

PeerSearch: Efficient Information Retrieval in
Peer-to-Peer Networks

Chunqiang Tang1, Zhichen Xu, Mallik Mahalingam
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2002-198
July 12th , 2002*

E-mail: sarrmor@cs.rochester.edu, {zhichen, mmallik}@hpl.hp.com

peer-to-peer
computing,
information
retrieval,
overlay
routing,
search engine

In this paper, we propose an efficient peer-to-peer information
retrieval system PeerSearch that supports state-of-the-art content
and semantic searches. PeerSearch avoids the scalability problem of
existing systems that employ centralized indexing, index flooding,
or query flooding. It also avoids the non-determinism that exhibited
by heuristic-based approaches. PeerSearch achieves both efficiency
and determinism through an elegant combination of index
placement and query routing. Given a query, PeerSearch only needs
to search a small number of nodes to identify matching documents.

* Internal Accession Date Only Approved for External Publication
1 Computer Science Department, Unversity of Rochester, NY 14627
 Copyright Hewlett-Packard Company 2002

PeerSearch: Efficient Information Retrieval in Peer-to-Peer Networks

Chunqiang Tang�, Zhichen Xu y and Mallik Mahalingamy

Abstract

In this paper, we propose an efficient peer-to-peer informa-
tion retrieval system PeerSearch that supports state-of-the-art
content and semantic searches. PeerSearch avoids the scal-
ability problem of existing systems that employ centralized
indexing, index flooding, or query flooding. It also avoids
the non-determinism that exhibited by heuristic-based ap-
proaches. PeerSearch achieves both efficiency and determin-
ism through an elegant combination of index placement and
query routing. Given a query, PeerSearch only needs to search
a small number of nodes to identify matching documents.

1 Introduction
The sheer quantity of Internet content and its amaz-
ing growth rate are beyond the capability of any sin-
gle search engine, such as Google. A study conducted
by BrightPlanet Corporation in March 2000 estimates
that the deep Web may contain almost 550 billion doc-
uments, far more than the 1.2 billion pages that Google
has identified, not to mention the 600 million pages that
Google is able to search [9]. Meanwhile, peer-to-peer
(P2P) systems such as Napster and Gnutella are gain-
ing popularity quickly, raising hope for building com-
pletely decentralized information retrieval (IR) systems.

Current P2P systems, however, are either unscalable
or unable to provide deterministic guarantees. Usually
they are based on one of the following techniques: cen-
tralized indexing, query flooding, indexing flooding, or
heuristics. Centralized indexing systems such as Nap-
ster suffer from the single point of failure and perfor-
mance bottleneck at the indexing server. Flooding-
based techniques such as Gnutella send a query or in-
dex to every servant 1 in the system, consuming huge
amount of network bandwidth and leading to slowdown
and high variance in system response time. Heuristics-
based techniques try to improve performance by direct
searches to only a fraction of the population. As a result,
they may fail to retrieve important documents.

�Computer Science Department, University of Rochester, sar-
rmor@cs.rochester.edu.

yInternet Systems and Storage Laboratory, HP Laboratories Palo
Alto, fzhichen,mmallikg@hpl.hp.com.

1We call a computer working in P2P manner a servant.

Distributed hash table (DHT) systems such as
CAN [6] do provide good scalability and deterministic
guarantee, but they only offer a simple interface for stor-
ing and retrieving (key, value) pairs. Directly ap-
plying them to IR would require users to specify precise
document IDs (keys) for retrieval, an impractical as-
sumption in an environment where content is produced
by millions of organizations and individuals, indepen-
dently.

PeerSearch achieves both efficiency and determinism
through an elegant combination of index placement and
query routing. Given a query, PeerSearch only needs
to search a small number of servants to identify match-
ing documents. Leveraging the state-of-the-art IR algo-
rithms such as vector space model (VSM) [1] and latent
semantic indexing (LSI) [1], PeerSearch represents doc-
uments and queries as vectors and measure the similar-
ity between a query and a document as the cosine of the
angle between their vector representations. PeerSearch
stores a document index in CAN using its vector rep-
resentation as the coordinates, resulting in that indices
stored close to each other are also close in semantics.
This unifies the problem of content- or semantic-based
search with routing in an overlay network.

Several features distinguish PeerSearch from other IR
systems.
� PeerSearch works in a completely decentralized

manner. There is no single point of failure and no
complex hierarchy.

� PeerSearch supports content and semantic searches
expressed in natural language, as opposed to simple
keyword match.

� PeerSearch is scalable, efficient, and effective.
Both indexing flooding and query flooding are
avoided. The CAN routing is augmented with ex-
pressways [10], an optimization to overlay net-
works such as CAN. PeerSearch’s effectiveness
stems from the state-of-the-art IR algorithms.

2 Background
PeerSearch is built on top of CAN and expressways. Our
P2P IR algorithms are extensions of VSM and LSI. Be-

fore diving into the details of PeerSearch, we first intro-
duce these basic components.

CAN and Expressways. CAN organizes the logical
space as a d-dimensional Cartesian space (a d-torus) and
partitions it into zones. One or more servants serve(s) as
owner(s) of a zone. An object key is a point in the
space, and the object is stored at the servant that owns
the zone that contains the point. Routing from a source
servant to a destination servant is equivalent to routing
from one zone to another in the Cartesian space. A ser-
vant join corresponds to picking a random point in the
Cartesian space, routing to the zone that contains the
point, and splitting the zone with its current owner(s).
In addition to improving CAN’s logical routing cost to
O(log(n)), Expressways takes only routes that closely
approximate the underlying Internet topology.

Vector Space Model. The VSM represents docu-
ments and queries as vectors. Each component of the
vector represents the importance of a word (term) in the
document or query. The weight of a component is often
computed using the term frequency * inverse document
frequency (TF*IDF) scheme [1]. The intuition behind
the TF*IDF scheme is that two factors decide the impor-
tance of a term in a document: how frequently the term
appears in the document and how frequently the term
also appears in other documents. If a term frequently
appears in a document, there is a good chance that the
term could be used to differentiate the document from
others. However, if the term also appears in a lot of
other documents, (e.g. computer), the importance of
the term should be penalized. The VSM usually normal-
ize vectors to the unit Euclidean norm to compensate for
the difference in document length.

During a retrieval operation, the query vector is com-
pared to all document vectors. Those closest to the
query vector are considered to be similar and are re-
turned. One common measure of similarity is the cosine
of the angle between vectors.

Latent Semantic Indexing. Literal matching
schemes suffer from synonymy, polysemy, and noise
in documents. LSI has been proposed to address these
problems. It uses singular value decomposition (SVD)
to transform and truncate a matrix of document vectors
computed from VSM to discover the semantics under-
lying terms and documents. Intuitively, LSI transforms
a high-dimensional document vector into a medium-
dimensional semantic vector by projecting the former
into a medium-dimensional semantic subspace. The
basis of the semantic subspace is computed using SVD.

P 2 P

o v e r l a y

r o u t i n g

d o c A

q u e r y

s e m a n t i c

1

1
1

3

2

2

Figure 1: P-VSM in a 2-dimensional CAN. Each zone is owned

by a servant. The little dots represent indices. Each servant is re-

sponsible for storing indices containing some specific keywords.

Given the document A, its important keywords—P2P, overlay,

and routing—are identified using VSM and the index is published

to corresponding servants (step 1). Given a query of "semantic

overlay", it is forwarded to servants responsible for keyword se-

mantic and overlay, respectively (step 2). The two servants

then search and return matching indices using VSM (step 3).

Semantic vectors are normalized and their similarities
are measured as in VSM.

In summary, both VSM and LSI represent documents
and queries as vectors and the similarity between a query
and a document is measured as the cosine of the angle
between their vector representations. These are the only
properties of the algorithms that PeerSearch relies on.

3 PeerSearch Algorithms
In this section, we describe how to extend the VSM and
LSI algorithms to work with CAN.

3.1 Peer-to-Peer VSM (P-VSM)

Recent studies show that the frequency of terms in a doc-
ument usually follows a Zipf distribution, meaning that a
small number of keywords can categorize a document’s
content. In P-VSM, each servant is responsible for stor-
ing indices containing some specific keywords. Given
a document, we use VSM to identify its important key-
words automatically and publish the index of the docu-
ment to servants responsible for those keywords. Dur-
ing a retrieval operation, the query is forwarded to ser-
vants responsible for the keywords in the query and they
search and return matching indices using VSM. Figure 1
illustrates this process.

Specifically, given a document, its vector representa-
tion is computed using VSM. The m most heavy-weight
vector components (terms) ti; i = 1; :::;m are identi-
fied, 2 and all (h(ti), index) pairs are stored in the

2The number of important terms for documents can vary on a
per-document basis (refer to Section 3.5).

2

indices

θ
A

B

p

(S1, S2, S3)

θθθθ 1

θθθθ 2

(a) (b)

Figure 2: (a) In a 2-dimensional CAN, the simplified P-LSI only

places indices on the circle, leading to an unbalanced load for ser-

vants. The similarity (cos �) between the two indices A and B is

proportional to their distance (p) on the circle: cos � = cos p. The

gray region is the flooding area for searching indices close to A.

(b) Using Equation 1 to transform a 3-dimentional semantic vector

(s1; s2; s3) into a 2-dimentional parameter vector (�1; �2).

DHT using expressway routing, where h is a hash func-
tion mapping strings into points in the CAN Cartesian
space. During a retrieval operation, each term in the
query is hashed into a point using h() and the query is
routed to servants whose zones contain the points. Each
of the servants retrieves the best matching indices lo-
cally using VSM and sends them back to the servant
initiating the query. The initiating servant gives them
global ranks, discards those with low ranks, and presents
the rest to the user.

Synonymy may cause problems for P-VSM. For ex-
ample, an index may be stored under one term while
retrievals use its synonyms. Fortunately, this problem is
well studied and a thesaurus can be used to fix, by also
routing queries to points corresponding to synonyms of
the terms in the query.

3.2 Peer-to-Peer LSI (P-LSI)

Usually, CAN randomly generates document IDs and
their coordinates have no meaning other than their role
in routing. However, if we control the placement of the
indices such that indices stored close to each other in
CAN are also close in semantics, then we have a se-
mantic overlay in which DHT routing is equivalent to
searching in the semantic space. Using the semantic
vector of a document as the key to store the document
index in CAN achieves this goal. In the following, we
first outline a simplified version of our P-LSI algorithm,
and then describe how to improve it.

Simplified P-LSI. Let’s use L and K to denote the
LSI semantic space and the CAN Cartesian space, re-
spectively, with l and k as the dimensionality of the two

spaces, respectively. We map each document to a point
in K by setting l = k 3 and treating its semantic vector
as its coordinates in K. Given a document, its seman-
tic vector S is computed using LSI, and the (S, in-
dex) pair is stored in the DHT using expressway rout-
ing. During a retrieval operation, the semantic vector Q
of the query is computed and the query is routed using
Q as the DHT key. Upon arriving at the destination, it
floods the query only to servants within a pre-computed
radius r based on the similarity threshold specified by
the user. All servants that receive the query do a local
search using LSI and merge the results back to the user
as in P-VSM. Because indices of documents similar to
the query above the threshold can only be stored within
this radius r and we do an exhaustive search within this
area, P-LSI achieves the same performance as LSI. Usu-
ally, this radius r is small and the involved servants are
only a small fraction of the entire population.

Two problems exist in the above process. First, re-
call that semantic vectors are normalized and reside on
the surface of the unit sphere in K (denote U as this
surface), leading to an unbalanced load as depicted in
Figure 2(a). Second, because document vectors are not
uniformly distributed in L, it suffers from hot spots even
if servants are uniformly distributed in K.

Full P-LSI. We solve these problems by transforming
a semantic vector S = (s1; s2; :::; sl); jjSjj2 = 1 in L
into a parameter vector (�1; �2; :::; �l�1) in the (l � 1)-
dimensional polar subspace. Let’s denote P as this sub-
space. This transformation does exist because points
on U only have l � 1 degree of freedom. Equation 1
achieves the exact goal. An example of this transforma-
tion is shown in Figure 2(b). Note that even after the
transformation, parameter vectors (�1; �2; :::; �l�1) are
still not uniformly distributed in P .

�j = arctan(
sj+1qPj

i=1 s
2
i

) j = 1; :::; l � 1 (1)

Several modifications to the simplified P-LSI algo-
rithm are needed. First, we set l� 1 = k. Second, given
a document or a query, we use the parameter vector com-
puted from Equation 1 instead of the original semantic
vector as the key for DHT routing. Finally, at servant
join time, we randomly pick a document that the servant
is going to publish and use the parameter vector of the
document as the random point towards which the join
request is routed. This bootstrap process achieves three
goals. First, each servant stores roughly the same num-

3Both l and k are freely tunable in PeerSearch.

3

T he reg ion in w h ich A ’s ind ex is pub lished

A

floo d ing reg ion fo r the qu ery

θθθθ 1

θθθθ 2

T he zone o w ned by servan t AA

query doc1

2

3 3

3

4

4

Figure 3: P-LSI in a 2-dimensional CAN. Each zone is owned by

a servant. The little dots represent indices. Indices in neighboring

zones are close in semantics. Given a document, its index is stored

in the DHT using its parameter vector as the key for DHT routing

(step 1). Given a query, it is first routed using its parameter vector

as the DHT key (step 2) and then flooded to a small region com-

puted from the given similarity threshold (step 3). Servants in the

flooding region search and return matching indices using LSI (step

4). Note that indices are not uniformly distributed but the number

of indices per zone is roughly the same. Because of the transforma-

tion in Equation 1, the flooding radius r is not uniform in different

directions. For servant A, it is likely that its content is published

in neighboring zones because of the index locality induced by the

bootstrap process.

ber of indices (load balancing) because the servant dis-
tribution in K approximates the index distribution, given
that a large number of servants exist. 4 Second, the in-
dices stored at a servant is similar to the content pub-
lished by the servant itself (index locality). Therefore,
with certain probability, a servant stores indices for its
own content, meaning that the content publishing pro-
cess is extremely efficient. Third, suppose that docu-
ments owned by a user are good indications of his/her
interests. Then queries submitted by the user would
usually be searched in his/her neighboring zones (query
locality), resulting in near-constant-cost DHT routing.
Figure 3 pictorially depicts how P-LSI works in a 2-
dimentional CAN.

The medium dimensionality of the semantic space,
usually between 100 and 300, is not a problem for ex-
pressway routing, because its performance of O(log(n))
is independent of the dimensionality. The size of ex-
pressway’s routing table is proportional to the dimen-
sionality, however. We expect this not to be a problem
for contemporary computers. Moreover, Koll’s early
work on concept-based IR shows that it is possible to

4Without the dimension reduction technique in Equation 1, we
can still achieve load balancing using a similar bootstrap process,
but routing would be less efficient.

use only several dimensions for IR [1]. Alternatively,
we can use semantic vectors of different dimensions for
routing and local searching. That is, for each document
or query we compute two semantic vectors, one with
medium dimensionality, say 200, the other with low di-
mensionality, say 10. The low-dimensional vector is
used for routing only. After arriving at the destination,
the local searching still uses the medium-dimensional
vector to avoid losing precision. In either case, we ex-
pect the dimensionality not to be a problem for P-LSI.

3.3 P-VSM Implementation Issues

P-VSM relies on some global information, such as the
dictionary of the terms that TF*IDF counts in docu-
ments, and the inverse document frequency (IDF). We
call this global information statistics. Fortunately, peo-
ple already show that VSM does not need precise global
information to work well, i.e., a good approximation is
sufficient.

In P-VSM, the initial copy of the statistics are pre-
computed using sample documents similar to those that
will be used in the specific P2P community. Over time,
a combining tree that approximates the underlying Inter-
net topology and includes randomly chosen servants is
used to sample documents and to merge statistics. The
size of the statistics is largely independent of the size of
the P2P community. We expect the statistics to change
slowly, at the rate of weeks or even months [9], because
statistics are more stable than the document itself, es-
pecially for a large servant population. The root 5 of
the combining tree periodically disseminates the statis-
tics through the combining tree, attaching a new version
number to each update.

Upon receiving an update from the spanning tree, a
servant sets a timer X to 2T , where T is the estimated
time that it takes to propagate an update throughout
the entire combining tree. After timer X expires, the
servants include the version number of the statistics in
keep-alive messages, recursively detecting and updating
neighbors with outdated versions. Upon receiving an
update, every servant—whether or not it is in the span-
ning tree—also sets a timer Y to P=2, where P is the
statistics update period and P >> T . 6 Servants keep
the old statistics until Y expires. We call the time span
after receiving an update and before timer Y expires a
transition period. During the transition period, a given

5The root is a servant occupying a well-known zone in CAN. If
the root fails, one of its neighbors will take over the zone.

6Both T and P are also statistics that gradually change and are
propagated to all servants.

4

query is first processed under the old statistics. If it fails
because one of the involved servants already discards
the old statistics, the query initiator is notified and a sec-
ond round is started under the new statistics. Because Y
is set long enough, all servants involved in a query are
guaranteed to unanimously have a set of common statis-
tics, either the old one or the new one.

In summary, timerX allows the statistics to propagate
through the efficient combining tree first before the blind
flooding starts; timer Y allows P-VSM to work properly
during the transition period. P-VSM does need to flood
the statistics occasionally, but it happens at a rate several
order less frequent than the query flooding in Gnutella.

3.4 P-LSI Implementation Issues

Similarly, P-LSI also needs some global information:
the dictionary, the IDF, and the basis of the semantic
subspace. The basis is used to compute the projection
from the document vector to the semantic vector. The
solution is also similar: precompute them and update
them over time using samples. However, in this case,
the transition period needs to be handled more carefully.
When the transition period starts at a servant, it com-
putes new indices for the indices that it stores based on
the new statistics, and redistributes the indices that move
out of its zone. Because the statistics change gradually,
the difference between the new indices and the old in-
dices is typically small, such that most new indices still
reside in the old zone and their redistribution is avoided.
Meanwhile, the servant continues to process queries us-
ing old indices until timer Y expires. Then all old in-
dices are discarded.

Computing SVD for a high-dimension matrix is an
intensive process. To avoid starting from scratch at ev-
ery sample update, we incrementally update the matrix
using SVD-updating. Another solution is to replace LSI
with various low-computation LSI approximations such
as Concept Index and parallelize them, given that abun-
dant cycles exist in P2P networks.

3.5 Performance Enhancements
Indexing at Coarse Granularity. In some cases, it
is neither practical nor necessary to store an index for
individual document in the DHT. People have already
shown that indices on a per-database basis can work very
well [4]. In PeerSearch, we use hierarchical k-means to
cluster documents at a servant into collections until the
variance inside a collection falls below a given thresh-
old. Each collection is treated as a single document and
its index is stored in the DHT. If a retrieval hits in a col-
lection, the query is forwarded to the publisher of the
collection for further search.

Relevance Feedback. In addition to the conventional
use of relevance feedback to build new queries, we also
exploit user retrieval patterns to improve the indice dis-
tribution. When answering a query, PeerSearch only re-
turns a list of best matching documents. It is the user
who decides which document to download. Every ser-
vant remembers the number of times that each document
is downloaded and uses it as an estimation of document
popularity. For a popular document, P-VSM increases
the number of terms under which the document index
is stored, in order to increase the chance of retrieving
it with other queries. In P-LSI, upon receiving a down-
loading request originated from a successfully query, the
servant records that the document index should move
closer to the vector representation of the query. The
move actually happens, when this information is accu-
mulated over a threshold.

Load Balancing. P2P IR improves performance by al-
lowing multiple servants to search concurrently. When
the load at a servant is low, we allow it to replicate in-
dices at its direct and indirect neighbors and to process
queries on their behalf. For a servant powerful enough
to replicate indices in a big radius, it is possible to pro-
cess some queries at this single site. Comparing with
Napster’s centralized indexing, P-LSI in this case also
uses a single servant for searching but limits the search
to a small fraction of the entire set of documents. For hot
spots in the system, CAN itself has some techniques to
achieve load balancing [6]: multiple realities, peers, and
so forth. Note that P-LSI already tries to balance load by
approximating the index distribution in CAN with the
servant distribution. The servant bootstrap process in P-
VSM can be modified similarly in order to approximate
term distribution with servant distribution.

4 Beyond Document Retrieval
The flexibility of PeerSearch’s underlying technologies
allows it to be applied to many applications other than
document retrieval. We give only a few examples here.

Video/Audio. PeerSearch works by representing me-
dia content as vectors and unifying the searching prob-
lem to DHT routing. This method can be applied to
any media that can be abstracted as vectors and have its
object similarity measured as some kind of distance in
the vector space. A lot of pattern recognition problems
fall into this category. For instance, people also employ
SVD to extract algebraic features from images, and use
various extractors to derive frequency, amplitude, and
tempo feature vectors from music data.

5

Semantic-Based Publish/Subscribe. Going one step
beyond existing systems, PeerSearch provides a com-
pletely decentralized infrastructure for semantic-based
Publish/Subscribe. The servants are natural places for
keeping document subscriptions and for document avail-
ability detection. The subscription can be described not
only in topics and content, but also in semantics, allow-
ing users to subscribe unstructured documents that they
do not know how to describe precisely. PeerSearch users
may simply describe their needs as “notify me when
documents similar to my collection show up!”.

Deep Search in Grid. The Data Grid and P2P model
are similar in that they both deal with resource shar-
ing and cooperation among a large number of hetero-
geneous and autonomous systems. To provide a uniform
resource discovery and IR interface over existing hetero-
geneous services, we expect to use a third-party overlay
as the PeerSearch infrastructure to connect existing ser-
vices. Servants in the overlay maintain service indices
and route queries, using the coarse-grain indexing tech-
nique described in Section 3.5. For services that cannot
provide the indices needed by PeerSearch, people have
already devised query-based sampling to extract a good
summary of database contents.

Semantic-Based Resource Broker. PeerSearch es-
sentially provides a decentralized resource broker ser-
vice, in which resource providers publish a summary of
their resources and consumers use DHT routing to dis-
cover the resources. Both the publishing and discover-
ing can be expressed in either object IDs, contents, or
semantics. A lot of applications can be implemented
with this paradigm: P2P cooperative caching, flexible
resource discovery in Ad Hoc networks, and so forth.

5 Related Work
Both routing indices [2] and attenuated bloom filter [7]
use heuristics to selectively forward queries to a sub-
set of neighbors that are likely to contribute in resolving
the query. Reference [8] tries to organize nodes with
similar content into a group. A search starts with ran-
dom walk but proceeds more deterministically once it
hits in a group with matching content. A study by Lv
et al. [5] shows that expanding ring search and random
walk are better than Gnutella’s query flooding. All these
systems try to improve performance by limiting searches
to a fraction of the population. As a result, they may fail
to retrieve important documents.

Distributed IR systems such as GlOSS [4] usu-
ally employ a centralized or hierarchical index to di-
rect queries. Reference [3] follows the conventional

database selection approach but uses a bloom filter to
summarize each servant’s content and flood them. JXTA
search [9] is a query broker system built around central-
ized hubs. Currently, it does not address the problem of
routing queries among hubs at a large scale.

6 Conclusion
We propose two algorithms, P-VSM and P-LSI, that
combine the efficiency of DHT routing with the flexi-
bility of content- or semantic-based searches. Our main
contributions are: (1) the use of vector-space transfor-
mation to seamlessly integrate the two pieces together
while retaining IR algorithms’ effectiveness and DHT
routing’s efficiency, (2) a new angle to achieve good
scalability and determinism through a combination of
index placement and query routing, (3) a servant boot-
strap process that achieves load balancing, index lo-
cality, and query locality, and (4) the use of semantic-
based indexing to solve various problems, including
deep search in Grid, resource discovery, etc. To our
knowledge, PeerSearch is the first system that allows
decentralized, deterministic, and non-flooding P2P in-
formation retrieval based on content and semantics, and
is also the first to apply semantic knowledge to solve
various network/system problems at such a deep level.

References
[1] M. Berry, Z. Drmac, and E. Jessup. Matrices, vector spaces,

and information retrieval. SIAM Review, 41(2):335–362, 1999.

[2] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-
peer systems. In ICDCS, July 2002.

[3] T. D. N. Francisco Matias Cuenca-Acuna. Text-based content
search and retrieval in ad hoc p2p communities. Technical
Report DCS-TR-483, Rutgers University, 2002.

[4] L. Gravano, H. Garcı́a-Molina, and A. Tomasic. GlOSS: text-
source discovery over the Internet. ACM Transactions on
Database Systems, 24(2):229–264, 1999.

[5] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In ICS’02,
New York, USA, June 2002.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In ACM SIG-
COMM’01, August 2001.

[7] S. Rhea and J. Kubiatowicz. Probabilistic location and routing.
In INFOCOM’02, 2002.

[8] M. Schwartz. A scalable, non-hierarchical resource discovery
mechanism based on probabilistic protocols. Technical Report
TR CU-CS-474-90, University of Colorado, 1990.

[9] S. Waterhouse. JXTA search: Distributed search for distributed
networks. http://search.jxta.org/JXTAsearch.pdf.

[10] Z. Xu, M. Mahalingam, and M. Karlsson. Turning hetero-
geneity to an advantage in overlay routing. Technical Report
HPL-2002-126, HP Laboratories Palo Alto, 2002.

6

