. In many cases, people are interested in
files produced by other people, and are interested in
versions with certain features. For example, in a
digital movie studio, an artist may make many
variations to the clips; to produce a variant the artist
goes through several tries to get the right “look and
feel”. In the process the artist may go back to
previous versions (may not be the latest version).
Also, the artist may need to incorporate scenes
produced by other artists, but the only thing she may
know is that these files have certain semantics. Such
things also happen in other environments e.g.
universities, research laboratories, and medical
institutions.

Integrating semantic information into a deep
archival system offers the following advantage over
current techniques:
• Easy to locate the appropriate versions using

semantic-based retrieval capabilities and
provides the basis for understanding the
semantic evolution of the documents.

• Clustering documents that are semantically
close for the purposes of finding related
materials and purging.

• A novel use of semantic information is to
eliminate duplicate information through the
notion of semantic hashing (see section 3.2). A
naïve block-level content hashing using, e.g.,
SHA-1 can remove duplicates of only identical
blocks, but does not work well when there are
misalignments in the documents (e.g. source
code ports, video and audio clips with personal
edits, different releases).

In this paper we propose a semantic-based deep
archival system Sedar. To our knowledge, Sedar is
the only system that provides the following features.
(i) It uses semantic information to organize and
retrieve files. (ii) It uses semantic hashing to reduce
the storage consumption that is robust against
misalignments. (iii) Storage is provided over
completely decentralized Peer-to-Peer storage utility
allowing horizontal scalability. (iv) It provides high
availability using erasure-coding techniques.

2. Related Work
Semantic files systems [1] and HAC [2] provides
support for maintaining orthogonal namespace by
executing queries and constructing the namespace to
organize the query results. These systems provide
support only for simple keyword-based queries and
requires some level of support from the applications.
Also, these two systems do not address deep
archival capability and availability.

venti [4] provides versioning capability through a
block level interface. It uses block level hashing to
avoid storing redundant copies of block data.
SnapMirror [5] provides versioning by taking
advantage of meta-data stored in the underlying file
system. The Elephant file system [6] provides
versioning capability and retention policies that can
be applied at a file level. However, none of the
above techniques provide semantic storage and
retrieval capabilities. Besides, approaches based on

the block-level hashing does not handle
misalignments in the objects.

SFSRO [8] uses block level hashing by applying
SHA-1 recursively to build data-structure to support
distribution of read-only contents. This system
focuses on security not on providing deep archival
capability.

OceanStore [7] provides versioning of objects
and reliability using erasure-coding technique. Like
the other systems, it does not provide any capability
to store, retrieve and manipulate files using semantic
information.

3. Architecture
Sedar is a semantic-based deep archival system. In
Sedar, each time a file is modified and closed, a new
version of the file is produced. Different instances
of the same file will be given a different version
number. The metadata, however, is not versioned,
but we support a notion of virtual snapshot using
timestamps that allows accessing the namespace
arbitrary back in time. The system provides a
semantic-based interface that allows clients to locate
files according to the semantics in the files. The
system can create materialized views of the results
by presenting them through the traditional file
system abstraction.

NFS Client

Sedar -
NFS

Looopback
ServerUser-

mode

Kernel

Sedar distributed
storage

(Semantic catalogue,
directories and files)

Sedar semantic utilities

Sedar
extractor
registry

Application / User

Figure 1: Major system components in Sedar

3.1 Major System Components
The architecture of Sedar is shown in Figure 1. The
major components of Sedar include a NFS server
module, a semantic catalogue, a registry of semantic
extractors, the distributed storage module, and the
Sedar semantic utility. We describe each of the core
components below:

NFS loop-back server: To access the file system,
client mounts Sedar, which presents a standard NFS
interface.
 Catalogue: Catalogue in Sedar contains an index
of the files based on their semantic vectors (SV)
derived from the contents of the files. A semantic
vector is a vector of file type specific features
extracted from file contents. For instance, the vector
space model [9] extracts the term frequency
information from text documents and latent
semantic indexing [10] use matrix decomposition
and truncation to discover the semantic underlying
terms and documents. Welsh et.al [11] derive
frequency, amplitude, and tempo features from
encoded music data. In the catalogue, the index for a
file contains the Inode number of the file and a
version number. Rather than storing the SV for each
individual version of a file, we store only
representative SVs. Each representative SV will be
associated with files whose SV are very close to the
representative SV (e.g, the difference between them
is below a threshold).
 Extractor registry: For each known data type,
Sedar uses an external plug-in called extractor to
derive the semantic vector; for data of unknown
types, it uses statistical analysis to derive features
from the bit stream. Similarly, for each data type, a
different diff function can be introduced. The
extractor registry provides an extensible interface
that allows new extractor and diff functions to be
added.

Sedar distributed storage (SDS): SDS provides
basic support for storing and retrieving files,
directories and the catalogue. We are implementing
SDS on top of distributed peer-peer storage utility,
CAN [12], which provides a logical abstraction to
aggregate physical storage resources. The “root” of
Sedar is kept at a well-known location in the storage
utility. When a SDS module starts, it contacts the
node that contains the “root” of the system and
presents the namespace to the client during the
mount time.

Sedar semantic utility: The Sedar semantic utility
offers semantic-based retrieval capabilities. It
interacts with the file system to generate
materialized views of query results and users can
access these materialized views as regular file
system objects. For example, a user can issue
commands to create results of a query into a
directory.

sdr-mkdir cn
sdr-cp “similar to ‘hawaii.jpg’” cn
The directory cn contain links to files that that

are semantically close to the sample file,
hawaii.jpg. Directories like ‘cn’ are called
“semantic directories”; they can be accessed as the
“regular” directories. Sedar supports semantic based
retrieval capability. Queries themselves can be
arbitrary text of bit stream whose features will be
extracted by the appropriate extractor to produce
SVs to be used by the catalogue for query. This is
analogous to query-by-example (QBE) in the
database system, but is much more powerful.

Similar to database queries, queries in Sedar can
be constrained. The typical constraints include time
and namespace. When a query is not time
constrained, it provides the capability to restore
contents that are deleted “conceptually” (see section
4.3).

To give a flavor of how the constrained queries
look like, we show few examples. A user can
specify that she is only interested in documents that
are created after 1/1/1999, by issuing a command
like sdr-ls “after 1/1/1999”. Similarly,
she can specify that she is only interested in
documents that are under a list of directories
(e.g., sdr-ls “’computer networks’
under /etc, cn/; before 1/1/1999”).
The directories themselves can be “semantic
directories”.
3.2 Important Data Structures
The directory structure in Sedar is similar to that of
a traditional UNIX based file system. Directory
entries contain the name of the object, type of the
object and a unique identifier “Inode” that
references the object. An Inode can be derived, for
example, by hashing the name of the object.

In Sedar, an Inode of a directory file does not
contain version information. However, we use
timestamp to handle namespace changes (see section
4.3 for more details). Inode of a file contains entry
for each version of the file, Inode of the base
document and the ID of the “diff” (Figure 2).
Applying the diff to the base document will produce
the whole document. One way to compute an ID for
a diff is to hash its content using consistent hash
such as SHA-1. The Inode is responsible for
computing the SV of a document by invoking the
appropriate extractor depending on the file type. It is

also responsible for reassembling the documents.
Once a SV is computed, the Inode contacts the
catalogue to locate the semantically closest files to
compute the diff.

Version_number: x
Pointer to data

Version_number: y

Pointer to data

Version_number: z
Pointer to data

…….

{
 Object-id of the base document,
 Version_number of the base document,
 Idi=SHA-1(diff)
}

Figure 2: Sedar Inode layout

Sedar employs a novel technique to condense
storage utilization based on the semantic vector of a
document. The basic idea is to use SV of a
document to locate a document that is closest to the
current document in the semantic space. We
hypothesize that documents that are close in the
semantic space will also be very close in the actual
contents, i.e., they will produce a small diff. We
call this semantic hashing.

Sedar produces better storage utilization than
techniques such as RCS that produces diff between
current version and the most recent version. For
example, you might work on a copy that is several
version behind the most recent version, to get the
maximum benefit in terms of storage utilization
ideally it should be diffed with the version it was
produced from. Even if we do an exhaustive-search
using RCS to reduce the diff, it could still be a time
consuming process as it may need to go through
several hundreds of versions. In our case, we only
need to locate the version that has the closest
semantic vector. Besides, comparing two semantic
vectors can be much more efficient than comparing
two documents because the dimension of a semantic
vector is typically only 200-300.

The catalogue in Sedar is a distributed index that
provides functionality such as retrieving IDs of
objects that are semantically close given a semantic
vector. One way to implement and store the
catalogue is to partition the vector space into
multiple regions, each region is assigned to a node
in SDS in a way that indices that are semantically
close to each other are also close to each other in
network distance. In a related paper [13], we
describe a technique that can place SVs that are
semantically close to each other logically close in
CAN (Figure 3 illustrates this).

SVof a file

Partition of the
vector space

SVs that are semantically
close in the vector space

Figure 3: An example implementation of Sedar
catalogue using CAN

3.3 Important File System Operations
In this section we describe few important file
operations done in Sedar.

3.3.1 Mount
When the mount is performed at the client, Sedar
NFS Server receives request from the client through
the loop-back interface. It then contacts the node at a
“well-known” location in the SDS.

3.3.2 Create/ Mkdir
Create or Mkdir is done using the Inode of the
parent object and the name of the file or directory
that needs to be created. Figure 4 illustrates the
protocol of create/Mkdir operation.

Client

Inode of the
Parent

Directory

Inode of the
object

2 1

3 4

Figure 4: Illustration of Create/Mkdir protocol. (1) The
client contacts the parent directory (2) The parent directory
checks to see if the entry already exists, if so it contacts the
“Inode” to assign a version number. Otherwise, a new Inode is
created. (3) Inode assigns a new version and returns it back to
the parent directory. (4) The parent directory returns the Inode
number and the version of the object to the client.

3.3.3 Lookup
Lookup is typically done before reading or writing
to a file. To perform a lookup, the client must first
obtain the Inode of the parent object and then
perform the lookup using the parent Inode and the
name of the component to perform lookup on. For
example, to perform lookup on “/etc/hosts”, the
client must first resolve “/etc”. Lookup returns the
Inode of the object and the latest version number of
the object. User or application can override the

version number by specifying any valid version
number when the file is accessed.

3.3.4 Read
For reading a file, client passes the Inode of the file,
the version number, offset and the number of bytes
to read. When Inode receives the request, it
assembles the whole version of the file using the
base document and the corresponding diff if it does
not exist locally. Inode returns the requested number
of bytes back to the client from the assembled file.

3.3.5 Write
Parameters for the write are the same as in read.
Writes in Sedar are buffered at the Inode until the
client “closes” the file. Once the file is closed, Sedar
computes the diff between the current version of the
file and the version from which it is derived. If the
size of the diff is above a threshold, Sedar passes the
whole file to an extractor that derives the semantic
information from the document and generates a
semantic vector. This semantic vector is used to
locate the best base document that is “closest” in the
semantic space using the catalogue service. Once the
base document is located, Sedar compares them to
create a diff. The diff is stored in SDS by
performing content hashing on the diff. Sedar then
stores the Inode of the base document and the ID of
the diff under the entry for the new version and
creates a new catalogue entry for that version of the
file.

In the case of concurrent writers, multiple
versions of the same file are created. Assigning non-
conflicting version numbers is done at the Inode of
that file. To prevent concurrent access, lease or lock
service can be used.

4. Advanced Features
In this section we touch upon some advanced issues
to improve the usability of Sedar.

4.1 Erasure Coding for Fault-Resiliency
and Availability

To improve the availability of Sedar, we plan to
apply erasure code(s) to store the data to provide
fault-resiliency and availability of the system. It has
been shown that erasure code(s) provides better
availability then simple replication with the same
amount of space overhead [14].

4.2 Virtual Snapshot of Namespace
In Sedar, directories are not versioned. This is done
to avoid recursive update leading all the way to the
root (as is the case with venti and SnapMirror) when
any namespace change occurs. As a result, it is
difficult to restore a snapshot of the entire file
system at any particular instance of a time. To
remedy this effect, we introduce the notion of virtual
snapshot using timestamps. The basic idea is to use
timestamps to identify directory entries that are
created before the requested snapshot time. For a
directory, its timestamp is the time it was created,
and the timestamp will never change. For a file, it
may have multiple versions, therefore multiple
timestamps. Rather than making a copy of the
metadata during snapshot, we only need to record
the timestamp of the snapshot.

To access any particular snapshot, the file system
will show only the entries that were created before
the timestamp of the snapshot. In Sedar, it is
sufficient to just keep the timestamp of the snapshot
time because all versions of the files are kept in the
system, and unique IDs are used to identify each
individual version of each file.

For this scheme to work, we require time to be
loosely synchronized at the boundary of seconds.
We believe this should not be a major issue. To
make accessing a snapshot efficient, we employ
some caching scheme to improve the access latency.
4.3 Conceptual Deletion
Not being able to modify the name space would be
too rigid a requirement. In Sedar, we introduce the
notion of conceptual deletion that make directories
or files invisible to the users and applications
without permanently removing them from the
system.

To implement conceptual deletion, we introduce
an additional timestamp for an entry to be removed.
This timestamp is called invisible_after. The file
system will hide these entries and items beneath
them in the name space, if the timestamp specified
by the request is later than the invisible_after
timestamp. We also change the object name by
appending the invisible_after timestamp to it. In this
way, we allow object names to be reused without
permanently deleting old objects. To make these
files or directories visible, the users use the semantic

utility. Figure 5 explains how the timestamps are
used to view of the system at any point of time.

T5 T3 T7 T4 T6 T2 T1
time

object with
name Y is

created

object with
name X is

created

object with
name X is

deleted

object with
name X is

created again

Only X is
visible

X and Y
are both
visible

Only Y is
visible Virtual

Snapshots

Lifetime of object Y

Figure 5: Example showing the conceptual deletion of
objects and snapshots of name spaces

5. Open Issues
There are still quite a few open issues to be
addressed. One is to understand the benefit of using
“semantic hashing”. There can be many files that
have the similar SVs, how to find the file that can
produce a small diff is a challenge. There are several
possibilities to tackle this. In fact, we do not need to
find the best base document to produce the smallest
diff. Storing a reasonable size diff is still a win over
storing the entire document. We can use a two-step
process to find a base document: (i) we sample
several files with close SVs; (ii) we randomly
sample fragments of these files and compare the
sample fragments with the those of the new
document. The file that produces the smallest total
diff is picked as the base document. If the size of the
diff is big, we can repeat this process. This approach
only compares a small number of fragments, and can
be efficient. Another way is to increase the
dimension of the SVs or devise special extractors
that can capture the differences in contents. As a
final resort, we can use block-level content hashing.

Another issue is to understand the overhead
involved in the system, especially that involves in
computing diff, reassembling the documents, and
the distributed metadata operations.

6. Conclusion
In this paper, we argued the need for integrating
semantic information into a file system. We
demonstrate the benefits using Sedar, a semantic
deep archival file system. Sedar provides several

novel features such as virtual snapshot, conceptual
deletion, and semantic hashing. It also provides
horizontal scalability in addition to semantic
retrieval capability.

7. References
1. Gifford, D.K., et al. Semantic File Systems. in 13th

ACM Symposium on Operating Systems Principles
(SOSP). 1991.

2. Gopal, B. and U. Manber. Intergrating Content-based
Access machanisms with Hierarchical File Systems. in
Usenix OSDI. 1999. New Orleans, Louisiana, USA.

3. Gartner, Data Management Trends: Growth Drivers
and New Technology Requirements. Planet Storage
2002.

4. Quinlan, S. and S. Dorward. Venti: a new approach to
archival storage. in First USENIX conference on File
and Storage Technologies. 2002. Monterey, CA,
USA.

5. Patterson, R.H., et al. SnapMirror: File-System-Based
Asynchronous Mirroring for Disaster Recovery. in
First USENIX conference on File and Storage
Technologies. 2002. Monterey, CA, USA.

6. Santry, D.S., et al. Deciding When to Forget in the
Elephant File System. in 17th ACM Symposium on
Operating Systems Principles (SOSP). 1999.

7. Kubiatowicz, J., et al. OceanStore: An Architecture
for Global-Scale Persistent Storage. in ASPLOS 2000.
2000. MA, USA.

8. Fu, K., F. Kaashoek, and D. Mazieres. Fast and
Secure Distributed Read-only File System. in 4th
Symposium on Operating Systems Design and
Implementation (OSDI). 2000. San Diefo, California,
USA.

9. Berry, M.W., Z. Drmac, and E.R. Jessup. Matrices,
Vector Spaces, and Information Retrieval. in Society
for Industrial and Applied Mathematics Review. 1999.
San Diego, CA, USA.

10. Deerwester, S.C., et al., Indexing by Latent Semantic
Analysis. Journal of the American Society of
Information Science, 1990. 41: p. 391-407.

11. Welsh, M., et al., Querying Large Collections of
Music for Similarity. 1999: Berkeley, CA, USA.

12. Ratnasamy, S., et al. A Scalable Content-Addressable
Network. in ACM SIGCOMM. 2001. San Diego, CA,
USA.

13. Tang, C., Z. Xu, and M. Mahalingam, PeerSearch:
Efficient Information retrieval in Peer-Peer Networks.
2002, Hewlett-Packard Labs: Palo Alto.

14. Weatherspoon, H. and J.D. Kubiatowicz. Erasure
Coding vs. Replication: A Quantitative Comparison.
in 1st International Workshop on Peer-to-Peer
Systems (IPTPS '02). 2002. MA, USA.

