

An Internal Agent Architecture for Dynamic Composition
of Reusable Agent Subsystems – Part I: Problem Analysis
and Decomposition Framework

Steven P. Fonseca
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-193
July 10th , 2002*

E-mail: fonseca@cse.ucse.edu

agent
architecture,
MAS
framework,
FIPAOS,
JADE, Zeus

The internal agent architectures that current MAS frameworks provide
don't enable the rapid implementation of agents from reusable
components. This is because of the underlying problem that the agent-
oriented programming paradigm, defining how abstraction,
decomposition, and modularity are achieved, is not sufficiently
understood or developed. This paper presents an agent decomposition
framework that offers agent-oriented programming and software
engineering separation of concern guidelines and discusses the
weaknesses of agent architectures currently supported by MAS
frameworks. This is in preparation for proposing a more flexible and
extensible internal agent architecture than current MAS frameworks
provide. It is envisioned that this architecture will provide an
infrastructure that supports constructing agents from reusable components
at the subsystem level. Subsystems are added to an agent through a
dynamic description, event, and ontology registration process. Once
connected, the composite subsystems interact by an event-based software
bus that acts as the central nervous system of an agent. This gives
subsystems the ability to reason about the functionality and current state
of their constituent parts and allows agents to be composed from industry
wide best known components instead of building agents from a single
MAS framework repository.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

An Internal Agent Architecture for Dynamic
Composition of Reusable Agent Subsystems

Part I: Problem Analysis and Decomposition Framework

Steven P Fonseca

 UC Santa Cruz / HP Labs
Baskin School of Engineering

 Santa Cruz, CA 95064
fonseca@cse.ucsc.edu

Abstract. The internal agent architectures that current MAS frameworks pro-
vide don’t enable the rapid implementation of agents from reusable compo-
nents. This is because of the underlying problem that the agent-oriented pro-
gramming paradigm, defining how abstraction, decomposition, and modularity
are achieved, is not sufficiently understood or developed. This paper presents
an agent decomposition framework that offers agent-oriented programming and
software engineering separation of concern guidelines and discusses the weak-
nesses of agent architectures currently supported by MAS frameworks. This is
in preparation for proposing a more flexible and extensible internal agent archi-
tecture than current MAS frameworks provide. It is envisioned that this archi-
tecture will provide an infrastructure that supports constructing agents from re-
usable components at the subsystem level. Subsystems are added to an agent
through a dynamic description, event, and ontology registration process. Once
connected, the composite subsystems interact by an event-based software bus
that acts as the central nervous system of an agent. This gives subsystems the
ability to reason about the functionality and current state of their constituent
parts and allows agents to be composed from industry wide best known compo-
nents instead of building agents from a single MAS framework repository.

1 Introduction

Architecture and code reuse are two primary means of systematically building qual-
ity software systems [3]. Object-oriented software development has highlighted the
importance and success of building from collections of compatible components [2].
Object-oriented frameworks offer sets of components designed to interact with each
other (via patterns) to solve domain specific problems and developers also recognize
the importance of, and have deployed, comprehensive multi-framework solutions [3].
The keys to this success are clearly delineated component abstraction layers, appro-
priate system decomposition, collections of reusable and compatible components,
interface specifications, interoperability between frameworks, and suitable architec-

tures for connecting components together. These mechanisms for the agent-oriented
paradigm are underdeveloped and immature. In the context of proposing an internal
agent architecture for composing an agent from reusable subsystems, this paper ad-
dresses a subset of the fundamental problems confronting agent-oriented software
engineering: 1) In what ways is the agent-oriented paradigm different from, or an
improvement to, object orientation? 2) How can existing MAS frameworks be evolved
to make agent construction easier? 3) Can an internal agent architecture be developed
that facilitates better component reuse? 4) How is agent behavior decomposed into
reusable components and at what granularity?

Currently, there is little consensus on how to decompose agent behavior and even
the abstractions afforded by the agent-oriented paradigm have not stabilized. While
agents constructed from different multi-agent system frameworks can interoperate
thanks to standardization efforts such as FIPA [6], the framework components they are
composed from are not, in general, designed for use with other MAS frameworks.
Further, MAS framework and agent infrastructure architectures are often highly cou-
pled with the subsystems they provide and consequently this limits flexibility and the
abstraction level that component reuse and adaptation can occur. While the usefulness
of composing an agent from independent yet compatible subsystems is evidenced by
standard object oriented design practice, the promise of ubiquitous e-services makes
an even more compelling argument for flexible and dynamic agent composition.

The agent oriented software engineering problems discussed are one of several key
technical problem areas inhibiting the adoption of agents as an industry wide solution
for software systems that are distributed, heterogeneous, and autonomous. The most
high-level question, can agent technology can be used to build industrial strength
software, cannot be answered without overcoming its engineering problems. For if a
large body of programmers does not have the software infrastructure necessary to
build many agent systems, there will be neither sufficient interest in, nor feedback to
the design process, for agents to flourish. Research and development efforts at Hew-
lett Packard Labs were confronted with this reality in developing an e-commerce envi-
ronment for mobile shoppers [5]. While our primary goal was to develop a testbed for
studying the behavior of agents and agent societies for the electronic commerce do-
main, one of our main lessons was that support for designing, implementing, and de-
ploying agents was inadequate [4, 6]. Subsequent to this experience, research time
has been spent developing agent-oriented programming principles and infrastructure
while working in parallel on agent-oriented software solutions.

Comprehensive MAS frameworks offer a collection of functionality encapsulated
within an agent. An excellent example is agents built using the Zeus MAS framework
that are composed of a message transport, behavior execution unit, rule engine, central
storage mechanism, event system, and abilities database. In the case of Zeus, a highly
coupled infrastructure connects these subsystems together. Virtually no interfaces are
used, the event system is based on predefined static event types, subsystems must use
the Zeus ontology model to leverage classes offered by the API, an internal data for-
mat must also be used, and extensibility of an agent is only possible at a few flexibility
points that are at an abstraction level lower than a subsystem. The architecture of
Zeus suggests that emphasis was placed on developing a comprehensive closed solu-
tion whose extensibility is offered at a single level of abstraction.

In contrast to Zeus, the internal agent infrastructures provided by the FIPAOS and
JADE MAS frameworks are lightweight and do use interfaces, though not often
enough, to decouple the components that compose an agent. These frameworks offer
less functionality than Zeus but do provide message transport and routing, a behavior
execution unit, ontological support, FIPA protocol support, a varying degree of con-
versation management, and life cycle support. The FIPAOS and JADE frameworks,
like Zeus, support agent extensions at only one level of abstraction that is finer grain
than an agent subsystem. Further, the infrastructure of these two MAS frameworks is
too lightweight and consequently programmers are left coding infrastructure for their
applications. Not only is this work redundant, but also organizations cannot take
advantage of the design lessons these framework developers have accumulated and
that should have been captured and offered as reusable components and patterns.
These MAS frameworks do not provide an internal agent architecture that supports
component reuse that correctly balances the tension between structure and flexibility.
JADE is too flexible as it provides next to no infrastructure, while FIPAOS is also
architecturally thin and what is provided is too rigid. Further, these frameworks pro-
vide only minimal infrastructure, primarily in the form ontology support, for the com-
ponents of an agent to interact. A detailed discussion of the current limitations of
MAS frameworks is given in Section 3.

The inadequacy of the internal architectures for FIPAOS, JADE, and Zeus agents
are representative of the problems common to MAS frameworks in general. While
each is an excellent first attempt to develop a collection of classes for constructing
agent societies, their implementations require refactoring and their architectures im-
proved. While active open-source communities support the evolution of these frame-
works, there is an even greater opportunity for advancement by capturing the best
designs and implementations of these efforts and using them to build a second-
generation MAS framework. Further, an open internal agent architecture encourages
collaboration across research groups thereby fostering an increase in component reuse
and standardization.

The internal agent architecture proposed solves many of the common problems of
existing MAS frameworks. Its design requirements include an infrastructure for the
dynamic composition of an agent from subsystems, an event system that allows dy-
namic registration of event types and whose events can be shared at the subsystem
level, a subsystem description mechanism, a common internal architecture ontology,
dynamic registration of subsystem ontologies, an internal data marshalling mechanism,
and an execution scheduler. These requirements are based on two years of program-
ming with FIPAOS, JADE, and Zeus frameworks developing applications in the meet-
ing scheduling and electronic commerce domains at Hewlett-Packard Labs and UC
Santa Cruz.

The next section provides a framework for decomposing agent behavior by explic-
itly describing the agent-oriented programming abstraction layers and the types of
components used to modularize and decompose multi-agent systems. Particular em-
phasis is placed on describing the programming of internal agent components as it is
the responsibility of an agent architecture to facilitate their interrelationships. Follow-
ing this foundation, Section 3 evaluates three open-source Java MAS framework ar-
chitectures

2 Agent Abstractions and Decomposition

Focusing on the engineering of multi-agent systems, the programming techniques used
to handle distributed system complexity is essentially the same as dealing with any
type of sophisticated software; decomposition, abstraction, and organization must be
used effectively [2, 7]. In a very general sense, the purpose of this research is to take
these three mechanisms and apply them to the agent-oriented paradigm. This attempts
to answer a “fundamental question” of agent-oriented software engineering [7]: “What
are the essential concepts and notions of agent-based computing.”

Like the transition from functional to object-oriented programming, moving from
object-oriented to agent-oriented programming involves building on top of and re-
encapsulating units of computation. The layers of abstraction proposed in this paper
and corresponding decomposition framework appear in Figure 1. The crossover from
the object to agent layer begins at the multi-agent system level. Although multi-agent
system frameworks can be thought of as being parallel to rather than extending from
traditional object-oriented frameworks, they are placed at a higher level of abstraction
because they typically utilize object-oriented API’s. Well-written MAS frameworks
recast object calls using agent-oriented concepts. The subsections that follow cover
the MAS framework, framework extensions, role, and agent levels of abstraction in
detail because it is at these levels that reuse currently occurs.

2.1 MAS Frameworks

An object-oriented framework provides a base of code for a specific application do-
main, that adheres to an architecture, establishes the relationship between classes
through inheritance and references, and is extensible. MAS frameworks are a spe-
cialty of object-oriented frameworks with an application domain of distributed and
autonomous software using agents as the main unit of encapsulation. It follows that a

Agent-Oriented Programming Abstraction Layers
Abstraction Level Description Example

Collection of agent societies FIPA infrastructure agents and
application agents

Collection of agents FIPA infrastructure agents

Collection of executing roles Meeting request agent

A well-defined high-level agent action Meeting participant

Primitive element encapsulating agent
functionality

FIPAOS task, JADE behavior,
Zeus graph and nodes

Application specific subsystems not
part of the agent framework core

JESS

API for low-level agent action and
society infrastructure action

FIPAOS, JADE, Zeus

OO API for language extension and
raising abstraction

RMI, JFC

Core software foundation Java

Language

Application Framework or API

Application Framework Extensions

Agent Role

Agent

Agent Society

Agent Infrastructure – MAS Framework

Agent Environment

Agent Work Unit

successful MAS framework should adhere to well-known object-oriented framework
design and implementation principles.
It also follows that a MAS API should encapsulate lower-level concepts with next
level agent-oriented abstractions. The question is what set of agent-oriented abstrac-
tions should be provided by a general purpose MAS framework? How is this func-
tionality split into reusable modules? And how can the framework be easily ex-
tended? These questions have not been definitively answered but one can look to the
FIPA and JAS specifications that are on the path to extracting the essence of multi-
agent system software for a partial answer.
The main contributions of the FIPA specifications are a communications and agent
services infrastructure for multi-agent systems. The intuitive assumption of FIPA is
that all multi-agent systems have a core set of functionality that varies little from im-
plementation to implementation and agent communication must be standardized to
facilitate interoperability. FIPA abstractly defines a set of requirements with the goal
of providing general multi-agent system specifications that MAS framework develop-
ers can implement. The JAS specification serves as an intermediary between FIPA
and framework developers by providing an unimplemented reference API. This API
proposes the classes, methods, and interfaces used to construct communication mes-
saging, name resolution, and directory facilitation. FIPA and JAS have provided the
set of agent-oriented abstractions that should be provided by a general purpose MAS
framework for these three core capabilities.
FIPA defines several other specifications addressing, for example, the agent lifecycle
and communication protocols. Peripheral specifications should be delineated from
those specifications that enable interoperability to clearly communicate what FIPA
compliance guarantees. A number of these specifications address issues whose gen-
eral applicability is questionable. Should FIPA be responsible for establishing e-
commerce protocols? Application domain specific specifications should be left to
their respective experts. Appropriate separation of concerns is vital to component
abstraction, modularity, and reuse. MAS framework design can be decomposed into
the core capabilities required for all systems and an application specific portion. MAS
framework design could integrate the two, as is current practice; more flexibly, a ge-
neric MAS framework could provide facilities making it easy to add large domain-
specific extensions at runtime or when applications are developed. This is the essen-
tial goal of developing an internal agent architecture that supports subsystem composi-
tion.
 An equally important input to the development of agent-oriented programming ab-
stractions and corresponding framework API’s are the plethora of first generation
MAS frameworks [1] available today. In studying these frameworks, it is apparent
that the software core of a general MAS framework includes more than just the com-
munications mechanisms described by FIPA and JAS. For example, many of these
frameworks also include agent shells and a behavior extension mechanism for adding
application specific code. One can imagine standardizing a state-based behavior exe-
cution unit. This is analogous to the JRS (Java Rule Engine Specification), although
the JRS is not agent-specific. Additionally, conversation management facilities are
frequently provided. FIPA and JAS do not offer any guidelines for how to route in-
coming messages, maintain conversations, or monitor agent interaction.

Current MAS frameworks, in addition to illustrating the common elements of a MAS
framework, also offer insight into the ways that these systems vary. The more than 60
MAS frameworks [1] available offer a wide-range of functionality providing their own
unique combination of reusable components that support specific application features
(i.e. mobility) desired by the framework developers; domain dependent agent re-
quirements often dictate framework design choices. It is these variability points that
must be abstracted and systematically encapsulated into modules whose interface with
a generic MAS framework core is clean and well defined. Restating this idea, a MAS
framework should be composed of subsystems that are well encapsulated, systemati-
cally connected with other subsystems, and that can be used to customize an agent
shell from which additional behavior extensions are built.

2.2 MAS Framework Extensions

If a generic MAS framework only provides the core capabilities required of an agent,
such a system must be conveniently extendable. The internal agent architecture pro-
posed in a future paper enables component reuse at the MAS framework extension
level of abstraction by constructing agents from pluggable subsystems. These subsys-
tems might be general-purpose engines that can be further specialized. They could
also encapsulate application specific code offering a complete set of functionality for
an agent to utilize. Some combination of these two extremes is also possible. For
example, a MAS framework could be supplemented with a generic execution engine
that includes electronic commerce negotiation protocols for trading stocks. MAS
framework extension is also possible by adding agents that offer society wide services
and providing application programmers with interface protocols that enable interac-
tion.

There are many benefits to decomposing a MAS framework into the core capabilities
that every agent must posses and those application specific features that are dictated
by the problem domain or application design decisions. First, the agent research
community could avoid a tremendous amount of duplicated effort if MAS frameworks
were designed to interoperate with a pool of reusable components sharing a common
interface. Widely useable components would encourage community wide reuse and
hopefully lead to standard agent libraries whose need has been expressed but has yet
to materialize. Second, there are many benefits to trimming a MAS framework so that
it includes only core agent code. Application developers don’t have to code around
unused or unwanted code. Unused code might incur performance penalties, such as
execution speed or footprint size, that could be avoided. Intuitively, it is also likely
that a smaller framework (less lines of code) would be easier to learn. Third, building
an agent from pluggable subsystems allows application developers to choose the best
components from industry. They are no longer locked into solutions provided by
MAS framework developers and are thus given a greater degree of control over cus-
tomization. Finally, because this customization is at a higher level of abstraction,

application developers can construct agents from larger components thereby increas-
ing the potential for reuse.

2.3 Agent Roles

An agent role is meant to represent a well-defined and encapsulated unit of high-level
agent behavior. An agent role can denote the same behavior expressed in defining a
protocol role. Alternatively, it can represent some other action an agent performs that
may not involve communicating with the society. An agent role is composed of primi-
tive operations from the Agent Work Unit layer of abstraction and can also encapsu-
late other lower level agent roles. Though in many MAS frameworks an agent role is
a conceptual entity, it is proposed that an agent role is the smallest concrete unit of
reusable agent functionality. Roles may be composed of smaller work units, repre-
sentative examples of such primitives are found in Figure 1 and include tasks, graphs,
nodes, and behaviors. While these components are always primitive work units, they
may not be roles in and of themselves; this is subject to the application programming
style and higher-level encapsulation mechanisms offered by the framework.

A protocol defines the agent roles involved in a conversation and the legal messages
that can be exchanged between them. It also serves as an agent-oriented unit of en-
capsulation that embodies the rules of a dialogue. Because these rules “crosscut”
agent roles, there is a relationship between protocols and aspects. This has implica-
tions on the decomposition of an agent. Aspect-oriented programming may help con-
nect communication and behavior subsystems in a more maintainable and reusable
manner. Further research in this area is needed but one could imagine future MAS
platforms utilizing aspect technology.

The methods used to program agent behavior vary across MAS frameworks; agent
roles are often not explicitly programmed and may remain a conceptual abstraction.
Frameworks do provide composite components that approximate agent roles. The
infrastructure provided by the framework and internals provided by these composites
can range from unstructured to highly structured. Unstructured agent roles afford the
programmer a high degree of flexibility but don’t take advantage of factoring out
reusable code across agent roles. For example, most agent roles could make use of
general-purpose conversation management utilities. Highly structured agent roles are
more constraining but can take advantage of built-in functionality and may offer pro-
grammers a solution template for writing agent behavior. Two concerns emerge from
these observations. First, the success of using a highly structured agent role is de-
pendent upon how easily agent behavior can be mapped to the internal constructs.
The solution model must align with the agent behavior programming model. Second,
there exists a tension between flexibility and reusability that must be tuned through
experience.

2.4 Agent Shell

MAS frameworks typically provide agent shells that can be customized through
inheritance and whose behavior can also be extended by adding agent roles. An agent
composed of executing agent roles provides another unit of encapsulation by hiding
their interfaces from other agents in the society. The agent layer of abstraction, where
true agent-oriented programming occurs, allows agents to interact at the knowledge
level using a standardized agent communication language [7]. Only within the agent
are agent role methods invoked.

While MAS framework designers purport offering API’s for agent-oriented program-
ming, the current generation of MAS frameworks offer much more support for pro-
gramming at the agent role level. This is evidenced by the lack of prewritten agents
and agent roles. One could argue with some success that agents and agent roles are
domain dependent and therefore should not be included with a general-purpose MAS.
Intuition and experience suggests, however, that there must also be a collection of
agent behavior patterns that solve the common tasks that agents regularly perform.
Implementations of these generic patterns would accompany a MAS framework while
supplemental packages extending the framework would provide domain-specific
agents and agent roles. Next generation MAS frameworks will include a much richer
collection of agents and agent roles. The birth and evolution of agent programming
communities will give rise to an increasingly comprehensive pool of reusable agent-
oriented code offered at multiple levels of abstraction including agent subsystems,
agent roles, agents, and even agent societies.

3 Internal Agent Architecture Critique

In developing applications with multiple MAS frameworks, a number of architectural
problems were identified. While none of the frameworks suffered from all of these
problems, the extensibility and reusability of all these systems was significantly af-
fected. Most current MAS frameworks suffer from the same root cause of these prob-
lems: the internals of an agent were not intended to interoperate with those provided
by other agent frameworks or component developers. This has created groups of
agent researchers and developers clustered by their preferred MAS framework that are
unable to share, with a few exceptions, component libraries. Some of the characteris-
tics that have prohibited the development and use of common component libraries are
discussed.

3.1 Ad Hoc Architecture

While an agent and MAS framework can be decomposed into distinct subsystems
encapsulating logically related functionality, ad hoc architectures do not adequately
minimize component coupling. Components not designed for adaptation often have
unnecessary dependencies, one of which is sufficient to preclude reuse. If the func-

tionality of a subsystem is accessed via many public methods that are not part of an
established interface, it is very difficult to replace it with an equivalent. If a subsys-
tem relies on MAS framework code that is not part of an established interface, then it
cannot be a stand-alone reusable component. Some MAS framework designs are
merely a collection of classes implementing functionality that could be organized into
cohesive subsystems; classes haphazardly share many references to one another. A
shallow Java package structure can indicate lack of modularization.

3.2 High Level Extensibility Mechanisms Unavailable

Most MAS frameworks provide an agent behavior extension mechanism, usually in
the form of an “engine.” Whether rule-based or object-based, the function of a behav-
ior engine is to provide built-in support for programming agent behavior. Engines
also typically provide a pseudo-concurrent mechanism enabling multi-tasked agent
behavior execution allowing behavior primitives to be scheduled and executed without
using true threads of execution.
Behavior engines make it possible to extend agent behavior but the programming
granularity is too low level to be the only means used to customize agents. Often
times, the behavior primitives do not encapsulate enough functionality to offer signifi-
cant reuse. Building from these code fragments is difficult because the number of
components used makes interface incompatibilities likely. Further, the main body of
code contained in a behavior primitive is usually reachable by a narrowly defined
interface of typically one or two methods whose generic signatures do not reflect the
processing that is performed. This programming infrastructure encourages code to be
scattered into the same method names of many classes. This effectively reduces ob-
jects to methods and disables object-oriented programming language features includ-
ing specialization unless proactive measures are taken to avoid such consequences.
Composite classes are often constructed from behavior primitives but unless a devel-
oper parameterizes them, the additional layer of abstraction gained is marginally use-
ful because component functionality remains as inflexible as its internals.
As was stated, behavior engines provide some support for composite behaviors and
this does help raise the programming abstraction level. While it is possible to imple-
ment a subsystem that is encapsulated within a composite or large primitive behavior,
this is not a desirable solution because: 1) the functionality provided by a subsystem is
more difficult to access. 2) The scheduling and process services provided by an oper-
ating system are not well utilized. 3) It is more likely that behavior execution time will
not be equitably distributed.
The current generation of behavior engines does not support preemptive scheduling.
They are implemented with the assumption that executing behaviors have partitioned
functionality into small units of work. Behaviors are expected to act like good citizens
and explicitly and expediently release the thread of control to allow other behaviors to
execute. It is difficult for a subsystem to conform to such requirements without man-
aging a pool of its own threads. Such a subsystem defeats the original purpose of
limiting the number of threads an agent uses by replacing them with behaviors to
avoid costly system resource consumption.

While instantiating a thread for each behavior is inefficient, it is also not a good idea
to completely circumvent the scheduling capabilities that operating systems provide.
The extended parts of agents constructed from current MAS frameworks often live
within a single thread. MAS frameworks should support an agent architecture that
balances the need to limit the number of threads with the desire to efficiently utilize
operating systems services and language features. The architecture proposed in a
paper to follow provides an infrastructure for composing an agent from subsystems.
Subsystems have their own thread of control and manage the execution of behavior
components within a single process.
Another problem with implementing a subsystem as a composite or one large primi-
tive behavior is that its functionality is difficult to access. The behavior programming
model is not geared toward allowing the other components of an agent to access active
behaviors through an API. Behaviors are often short-lived objects whose functionality
is accessed in response to state changes of various types, typically the reception of an
incoming ACL message. Functionality, as has already been stated, is contained in
nondescript methods whose signatures are dictated by the execution engine. The com-
ponents of an agent have no guarantee that a behavior is available and agent architec-
tures offer limited infrastructure to manage their availability. Some MAS frameworks
give agents the ability to obtain a list of executing behaviors, other frameworks re-
quire behaviors to be in a pre-defined state. But these facilities are far from providing
an easy way to coordinate behavior or gain access to the functionality they provide.

3.3 Uncoordinated or Unavailable Agent-Wide Resources

Many of the current MAS frameworks provide only the minimum amount of infra-
structure required to build a multi-agent society while simultaneously providing highly
specific, narrowly useful, but well-developed functionality of interest to the frame-
work developers. Mobile agent platforms like Aglets are an illustrative example of
how one capability is emphasized (mobility) while providing minimal support for the
other functionality (conversation management) needed by any agent actively involved
in a society. This places the burden of implementing rudimentary agent abilities on
the application developer and leads to redundant code across developers and poten-
tially across the components of an agent. For example, while some message routing
code is likely required for behavior components, an agent-wide message routing ser-
vice would reduce this overhead. If designed correctly, a MAS framework should
provide a core set of general-purpose agent-wide services that can be utilized by
framework extension subsystems or application-specific components. The average
MAS framework only minimally provides such an infrastructure and these services are
often not well organized. It is a worthwhile endeavor to analyze the capabilities of the
large pool of available agent frameworks to determine the subset of core capabilities
that a general-purpose framework should provide. Such a study would also reveal the
many ways that these frameworks can be tailored and help designers plan for exten-
sion and adaptation.

Zeus is a notable exception from the average MAS framework as it provides a com-
prehensive set of agent-wide services that can be utilized by application programmers.
A central data store, clock, event subsystem, unique id generator, and message router
are but a sample of the functionality it provides. Unfortunately, these services are
made available through an ad-hoc architecture that is highly coupled. Functionality is
not decomposed into subsystems and that makes the systematic high-level coordina-
tion of an agent’s internals impossible.

3.4 No Underlying Meta-model

(Incomplete at time of submission.)

If an agent is not modularized, then metal-models describing its functionality cannot
be usefully applied. This leaves the various parts of an agent isolated from each other
without any ability to reason about state or capabilities. This situation becomes
worse in the context of adding agent capabilities dynamically.

• Current movement toward decentralized systems, P2P as example
• Exploiting parallelism
• Zeus pseudo meta-model based on agent-wide event system
• SYSTEMS NOT DESIGNED FOR component plug-and-play
• “subsystems” lack

o A high level description
o Defined states representing general service attributes
o Application defined states
o Ability to reason

References

[1] Agent frameworks list, www.agentbuilder.com/AgentTools
[2] Mohammed Fayad, Douglas C. Schmidt, Ralph E. Johnson, Implementing Application

Frameworks, Wiley, 1999
[3] Steven P. Fonseca, Martin L. Griss, Reed Letsinger, Evaluation of the ZEUS MAS

Framework, Second International Workshop in Software Agents and Workflows for
Systems Interoperability, July, 2001

[4] Steven P. Fonseca, Martin L. Griss, Reed Letsinger, An Agent Mediated E-Commerce
Environment for the Mobile Shopper, Hewlett-Packard Laboratories, Technical Report,
HPL-2001-157

[5] Steven P. Fonseca, Martin L. Griss, Reed Letsinger, Agent Behavior Architectures, A
MAS Framework Comparison, Hewlett-Packard Labs, Technical Report, HPL-2001-
332, (short paper form at AAMAS 2002)

[6] Foundation for Intelligent Physical Agents. FIPA Communicative Act Specification,

PC00037E, 2000, www.fipa.org
[7] Nicholas R. Jennings, On Agent-Based Software Engineering, Artificial Intelligence,

March, 2000, vol. 117, no. 2, p. 277-96

