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Abstract. In this paper, we present an agent which is able to negoti-
ate the buying and selling of imperfectly sustitutable goods in a double
auction style market. Two goods are said to be imperfectly substitutable
if a buyer can use either of them, but prefers one over the other. For
example, an electronics manufacturer using a RAM chip can use many
suppliers to do this but may be willing to pay a premium for components
with a lower failure rate. We give a formal description of a double-auction
style market mechanism for trading such goods, and define the (classi-
cal) equilibrium in such an environment. We present the IS-ZIP agent,
which is a generalisation of the ZIP agent for double auctions of Cliff and
Bruten [3]. Tt is able to participate in our double auction environment to
make purchases or sales of imperfectly substitutable goods. We demon-
strate that, when trading a single good, it is equivalent to Preist and van
Tol’s modification of the ZIP agent [11]. We describe experiments where
a group of IS-ZIP agents with different valuations trade repeatedly, and
demonstrate that they rapidly converge to our predicted equilibrium. We
conclude by relating our work to that of others, particulary work dealing
with multi-attribute negotiation, and discussing extensions.

1 Introduction and motivation

Despite the bursting of the dot com bubble, Electronic Commerce has become
an increasingly important part of the world economy. More and more transac-
tions, both from business to consumer and between businesses, are taking place
online. Despite a downturn in spending on IT in general, companies are continu-
ing to increase investment in e-commerce. For example Computer Weekly /Kew
Associates forecast an increase in spending of 7% on e-commerce infrastructure
in the UK in 2002.

While simple fixed-cost business transactions can be easily automated using
current technology, more complex transactions can involve negotiation to deter-
mine price and conditions. Agent technology has been proposed as a means of



automating this (e.g. [9]). In this paper, we look at the role of agents in automat-
ing negotiations in circumstances where the buyer or seller has several options
of what to buy/sell, but prefers some of these options over others. Goods of this
nature are referred to as imperfectly substitutable. We consider a double-auction
style market where many buyers and sellers can meet to trade such goods.

In Section 2, we introduce the problem. We informally define imperfectly
substitutable goods, and give a real world example of an internet site which
trades them using a double auction. We give a formal description of a double-
auction style market mechanism for trading such goods, and define the (classical)
equilibrium in such an environment. In section 3, we present the IS-ZIP agent,
which is a generalisation of the ZIP agent for double auctions of Cliff and Bruten
[3]. Tt is able to participate in our double auction environment to make purchases
or sales of imperfectly substitutable goods. We demonstrate that, when trading a
single good, it is equivalent to Preist and van Tol’s modification of the ZIP agent
([11],[12]). In section 4, we describe experiments where a group of IS-ZIP agents
with different valuations trade repeatedly in our market, and demonstrate that
they rapidly converge to our predicted equilibrium. In section 5, we conclude by
relating our work to that of others, particulary work dealing with multi-attribute
negotiation, and discussing extensions.

2 Markets for Imperfectly Substitutable Goods

When an agent or person is attempting to buy a good or service, they are often
faced with many alternate suppliers. Sometimes, these suppliers provide goods
which are identical to each other, and as a result the buyer doesn’t care which
they buy. Usually, however, the suppliers provide slightly different goods. For
example, some electronic component suppliers make components which have an
exceptionally low failure rate. Manufacturers wishing to have robust products
will pay a premium for these, in preference to buying standard quality compo-
nents. However, if the low-failure rate components are not available for some
reason, they could make do temporarily with the standard components. These
goods are said to be imperfectly substitutable: either good could be used, but the
buyer would prefer one over the other. This contrasts with perfectly substitutable
goods, where the buyer doesn’t care which they purchase.

Marketplaces have developed on the web which allow the trading of imper-
fectly substitutable goods. For example, FastParts (www.fastparts.com) pro-
vides a double auction where companies can buy or sell electronic components.
Sellers can post offers of goods for sale, and buyers can post bids specifying the
prices they are willing to pay currently. Both can revise their proposed trade
prices based on activity in the market. They can specify features of the goods
for sale and the goods required (eg manufacturer, type of packaging, etc). A
buyer can select which of the seller offers to move towards or to accept by being
more specific about these features, or can remain more general and so potentially
trade with one of a wider range of sellers. In this way, buyers and sellers can
negotiate about imperfectly substitutable goods.



The FastParts environment has one disadvantage; unless the buyer is will-
ing to risk making multiple purchases accidentally, they can only place one bid.
Hence it is not possible to make statements of the form: ‘I am currently willing
to pay £1000 for high-quality components, or £700 for similar standard quality
components’. Sandholm [14] overcomes this problem in the context of combina-
torial auctions through the use of exclusive disjunctive bids. We adopt a similar
approach. We now present details of our environment.

2.1 Double Auction for Imperfectly Substitutable Goods

We assume a set of goods, G, labeled {g; ...gn}. In each round of the auction,
buyers place bids and sellers place offers for some or all of the goods in the
set G. We define an atomic bid to be a tuple (g;,p) , representing the fact
that the buyer is willing to buy good g; for at most price p. We define an
exclusive disjunctive bid or XOR-bid, to be a list of atomic bids for different
goods, (gi,,p1) V...V (gi,,,Pm), representing the fact that the buyer is willing
to have at most one of the atomic bids accepted. Similarly, we define an atomic
offer to be a tuple (g;, p), representing the fact that the seller is willing to sell
good g; for at least price p, and a XOR-offer as a list of atomic offers, at most
one of which can be accepted. For the purpose of this paper, we assume that a
buyer or seller wishes to trade at most one good at any given time.
Each auction round proceeds as follows:

1. The auction house displays to the buyers and sellers all the bids/offers that
remain from the last round (i.e. those which failed to make a trade.) A
bid/offer is treated as persisting, unless the trader submits a bid/offer for
the same good that improves on the previous one.

2. Buyers submit bids and sellers submit offers to the market. These bids and
offers must satisfy a NYSE-style improvement rule: Any atomic bid submit-
ted for a good g must be greater than the highest bid for g persisting from
the previous round, and any atomic offer for g must be lower than the lowest
offer for g persisting from the previous round. Atomic bids not satisfying
these criteria are deleted from XOR-bids containing them.

3. A deal is possible if some XOR-bid contains an atomic bid (g;, p) and some
XOR-offer contains an atomic offer (g;,q) such that p > ¢. If a deal is
possible, the auction house identifies all possible deals and selects the one
with the largest difference between bid price and offer price. It deletes the
corresponding XOR-bid and offer and repeats this process until no more
deals are possible. It then informs all participants of the deals made. A deal
is made at the price midway between the selected bid and offer.

This marketplace is a simple generalisation of the continuous k-double auction to
the multiple good case. Other market mechanisms may be possible, using more
sophisticated winner-determination algorithms to clear the market. We do not
consider these issues in this paper.



2.2 Equilibria in Markets for Imperfectly Substitutable Goods.

Classical microeconomics provides an approach for determining the equilibrium
price in a given market. The quantity of a good that buyers are prepared to
purchase at any given price is referred to as the demand at that price, and the
quantity of a good that sellers are prepared to sell at a given price is the supply
at that price. According to classical microeconomics, the equilibrium price is
the price at which supply and demand are equal, and trade should take place
at this price when a market stabilizes. Game theoretic work (Such as [13]) has
demonstrated that, in general, this is an approximation to reality, and from a
theoretical point-of-view requires a large number of traders. This assumption
means that the traders act as price takers: the action of an individual trader will
not effect the equilibrium price. However, experimental work ([15]) has shown
that in practice even a small number of traders (5 buyers and 5 sellers) converge
rapidly to this equilibrium price, and trade prices do not deviate significantly
after stabilization. For that reason, we use this classical definition of equilibrium
as the basis of our work.

General Equilibrium Theory of Walras[18] considers a set of markets for
many goods, taking into account the substitution effects between them. When
the system is in equilibrium, the supply and demand in each market is equal, and
no trader wishes to change its supply/demand of any good given the observed
equilibrium prices. We now present the definition of a Walrasian equilibrium in
the context of our environment.

For each good g;, let m; be its associated market. Let M be the set of all such
markets. Let S be a set of sellers and B be a set of buyers, all able to participate
in any market in M. For a given seller, s, we define 5 to be a function from
goods to prices. 75(g) is the reservation price of seller s for good g. Similarly,
for a given buyer b we define v, to be a function from goods to prices, such that
vp(g) is the valuation of buyer b for good g.

Let A: SU B — M be any total assignment of all buyers and sellers to
individual markets in M (i.e. A is a partition of S U B, and each element in the
partition is associated to a market in M). Under such an assignment, we define
the supply and demand in market m; at price p as follows:

supply(m;, A,p) = |{s € S|A(s) =m; & r5(g;) < p}|
demand(m;, A,p) = |{b € B|A(s) = m; & vp(gi) > p}|

In other words, the supply at a given price is the number of sellers assigned to

the market under assignment A which are willing to sell at less than or equal
to that price, and the demand is the number of buyers assigned to the market
willing to buy at greater than or equal to that price. Given this, we can define
the equilibrium price as:

equilibrium_price_set(m, A) = {p : supply(m, A,p) = demand(m, A,p)}

If the supply function is strictly increasing over price, and the demand function
is strictly decreasing over price, then this set will have at most one element, the



equilibrium price. If the supply function is non-decreasing, and the demand func-
tion is non-increasing, then this set may be a price range, called the equilibrium
range. For the purposes of this paper, we assume that there is a unique equi-
librium price equilibrium_price(m, A).(Later, we construct experiments which
ensure this is the case.) We define the potential profit of a trader ¢ in a market
m; under assignment A as follows:
profit(t,m;, A) = vi(g;) — equilibrium_price(m;, A) if t is a buyer.
profit(t,m;, A) = equilibrium_price(m;, A) — r(g;) if t is a seller.

If we assume that the traders are price-takers, then they will wish to trade
in a market which maximises their profit. Provided this is the market they are
assigned to, A(t), then the system will be in equilibrium.

Def. 1 An assignment A is a Walrasian Equilibrium assignment if, for each
trader t, there is no market j such that profit(t, A(t), A) < profit(t,m;, A)

In other words, given that the equilibrium price of all markets does not change,
no trader wishes to trade in a different market from the one they are allocated.
However, in our environment described in section 2.1, traders are not required to
make a choice about which good to trade until the actual moment of agreement.
For this reason, as we shall see later, we can find situations where there are
several equivalent equilibrium assignments which result in identical prices in all
markets, and therefore identical profits for all agents. We refer to this equivalence
class of assignments as an abstract equilibrium, Abs. Formally, it is defined as
follows:

Def. 2 A~A’ if A, A’ are General Equilibria assignments, and
equilibrium_price(m, A) = equilibrium_price(m, A’) for all markets m.
Abs(A) = {A’|A’ ~ A} is the equivalence class represented by assignment A.

Hence all traders are indifferent with respect to the concrete equilibria within
the abstract equilibrium. Even though prices are stable, and the environment is
in equilibrium, different numbers of trades can take place in different markets,
reflecting trading at different concrete equilibria within the abstract equilibrium.

We have developed a software tool which, given a set of traders, each with
valuations/reservation prices for a given set of goods, returns the set of equilib-
rium assignments. We have used this to determine the theoretical equilibria of
the experimental setups described in section 4.

Having defined our market mechanism, and defined what an equilibrium in
the market is, we now turn to the problem of constructing agents to act on behalf
of buyers and sellers in such a market.

3 The IS-Zip Agent

In the spirit of Cliff & Bruten [3],we have chosen to initially explore the problem
of participating in markets for imperfectly substitutable goods by developing an
algorithm that is as simple as possible while still able to participate sensibly in



trading. Our algorithm is a generalisation of Cliff and Bruten’s Zero Intelligence
Plus agent. (Or, more precisely, a generalisation of Preist and van Tol’s modified
ZIP agent to participate in a double auction with order book[11]). The ZIP agent
consists of a set of heuristic rules for determining a target shout price (where
a buyer shouts a bid and a seller shouts an offer) based on the current state of
the market. The actual shout price announced by the agent is determined by
applying an adaptation rule to the previous shout and the target shout price.
The IS-ZIP agent is designed similarly, but instead of reasoning about a target
price, it reasons about a target utility. We now present the IS-ZIP algorithm.

3.1 The IS-Zip Algorithm

The utility of a potential trade of good g; at a price p is defined as:
tradeUtility(g;, p) = vi(g;) — p if t is a buyer.
tradeUtility(g;,p) = p — r(g;) if ¢ is a seller.

The goal of the agent is to maximise its trading utility, by trading at most one
good. In the experiments described in section 4 it repeats this, being reinitialised
with permission to trade at the start of each new market ‘day’.

The following pseudocode algorithm is used to set the target bid value for
the agent, assuming the agent is a buyer:

IF(TradingNow & IMustTrade)
NewTarget := Maximum( BestSellerDealUtility + ¢ ,
BestBuyerShoutUtility - 4);
ELSEIF(— TradingNow & IMustTrade)
NewTarget := BestBuyerShoutUtility - 4;
ELSEIF (TradingNow & — IMustTrade)
NewTarget := Maximum( OldTarget, BestSellerDealUtility +4);
ELSE NewTarget := 0ldTarget;

Where:

TradingNow: Boolean variable set to TRUE when trades were made in the last
market round.

IMustTrade: Boolean variable set to TRUE when the agent wishes to make a
purchase.

01dTarget: Real variable set to the value of the algorithms target in the last
market round.

BestSellerDealUtility: The maximum utility to the agent of the offers made
by sellers which were accepted last round.

BestBuyerShoutUtility: The maximum utility to the agent of the highest bid
made last round for each good g;.

d: An arbitrary (possibly randomly determined) small amount.

Formally, we can define BestSellerDealUtility and BestBuyerShoutUtility
as follows: Let B be the set of atomic bids made last round, O the set of atomic



offers, and A the set of atomic bids and offers which were accepted. (Disjunc-
tive bids and offers are split into their component atomic bids and offers for the
purpose of this definition.)

BestSellerDealUtility= maz{tradeUtility(g;, p)|(g:,p) € O N A}
BestBuyerShoutUtility= maz{tradeUtility(g;, p)|(g:,p) € B &
& [(9i:9) € B—q <pl}

The algorithm for the seller is identical to this, except that BestSellerDealUtility
is replaced with BestBuyerDealUtility, and BestBuyerShoutUtility is re-
placed with BestSellerShoutUtility, defined in the obvious way.

Given the target value, the agent calculates the actual utility value of the
bids to place in the same way as Cliff’s ZIP agent, by using the Widrow-Hoff
rule with momentum:

Let u(time) be the target utility for the agent at a given time time, and
q(time — 1) be the actual utility used at time — 1 to calculate the bids/offers
placed by the agent. The actual utility used at time is given by ¢(time) =
q(time — 1)+ I'(time), where I'(time) = yI'(time— 1)+ (1 —v)A(time —1). v is
the momentum coefficient for the agent, and A(time) = (u(time)—q(time—1)).
(3 is the learning rate for the agent.

JFrom the utility value, g(time), returned by the adaptation rule, the agent
submits a disjunctive bid defined as follows:

\/ (gi,ve(gi) — q(time)) if tis a buyer
9:€G

\/ (gi,¢(gi) + q(time)) if tis a seller
9:€G

3.2 The (PS)ZIP Agent as a Special Case of the IS-ZIP Agent

If we deploy the IS-ZIP agent in an environment where only a single good is
traded, then we can demonstrate that the set of heuristic rules are equivalent
to those used in Preist and van Tol’s modification of the ZIP agent for use in a
double auction with order book (The PS-Agent)[11][12].

Theorem 1 The IS-ZIP agent applied to a market with a single good is equiv-
alent to the PS-Agent.

Proof : We present the proof for the buyer case. The seller case follows through
in a similar fashion.
Consider firstly the definition of BestSeller DealUtility:

BestSeller DealUtility = max{tradeUtility(g:,p) | (9;,p) € ON A}
= max{v(g9) —p|p € ON A}

in the case where there is a single good.
= v(g) — min{p|p € ON A}



= vi(g) —min{p|p € O}
given that A is non — empty. (Because the
lowest price off er will certainly be in

A in this case.)
Similarly, BestBuyerShoutUtility simplifies as follows:

BestBuyerShoutUtility = max{tradeUtility(g;, p) |
|(9i,p) € B A [(9i:9) € B— ¢ <pl}
=maz{vi(9) —plp € B A [g€ B— q¢<pl}
= v(g) — min{max p € B}
= vi(g) — maz{p € B}

Now consider the first assignment of NewTarget in the algorithm specification:

IF(TradingNow & IMustTrade)
NewTarget := Maximum( BestSellerDealUtility + ¢ ,
BestBuyerShoutUtility - §);

In this case, the definition simplifies as follows:

Mazimum ( BestSeller DealUtility + 6 , BestBuyerShoutUtility — 0)
= max(vi(g) — min{plp € O} + 6, vi(g9) — maz{p € B} — 9)
= vi(g) — min{plp€ O} + 4
because min{p|p € O} < maz{p € B}

if trades are taking place.

Inserting this, together with the previous simplifications, into the algorithm def-
inition, we get:

IF (TradingNow & IMustTrade)
NewTarget := vi(g) - min{p | p € 0} + 4;
ELSEIF (- TradingNow & IMustTrade)
NewTarget := vy(g) - max{p | p € B} - §;
ELSEIF (TradingNow & — IMustTrade)
NewTarget := Maximum(0ldTarget, v;(g) - min{p | p € 0} + §);
ELSE NewTarget := 0ldTarget;

These define the target utilities. The definition of PS-Agent in [12] is given
in terms of the target shout price. The IS-ZIP agent shouts a bid of v;(g) — u,
so we can fold this in to the above definition:

IF(TradingNow & IMustTrade)
NewTargetBid := min{p | p € 0} - §;



ELSEIF (- TradingNow & IMustTrade)

NewTargetBid := max{p | p € B} + §;
ELSEIF (TradingNow & — IMustTrade)

NewTargetBid := Minimum(0ldTarget, min{p | p € 0} - &);
ELSE NewTarget := 0ldTarget;

This is equivalent to the definition of PS-Agent given in [12]. O

4 Experimental Analysis

We now describe experiments which deomnstrate empirically that a community
of IS-ZIP agents trading in a variety of supply/demand conditions result in
convergence of trade towards the predicted equilibrium patterns described in
section 2.2.

4.1 Experimental Procedures

Our experimental setup is based on that used by Smith [15] with human subjects,
and later applied by Cliff and Bruten [3] to ZIP agents. We assign valuations and
reservation prices to a set of buyers and a set of sellers, who repeatedly trade
in a double-auction environment as described in section 2.1. Each experiment is
divided into 500 ‘days’. At the beginning of each day, and agent is assigned the
task of buying/selling one item. Each day is divided into ‘rounds’; where buyers
place bids and sellers place offers, with trade being determined by the double
auction mechanism. FEach day consists of 100 such rounds. If an agent trades
during a day, it receives a utility credit and can make no further trade until the
next day. If an agent makes no trade in a day, it receives no credit.

The double auction trades goods of three different qualities : L(ow), M(edium),
H(igh). Agents have different valuations/reservation prices for goods of different
quality, hence they are imperfectly substitutable. Different experimental setups,
described below, assign different such values to agents. For the purposes of the
experiments presented in this paper, all agents have identical learning parame-
ters (a = 0.4, = 0.1) as well as identical initial target utilities (40 for sellers,
and 20 for buyers).

To measure the convergence of the markets towards the equilibrium, we use
a generalisation of Smith’s alpha [15]. Smith’s alpha is defined for a standard
double auction as the standard deviation of the observed trade prices from the
theoretical equilibrium price, expressed as a percentage:

Where P, is the price at wich deal ¢ has been made. Pp is the equilibrium price
computed ‘a priori’, and n is the total number of deals that have been made.
The smaller this value is, the closer trade is taking place to equilibrium.



We define the unified alpha to be a generalization of this measure to compute
the standard deviation for a set of related markets:

2
market, n; (@) m
o
o= E E ~ = 7 Wheren:E n;
n

j=markety \ =1 j=0

Where n; is the number of trades in market j, Pj; is the price of trade i in
market j and Pp; is the equilibrium price of market j. This can be shown to be
equivalent to:

market,,

a= X (Z()

j=marketg

Where «a; is Smith’s alpha for market j.

4.2 Experimental Set-Ups

Each experimental set-up consists of a different assignment of valuations to a
set of agents. In most experiments, we use 20 buyers and 20 sellers, though in
some we use only 10 of one category. In table 2, we present the valuations for the
basic experimental setup. In table 1, we present other setups as modifications of
this basic setup.

Table 1. Market characteristics in the different experimental set-ups

Experiment Market Characteristics

Basic set up (BS) Agents given valuations in table 2.

Reduced demand (RD) Sellers have same valuations as BS. Buyers reduce
valuations by 10 for all goods.

Increased supply (IS) Buyers have same valuations as BS. Sellers reduce

valuations by 10 for all goods.

Increased demand for High | Sellers have same valuations as BS. Buyers have
quality (IDH) same valuations for L and M goods, and increase
valuation of H goods by 10.

Reduced number of sellers | 20 buyers as BS. 10 sellers, valuations given in
(RS) table 3.

Reduced number of buyers | 20 sellers as BS. 10 buyers, valuations given in
(RB) table 3.

We have used the algorithm described in section 2.2 to determine the abstract
equilibrum for each experimental setup. Table 5 gives the abstract equilibrium
for the basic setup. Table 5 presents the average price of all deals in each market
over a 500 day experiment, and the average number of trades in each market.



Table 2. Reservation prices for the basic set up.

Buyer|Qty : L|Qty : M|Qty : H| |Seller|Qty : L|Qty : M|Qty : H
0 10 30 40 0 10 30 40
1 10 30 40 1 10 30 40
2 45 55 60 2 45 55 65
3 45 55 60 3 45 55 65
4 50 60 65 4 65 65 70
5 50 60 65 5 65 65 70
6 55 65 70 6 65 75 95
7 55 65 70 7 65 75 95
8 60 70 75 8 70 80 85
9 60 70 75 9 70 80 85
10 65 75 80 10 75 85 90
11 65 75 80 11 75 85 90
12 70 80 85 12 80 80 80
13 70 80 85 13 80 80 80
14 75 85 90 14 80 90 95
15 75 85 90 15 80 90 95
16 80 90 95 16 85 95 100
17 80 90 95 17 85 95 100
18 85 90 100 18 100 105 110
19 85 95 100 19 100 105 110

Table 3. Reservation prices for the Buyers in RB and sellers in RS.

Buyer|Qty : L|Qty : M|Qty : H||Seller|Qty : L|Qty : M|Qty : H
0 10 30 40 0 45 65 75
1 10 30 40 1 50 60 70
2 45 55 60 2 65 65 70
3 50 60 65 3 60 70 90
4 55 65 70 4 75 85 90
5 60 70 75 5 80 80 80
6 65 75 80 6 80 90 95
7 70 80 85 7 85 95 100
8 75 85 90 8 100 105 110
9 80 90 95 9 100 105 110

Table 4. Results of 500 days 100 rounds negotiation with basic set-up.

Quality : L{Quality : M|Quality : H
Deals 2014 1465 1521
Avg. price 64.725 74.768 79.935
Avg. deals per day 4.028 2.93 3.042




Table 5. Theoretical equilibrium for the basic set-up.

Equilibrium issue Value
Number of deals per day 10
Equilibrium price for Qty.L market 65
Equilibrium price for Qty.M market 75
Equilibrium price for Qty.H market 80
2 deals with quality 10
Abstract equilibrium pattern 2 deals with quality 30
4 deals with quality 10 or 20
2 deals with quality 20 or 30

Fig. 1. Daily profit of Buyer 15 (20 days) and Unified alpha (500 days) using the BS
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Table 6. Equilibrium test:Predicted prices vs. Average prices.

Set Up|Pred. price(L, M, H)|Avg. price(L,M, H)
BS (65,75,80) (64.7,74.7,779.9)
1S (60,70, 75) (59.6, 69.6, 74.6)
RD (60,70,75) (59.9,69.9, 74.95)
IDH (60,70,85) (59.9, 70.0, 84.9)
RB (55,65,70) (55.0,65.0,70.0)
RS (75,85,90) (74.5,84.5,89.6)

As we can see, the average price is close to the theoretical equilibrium price,
suggesting convergence. This is confirmed by figure 1 (right), which shows how
the unified alpha rapidly reduces to be below 0.5, and remains there. More detail
of this convergence is given in the first graph in figure 2. Figure 1 (left) shows
the daily profit of one of the agents (Buyer 15) during the first ten days. It
shows its profit increasing towards that predicted by the equilibrium. We have
also carried out an analysis of the trading pattern each day - the distribution
of trades between the three markets. We have determined that every trading
pattern in the 500 days was within the abstract equilibrium predicted, with the
most common being 4 trades of I, and 3 each of M and H. This occured 98 times
over the 500 days. As a result of this, we can conclude that the IS-ZIP agents in
the basic setup do successfully converge to the predicted equilibrium.

We have carried out similar analysis of the other 5 setups, which we present in
less detail for reasons of space. Table 6 shows the predicted equilibirum prices for
each setup, together with the observed average over 500 days. Figure 2 presents
the unified alpha for each experimental setup. This demonstrates that in all of
our experiments the market converges to equilibrium over a period of 4-5 days.

These results strongly suggest that communities of IS-ZIP agents rapidly
converge to the equilibrium when trading imperfectly substitutable goods.

5 Discussion/Conclusions

In this paper, we have presented a simple adaptive agent which is able to ne-
gotiate to buy or sell one of a set of imperfectly substitutable goods. We have
provided initial results that suggest that it behaves reasonably, and converges
rapidly to the equilibrium predicted by our analysis in section 2.2. As far as we
are aware, this is the first reported agent able to exploit the economic properties
of a double auction for imperfectly substitutable goods. The agent we developed
is based on the ZIP agent of Cliff and Bruten [3].This is a non-optimal strategy
in the market, but nonetheless has been shown to outperform humans in experi-
ments [4]. Hence, we believe that a generalisation of ZIP is a valuable first step in
the study of agents in markets containing imperfectly substitutable goods. How-
ever, we do not view this as the definitive solution. Other agent designs have



been developed for deployment in double auctions trading a single commod-
ity good. He et. al. [8] use a set of fuzzy heuristics to determine bid and offer
prices based on past history. Gjerstad and Dickhaut [7] use function fitting over
prior history, together with utility analysis, to determine an effective bid/offer
to make. Both of these have been shown to outperform ZIP agents in certain en-
vironments ([8], [4]). Tesauro and Das [16] have modified the Gjerstad-Dickhaut
algorithm, resulting in further performance improvements over the other strate-
gies. Tesauro and Bredin [17] use a dynamic programming which outperforms
this. Park et. al. [10] propose using a stochastic-based algorithm. Walsh et. al.
[19] analyse strategic interactions in the choice of strategies. Any of these strate-
gies may provide a basis for developing more sophisticated agents able to handle
imperfectly substitutable goods. We are currently exploring extensions of [8] and
[16].

Cheng and Wellman ([2]) developed WALRAS, an agent-based distributed
algorithm which is able to find the general equilibrium of an economy of many
goods, where traders have a continuous utility function. The approach it uses is
based on ’tattonement’ of Walras ([18])where markets for each good announce
an interim clearing price, and agents adjust their supply/demand of the goods
based on these price signals. This process repeats until the clearing prices reach
equilibrium. Cheng and Wellman have proved that their algorithm converges
when preferences on goods are strictly convex (i.e. when any pair of goods is
more valuable than either of the individual goods), and when goods are grossly
substitutable (i.e. An increase in the price of one good will not lead to a reduction
in the demand for another.)

Our work differs from the WALRAS algorithm in that trading can take place
prior to the equilibrium being established, and that the equilibrium is found
through observation of point trades rather than the announcement of provisional
clearing prices. Our assumption that traders wish to trade exactly one good
violates the assumption that preferences are strictly convex, and also that the
utility function of traders is continuous. Hence the convergence result of Cheng
and Wellman cannot be applied directly to our system. We hope to explore the
relationship between the two systems more fully in the future.

The problem of negotiating the trade of an imperfectly substitutable good is
related, though not equivalent to, the problem of negotiating the trade of multi-
parameter goods. A multi-parameter good has other parameters beyond price
which must be agreed between trading parties, such as delivery time, colour,
quality, etc. The experiments presented above could be viewed as experiments
in (very limited) multi-attribute negotiation where the agents negotiate price,
which is a (near-) continuous parameter, and quality, which is a discrete param-
eter with only 3 values. More generally, we need to make two assumptions if our
agents are to be deployed in a multi-parameter environment. Firstly, we must
assume that all agents announce disjunctive bids containing atomic bids for all
possible sets of parameter assignments. Secondly, we must assume that there is
a sufficiently large agent population with sufficiently varied valuations over the
space of possible parameter assignments. Together these two assumptions will



result in the (imaginary) market for each set of parameter assignments having
a unique equilibrium price, or at least a narrow range of equilibrium prices.
This allows our algorithm to have enough information about the current state
of the market to adjust its expectations appropriately. Clearly, if the number of
possible parameter assignments is large, this will become impractical, and if a
non-price parameter is continuous, it is impossible.

This is a very different, but complementary, view on multi-parameter nego-
tiation from the work carried out by the agent community up to now. This work
has tended to focus on one-to-one negotiation. Zeng and Sycara [20] present an
approach based on using learning to build a model of the trading partner’s reser-
vation price. Faratin et. al. [5] use heuristics to make appropriate concessions
based on the passage of time, use of resources, and other factors. They augment
this approach with fuzzy reasoning [6], to identify the set of parameters which
are most likely to be acceptable to the trading partner based on past experience.
Barbuceanu and Lo [1] use Multi-Attribute Utility Theory to build a structured
model of the preferences an agent has, to allow it to make concessions in an
appropriate order. All these approaches differ from our work, in that they focus
primarily on the one-to-one environment. They could be deployed in an environ-
ment with many buyers and sellers, but will not be able to exploit the economic
dynamics created by seller-to-seller and buyer-to-buyer competition. However,
they have the advantage over our approach that they are able to operate in en-
vironments where there is a far lower amount of information available - i.e. there
is only a single proposal from the trading counter-party, detailing its current
proposed price for only one set of parameter values.

We believe that the way forward for multi-parameter negotiation should com-
bine the best of these two approaches - it should exploit economic dynamics to
determine the range of possible prices for given parameter values, but also use
heuristic techniques to concede appropriately within these ranges, and fuzzy
reasoning like that of [6] to determine which parameter values to propose. We
believe that the negotiation mechanism should allow disjunctive bids and offers,
to enable traders to simultaneously propose prices for several sets of parameter
values, but should not force traders to make bids/offers for all possible parameter
values, as our algorithm does.
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