
 Automated SLA Monitoring for Web Services

Keywords: Web Services, SLA, Contracts, specification, measurement, monitoring, modeling, instrumentation

Abstract: Automating SLA monitoring involves minimizing human involvement in the over-all monitoring
process. SLA monitoring is difficult to automate as it would need precise and unambiguous specification and a
customizable engine that collects the right measurement, models the data and evaluates the SLA at certain times
or when certain events happen. Also most of the SLA neglect client side measurement or restrict SLAs to
measurements based only on server side. In a cross-enerprise scenario like web services it will be important to
obtain measurements at multiple sites and to guarantee SLAs on them. In this article we propose an automated
and distributed SLA monitoring engine.

1 Introduction
A web service can be described broadly as a service available via the Internet that conducts
transactions. E-businesses set up Web Services for clients and other Web Services to access.
They have a Uniform Resource Locator at which they can be accessed and have a set of
Interfaces that can be utilized to access them. Web services that are capable of intelligent
interaction would be able to discover and negotiate with each other, mediate on behalf of their
users and compose themselves into more complex services. This composition could be static
or dynamic. Emerging standards such as SOAP, UDDI, and WSDL1 are steps in this direction.
As these web services interact and delegate jobs to each other they would need to create and
manage Service Level Agreements amongst each other. Service Level Agreements (SLA)s are
signed between two parties for satisfying clients, managing expectations, regulating resources
and controlling costs. SLA management involves the procedure of signing SLAs thus creating
binding contracts, monitoring their compliance and taking control actions to enable compliance.

Web Services are being designed, so as to automate e-business on the web. Just as little human
intervention is desirable in day-to-day functioning of web services, the same is true for
monitoring of service level agreements on these web services. However, SLA monitoring is
difficult to automate as it would need a precise and unambiguous definition of the SLA as well
as a customizable engine that understands the specification, customizes instrumentation,
collects the necessary data, models it in a logical manner and evaluates the SLA at certain times
or when certain event happen.

1 SOAP: Simple Object Access Protocol (Microsoft, W3C); UDDI: Universal Discovery, Description, and Integration

(Consortia, includes HP); WSDL: Web Services Description Language (IBM, Microsoft, W3C)

 Akhil Sahai, Vijay Machiraju, Mehmet Sayal, Li Jie Jin, Fabio Casati
 HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94034

{firstname_lastname}@hpl.hp.com

 - 2 -

Also most of the SLAs are about measurement located at a particular location. There are
however two aspects that are specific to web services. The first one being the fact that the web
services are being designed so as to work over the internet. The internet is inherently unreliable
and even though its alright for document retrieval/dissemination it poses a problem when real
business has to be undertaken on it. It is necessary to ensure that the consumer perceives that
the provider is adhering to its promised service level agreements. In other words to provide
Quality of Experience to the consumer. Also a guarantee that is true at the server side may not
be true at the consumer side because of the unreliable nature of the Internet. So, often server
side measurements may not hold for client side. These reasons may necessitate client-side
measurement. The second aspect that is specific to web services is that they are inherently
multi-party in nature. A typical web service will use other web services to perform its task.
These web services will have service level agreements with each other. However, a consumer
orders to only one of the web service. The other web services work together to fulfill the
consumer’s order (as shown in Figure 1). An analogy on the Internet is that of an Internet
based Bookseller service using well known shipping companies to ship goods physically to
clients. As multiple parties are involved service level agreements may have to be guaranteed
over activities that span multiple web services (for example a guarantee that a client after she
orders the book online will receive a book at her home within 3 days). In such cases, unless the
measurements are obtained from multiple locations and aggregated, SLA monitoring cannot
be done. In this paper we propose an automated and distributed SLA monitoring engine that
enables the above functionality.

 Fig1: Multiple web services cooperating with each other to accomplish a task

The messages that web services exchange with each other in order to execute an end-to-end
business goal creates a logical network between these services. As these web services become
more and more prevalent, in addition to the job of measuring end-to-end metrics and
enforcing end-to-end objectives surrounding a business goal will require another set of
messages and protocols to be defined. We envisage management agents installed at an
enterprise site managing the relationships of one or more web services it offers with other
management agents responsible for the web services of other enetrprises. These management
agents are termed business management platform (BMP) agents in our case. For the purpose
of this article they will be shown to monitor SLAs between web services and to exchange
measurements and protocols for achieving the same.

 Provider

Consumer

 Shipper

 Supplier

SLA SLA

 SLA

Ho
un

2
A
bu
eit
on
ext
Th
com
aut
def

Fo
com
log
Or
La

 - 3 -

Fig2: BMP Agents at two ends exchange measurements and protocols for management

wever, before service level agreements can be specified for web services, it is necessary to
derstand what all comprises a typical infrastructure and what all can be guaranteed on them.

Web Service Infrastructure
web service infrastructure would comprise of large number of business processes. These
siness processes will usually comprise of set of activities. Each activity will be handled by
her humans (as is the case in work-flow management systems), automated systems (based
 legacy systems or state of the art application servers) or some times will be outsourced to
ernal e-businesses. In Figure 3 a simple example of a web service infrastructure is shown.
is particular business is set up by PCMaker.com that receives orders from

panies/humans interested in buying PCs. It has internal business processes like user
hentication, PC manufacturing, preparation of invoices etc. These business processes are
ined in terms of WSFL/XLANG.

r some of the PC order parts, it needs to contact it supplier and similarly uses a shipping
pany to ship the PCs it makes. The PCMaker.com web service has operations, namely

in, order_request, Send_invoice, and Send_shipment. It also has other operations, namely
der_parts and Ship_order. These descriptions are captured in Web Service Description
nguage (WSDL).

Web

Service

BMP
Agent

SDN
Agent

Web
Service

Measurements/protocols

Web Service Communication

Web
Service

Web

Service

BMP
Agent

SDN
Agent

Web
Service

Measurements/protocols

Web Service Communication

Web
Service

 - 4 -

 Fig3 A typical web service and business process infrastructure

Behind the logical business processes, web services and operation they support are software
that support the web service infrastructure, namely web sites, web server farms, applications
servers (Legacy software) and the business processes that are executed either on Process
Manager, MQSeries, Web Methods platforms or are plain physical business processes which
involve interaction between a disparate set of systems, humans and software.

3 Web Service SLA
Protocols like BTP and ebXML enable web service to web service interactions to be captured
through a set of well defined processes. These processes are distinct from the internal business
processes as mentioned above. Parts of these processes could be sub-processes defined by
standards such as say RosettaNet PIPs. This enables the fact that web services can undertake
business by executing an orchestration of business transactions amongst themselves. This
involves definition of a combined process between the two partners which in turn is bi-sected
according to the roles undertaken by the partners (namely customer, provider). Each party
executes the process belonging to their role. These processes involve a particular sequence of
invocation of each other’s operations through message exchanges between them. The
operation and message exchange interfaces are already captured in WSDL descriptions as
explained. These processes also interface with internal business processes that are defined in
process definition languages like WSFL or XLANG.

While, WSDL introduces concepts such as messages, operations, ports, and end points –
which are useful for describing the operations of any web service, WSFL introduces the notion

Login

Success/Failure

Order_Request

Order_Ack
Send_Invoice

Invoice_Accept

Shipment_sent

Shipment_Recvd

Process_Order

Authenticate_User

Search

Ship_Order

Prepare_Invoice

Order_PC_Parts

Assemble_PC

Ready_Shipment

Shipment_Done

Order_Parts

Get_Price_Quote

Price_Quote

Login

Success/Failure

Order_Request

Order_Ack
Send_Invoice

Invoice_Accept

Shipment_sent

Shipment_Recvd

Process_Order

Authenticate_User

Search

Ship_Order

Prepare_Invoice

Order_PC_Parts

Assemble_PC

Ready_Shipment

Shipment_Done

Order_Parts

Get_Price_Quote

Price_Quote

 - 5 -

of activities and process flows. So, one way to create a flexible SLA formalization is to build
upon these concepts. In other words, one can create a flexible SLA formalization by
associating “quality metrics” to the formalizations that are already defined in WSDL, WSFL or
BTP/ebXML. Here are some examples that show how such association can be done.

• Response time of a web service operation.
• Average response time between two set of messages
• Response time of a process flow.
• Average response time of a set of process flows of a particular type
• Security of an operation.
• Number of times an activity is executed in a flow.
• Cost of executing an operation.
• Availability of an end point.
• Recoverability of an end-point

The concept of service level agreements and guarantees is missing as yet in the world of web
services and business transactions. We introduce the concept of SLAs/contracts amongst web
services in this article. An SLA has a set of Service Level Objectives (SLOs) as specified.

A typical contract between a company manufacturing PCs (say PCMaker.com) and a company
buying PCs (PCBuyer.com) for a period of 6 months will be as follows:

SLO1: PCMaker’s e-procurement system will be available to Ford, Monday to Friday from 9AM-
5PM, 99.9 % of the time

SLO2: PCMaker shall deliver the ordered goods on an average within 10 days of the receipt of a
purchase order

SLO3: PCMaker shall invoice PCBuyer for any goods ordered within 6 hours

SLO4: Payment of goods by PCBuyer shall be done always within forty-five days of the receipt of
invoice from PCMaker.

Each SLO has a functional part (that refers to a system, endpoint, a process, or a set of
processes…) and a guarantee part (italicized) applied on the functional part. The guarantee is
on a system, a particular instance of a construct (process/operation/message..) or on a set of
such constructs. SLA monitoring involves monitoring whether these guarantees on the
functional parts are being met.

In order to automate SLA monitoring, we propose a specification language that enables
definition of precise and flexible SLAs, and is described in detail in section 3.1. Section 3.2
describes the instrumentation aspects that enables correlation of web service and business
process data. The Business Management Platform Agent (BMP Agent) that automates and
distributes the SLA monitoring process is described in section 3.3. In section 3.4, the
implementation details of the BMP Agent are described.

 - 6 -

3.1 SLA specification
The first enabler for automated SLA management is a flexible but precise formalization of
what an SLA is. The flexibility is needed since we neither completely understand nor can
anticipate all possible SLAs for all the different types of web service providers. This will also
help create a generic SLA management system for managing a range of different SLAs. The
precision is essential so that an SLA management system can unambiguously interpret,
monitor, enforce, and optimize SLAs.

Examples of the lack of flexibility and precision in existing SLA formalizations are discussed in
[1]. Detailed explanation of how we have addressed flexibility and precision in coming up with
SLA formalization are also presented in [1]. Below is a summary of the formalization. A point
to note is that the SLA specification is quite generic and is independent of the domain it is
applied to (in this case that of web services).

An SLA is specified over a set of data that is measurable. An SLA typically has a date
constraint (start date, end date, nextevaldate) and a set of Service Level Objectives (SLOs). An
SLO in turn has typically a day–time (Mo-We, 6:00PM-8:00 PM) constraint and a set of clauses
that make up the SLO. A clause is based on measured data. This is referred to as a measuredItem.
A measuredItem can contain one or more items. A measuredAt element determines where the
measurements are taken (provider, consumer side). A clause evaluation is triggered either
when an event happens, e.g. say a message arrives, an operation completes or at a fixed time,
say at 6PM. We call this an evalWhen component of an SLO. Once the evalWhen trigger
arrives, a set of samples of measuredItem are obtained applying a sampling function. The
evalOn component determines how this sample is computed. The sample set is a constrained
set of measured data that is constrained by the evalOn component. Examples of evalOn
components may be a number or a time period, e.g. the 5 longest running transactions, or all
the samples for last 24 hours. A function (evalFunc) is thereafter applied on the sample set so
obtained. An example of evalFunc would be average response time function < 5 ms. The
evalFunc2 must be a mathematical function that is expressible in terms of its inputs and logic.
The following grammar shows a portion of this formalization.

SLA = dateconstraint SLO*

Dateconstraint = startdate enddate nextevaldate

SLO = daytimeconstraint clause*

Daytimeconstraint = Day* time

Clause = measuredItem evalWhen evalOn evalFunc evalAction

MeasuredItem = Item*

Item = measuredAt constructType constructRef

2 The evalFunc could be expressed in MathML or SQL or any other functionally complete language

 - 7 -

As an example, a clause like At 6 PM the Average response time for the 5 longest running bookbuy
transactions measured on the client side should be < 5 ms can be broken up into a, measuredItem
(Item:bookbuy transaction, measuredAt:Consumer), evalWhen (at 6PM), evalOn function (set
of 5 longest running transactions), the evalFunc (average response time < 5 ms) and
evalAction (Notify administrator). The complete set of examples of how complex SLAs can be
represented in it are presented in [1].

3.2 Instrumentation
In order to ensure that guaranteed SLAs can be evaluated and their compliance measured, it is
necessary that raw measurement data be collected about the managed system. This managed
data is obtained through instrumentation of processes, activities that are executed, and
messages that go in and out of the e-business infrastructure.

3.2.1 Instrumenting the web service
It is necessary to interfere with message exchanges among web services in order to collect
information about the interactions with business partners. An acceptable solution should not
impose any modifications or limitations on existing web services. Since SOAP is rapidly
becoming the preferred standard for web service interactions, we assume SOAP messages are
used among web services in order to submit request and response messages. We have
implemented a small proxy component tries to capture incoming and outgoing messages, and
records data about the message exchanges, then forwards the captured messages to the actual
recipients. We have considered various alternatives for easily attaching a proxy component to
existing web services in order to listen to incoming and outgoing messages: port sniffing,
server-side filters (Microsoft’s ISAPI, or Netscape’s NSAPI), API provided by web services
themselves, and modification of SOAP toolkit. Since SOAP is widely accepted for message
exchange, port sniffing and server-side filters are not suitable, because the message contents
are encrypted by SOAP toolkit. Most web services do not provide an API for controlling or
querying about their activities due to security issues or simply because the web service
developers did not feel any need for such interfaces. Consequently, we have chosen to keep
track of message exchanges among web services by modifying SOAP toolkit.

The most popular implementations of SOAP toolkit share common components, called
routers. SOAP routers receive the messages from SOAP clients and submit them to the
receivers. SOAP toolkit encrypts the message at the sender site, and decrypts it only when it
reaches the receiver’s site. A proxy can be easily attached to SOAP toolkit routers with minor
modifications to the toolkit. This is the most appropriate way to automatically attach a proxy
in order to capture SOAP messages and collect information from those messages. It does not
require any modifications to existing web services, and does not require re-compilation of
existing SOAP toolkit installation. We used this approach for collecting data from SOAP
message exchanges among web services.

In order to correlate individual message exchanges with each other, we use the notion of
Global Flow (GF) as described within our assumptions above. The GUID is used for keeping
track of a GF. Every time our proxy component catches a message that is exchanged between

 - 8 -

web services, it first checks whether a GUID exists. If a GUID does not exist in the message,
the proxy inserts a GUID into SOAP header of the message. All web services and other
software components propagate the GUID in their communications. Consequently, our proxy
components that are attached to SOAP toolkits at business partner sites can easily figure out
which SOAP message is sent in the context of which previous messages.

3.2.2 Instrumentation of business process
Since activities of web services are automated by business processes at the back-end, it is
necessary to collect data from those software components in order to gather detailed
information about internal activities of a business, and correlate those internal activities with
external message exchanges. As we indicated among our assumptions, most business process
management systems log data about internal business process executions into a raw log file or
database. For example, HP Process Manager (HPPM) logs execution data into a raw file,
which is then uploaded into database tables by a dedicated process. A proxy component can
be configured in order to read logged data from proper database tables. This component can
also correlate the message exchanges with internal process executions using the GUID that is
passed through all web services and their back-end software components.

3.3 SLA Monitoring
As minimal human intervention is desirable in web services it is necessary to create monitoring
engine that can take care of a variety of specifications and monitor the necessary management
data. We believe that the SLA formalizations described above are precise enough to be able to
create or customize an SLA monitoring engine on the fly. To simplify the discussion, we will
describe the details of the engine as if it manages a single SLA between two services. Such an
engine has then two components – one on the service provider side and one on the service
consumer side. Extending our notion to a large number of SLAs requires that the engine keep
track of the state of multiple SLAs simultaneously, and be able to relate each measurement to
one or more affected SLAs. Extending our notion of two services to a large number of
interacting services requires the engine’s components to take the dual role of acting as both
“service providers” in some SLAs and as “service consumers” in some SLAs.

The instance data so collected has to be modeled in the high performance database and a data
warehouse so that service level agreements can be monitored on top of the modeled data. The
high performance database is updated for every transaction instance data that is received. The
data warehouse is updated at regular intervals of time for keeping the data for a longer period
of time.

3.3.1 SLM Engine
The SLM Process Controller executes the management processes for the SLM engine. These
management processes are distinct from the business processes that are internally executed in
the web services infrastructure as discussed in section 1. These management process flows are
created and managed for a variety of purpose. These flows are defined in WSFL and are
exposed to other BMP agents through WSDL specification of their own. These BMP agents
thus can initiate management related conversation with each other. The BMP agent process

 - 9 -

controller executes the SLA monitoring process flow for undertaking SLA evaluation and
reporting.

As the specification typically has startdate, enddate, daytimeconstraint, evalWhen, evalOn and
evalFunc components to it, each of these constitutes a generic component that can be used by
our SLA Management engine. In addition, we have also identified the most common variants
of these generic components, which can be readily parameterized by the engine for a large
number of possible combinations of SLAs. Using a new, evalWhen, evalOn, or evalFunc
component in an SLA requires an administrator to first develop such a component within the
framework of our engine and then to add it to the engine.
The model generator receives the WSDL/WSFL specifications and creates a model of the web
service in the model repository. All the measurements collected from the web service (e.g.,
ongoing conversations, performance measurements, etc) are attached to this model. The
instrumentation in the web service is responsible for collecting these measurements and
passing them on to the management handler to be stored in the model repository. If the
measurements are collected on the client side (as determined by the measuredAt components
of the items in SLA clauses), then the communicator is responsible for receiving the
measurements and storing them into the repository. SLM Engine process controller receives
the SLA executes a monitoring process flow (as shown in figure 8, and explained in next
section) and accordingly informs the SLA customizer which in turn customizes the alarms at
the Alarm Manager (depending on the evalWhen and dateconstraint components). The Alarm
Manager comprises of the SLO Validity Period Monitor, and triggers (time based and event
based). The SLA customizer also creates an SLO object in the SLA/contract repository and
registers it as the call back handler of the alarms. The SLO object maintains the state of the
SLO (valid, active, invalid). If a registered alarm for start-date of an SLO arrives the state of
the SLO is changed from init to valid. The SLO is invalidated when the end-date trigger
arrives. In between as the evalWhen alarms are triggered (because of a time or an event
happening) the SLO evaluator evaluates the SLO. The SLO evaluator obtains the required
management information (based on evalOn, daytime Constraint and the evalFunc constituent
of the specification) from the high performance database in memory. The SLO evaluator
determines compliance/violations. The SLA violation engine maintains the record for violations,
their timestamps, the levels of violation, and the clauses that are violated (both in memory and
in log files). The business cockpit can be used for looking and visual analysis of the current
SLAs, SLOs, their violation records. The violation records will also be used for triggering
contract assurance processes and actions as specified by evalAction constituent of the SLO.

Business CockpitVisualizationBMP Business CockpitVisualizationBMP
 - 10 -

 Fig4: The BMP Agent

3.3.1.1 Management Information Modeling

The model generator component receives the WSDL/WSFL specifications and creates a model
of the web service in the model repository. The instrumentation dictionary contains information
about the instrumentation and thereby the metrics that are available for various components of
the web service. It can then combine the service model with the metrics available at each of
the web service model component. This combined model is created in the repository.
Subsequently when the actual measured data are stored by the measurement handler, the
management data is stored according to the combined model.

All the measurements collected from the web service (e.g., ongoing interactions, performance
measurements, etc) are attached to this combined model. The instrumentation in the web
service is responsible for collecting these measurements and passing them on to the management
information handler to be stored in the model repository. If the measurements are collected on

templates

SLA
Customizer

SLO Vailidity
Period Monitor

Time
Trigger

Custom
Trigger BMP Agent

Process
Controller

Management
Protocol
Handler

Communicator

SLA/Contract
repository

Measured data

SLA

Instrumentation
manager

SLO
Evaluator

BMP
Agent
WSDL
WSFL

SLA
Violation

Engine

EventsModel
Generator

Aggregator

Database

Instrumentation
dictionary

Measurement
Handler

Information
daemon

SLA

Actual
Process and web

Service model

To customize and
obtain information

about instrumentation

templates

By snooping on web
service to web service

communication

SLM Engine

Obtain
results

Customize
meters

Data Base

warehouse

E-Business Infrastructure
Instrumentation

templates

SLA
Customizer

SLO Vailidity
Period Monitor

Time
Trigger

Custom
Trigger BMP Agent

Process
Controller

Management
Protocol
Handler

Communicator

SLA/Contract
repository

Measured data

SLA

Instrumentation
manager

SLO
Evaluator

BMP
Agent
WSDL
WSFL

SLA
Violation

Engine

EventsModel
Generator

Aggregator

Database

Instrumentation
dictionary

Measurement
Handler

Information
daemon

SLA

Actual
Process and web

Service model

To customize and
obtain information

about instrumentation

templates

By snooping on web
service to web service

communication

SLM Engine

Obtain
results

Customize
meters

Data Base

warehouse

E-Business Infrastructure
Instrumentation

 - 11 -

the client side (since the measuredAt component says so in an SLA), then the communicator is
responsible for receiving the measurements and storing them into the repository.

Business

Service
processFllow

Activity
i

Serviceprovider

endPoint

Operation

exposed as

Message

Link

1..*

1

12

1...*

0...*

2

1
0...*

1

1..*

1

1..*

globalflow

1

1..*
1..*

1

1..* pluglink

1

1..*

part

1
0...*

1..*

1

1

1..*

User
1...*1...*

1...*

1

0..*

0..*

0..*

0..*

implemented as

0...*

0...* 1

 Fig5: General Web service + Business Process Model

 - 12 -

Business An organization that executes business processes. The business marks the boundaries of an
administrator’s domain of responsibility . A business can put out one or more service providers. A
service provider controls its Business Process Flows.

 ProcessFlow A sequence of one or more workflow activities that achieve some intended purpose on behalf of
the business.

Activity Logical entities that form a workflow. Is realized by one or more applications and exposed as
one or more operations

Application Implements an activity.

Operation Exposed part of the activities in a WSDL description

Message

An Operation is made up of one or more messages

User A specific business, which invokes operations. A user could be a service provider too in a B2B
scenario.

Service provider

A service provider provides services and Business Process Flows.

Conversation Logical grouping of messages that can be done using context attribute

SLA

An agreement that web services decide upon

SLO Service Level Objectives that form part of the SLO, usually based on the constructs defined in
the model

In the managed object model used by the SLM engine, the basic web service and business
process constructs are viewed as derived from a base class. We term the base class as the
managed object. Every managed object has a set of attributes. An attribute is defined in the attribute
definition. The attribute definition comprises of the identifier, name, datatype, calculable, units of the
attribute. The identifier uniquely refers to an attribute definition while the name provides a
label for it. The permissible data types are namely,

Calculable determines whether an attribute conforming to the definition will be summable.
There are three different values possible for calculable, namely non-calculable, summable and

 - 13 -

non-summable. Non-calculable attributes are those that cannot be calculated (e.g. strings).
Summable attributes are those that can be summed over multiple instance values. Units is a
string that defines the specific units of the attribute (Bytes, ms..). New attributes can be
defined by creating new attribute definitions and attaching them to the managed objects. This
enables extensibility of the managed object model.

ManagedObject
id

context
status
userId

Business serviceProvider businessProcess
Flow activity operation message

 Fig 6: Hierarchy of managed object class and other web service constructs

The managed object has the base attributes of id, context, status, userId. All the other constructs,
like operations, activity, processFlow, globalFlow, .. etc extend managed object. All the
constructs thus have id, attribute, context, status, userId and other attributes that are specific to
them. The additional attributes that would need to be measured at the different web service
constructs (in addition to the base attributes) are shown in figure7.

The basic managed object model is extensible. At each of the constructs new attributes
conforming to the data types mentioned above can be defined through new attribute
definitions. This will allow for management systems that are capable of collecting additional
information about the constructs. Also derived attributes can be defined that manipulate the
base attributes.

In addition, metrics can be defined on top of the managed object model as defined in the
previous section. A management system may create a metric object for modeling a (set of)
managed object(s). The ITU-T model is quite applicable in our case of managed systems
modeled through web service and business process abstractions [6]. The ITU-T metric object
model for example provides for definition of mean monitor, moving average mean monitor.
Mean and variance monitor, mean and percentile, mean and min max monitor.

 - 14 -

Business

Service

lastDownTime
UpTime

processFllow

startTime
elapsedTime

lastModificationTime
currentActivity

currentOperation

Activity

startTime
elapsedTime

lastModificationTime

Serviceprovider

initTime
totalUpTime

totalDownTime

endPoint

initTime
lastDownTime

UpTime

Operation

startTime
elapsedTime

lastMesgRecvdTime
lastMesgSendTime

noOfMsgRecvd
noOfMsgSent

exposed as

Message

sendTime
recvTime

Link

timeStamp

1..*

1

12
1...*

0...*

2

1
0...*

1
1..*

1
1..*

globalflow

startTime
elapsedTime

lastModificationTime
currentOperation

1

1..*
1..*

1
1..* pluglink

timeStamp

1

1..*

part

1
0...*

1..* 1

1 1..*

User

lastMesgRecvdTime
lastMesgSendTime

noOfMsgRecvd
noOfMsgSent

1...*1...*

1...*

1

0..*

0..*

0..*

0..*

implemented as

0...*

0...*

 Figure 7: Managed Object model

The management data is thus collected and modeled in the databases in the SLM engines on
both sides. If all the measuredItems are local then the SLA can be evaluated on the local data.
However, if the measuredItems refer to attributes on web services on either side the data so
collected needs to be exchanged between the SLM engines.

 - 15 -

The data is continuously measured, modeled and stored in the database (and consequently in
the data warehouse at regular intervals of time) as shown in Figure 4. The BMP Agent Process
Controller receives the SLA specification either by snooping on the web service to web service
communication or directly through the business cockpit. Once the SLA is received the Service
Level Monitoring process flow is executed on both the provider-side and the customer-side.

3.3.1.2 Service Level Monitoring Process Flow

The process consists of the following steps:

(a) The process (SLM process) is initiated as soon as an SLA is received as input.
(b) Decide where the measurements are to be carried out. This is marked on every

measured item in the SLA using measuredAt.
(c) Decide where the evaluation of the SLA is to be done. The SLA evaluation is carried

out at the customer side, if the SLA has items that are all measured at the customer
side. Similarly, if all the measured items are measured at the provider side, the SLA
evaluation is carried out at the provider side. At the end of evaluation the SLM engines
exchange violation report through SLA Violation Report Exchange protocol.

(d) If however, some of the items are measured at the customer side, and some of them
are measured at the provider side, then the evaluation is carried out at the provider
side. This last case, however requires that the customer-side measurements are
transferred to the provider-side.

(e) If some of the measurements have to be transferred from customer side to provider
side, initiate measurement exchange protocol. The measurement exchange protocol takes
care of transferring measurements at the right frequency and right level of aggregation.
This is described in detail in the next section.

(f) If the engine is responsible for the SLA evaluation, it sends the SLA to its SLA
customizer that in turn creates the SLO, stores it in the SLA repository, customizes the
alarms in the Alarm Manager and registers the SLO object as the call back handler for
them. Once configured, the components of the SLA monitoring engine described
above automatically trigger the evaluation of the SLA.

3.3.1.2.1 Measurement Exchange Protocol

When the evaluation of an SLA depends on measurements from both the customer-side and
provider-side, a measurement protocol is needed for transferring the measurements from the
former to the latter. Such a protocol should be designed with the following objectives in mind:
(a) minimize the amount of data that is transmitted between the two sides, and (b) transfer the
data in time for the evaluation of SLA to take place when triggered.

To fulfill these two objectives, the SLA monitoring engines on both sides should agree on (a)
what measurements need to be transferred and at what level of aggregation, and (b) how
frequently they should be transferred. The type and level of aggregation of the measurements
depends on both evalFunc and measuredAt. To specify the level of aggregation, we use typical
sampling functions such as count (t), totaled, averaged, movingAvg(lastN), minN, maxN,
threshold. In the case when the sampling function cannot be determined from the evalFunc,
we ship all the measurements from the customer-side to the provider-side. The reporting
frequency depends on evalWhen.

The measurement protocol handles both the agreement on level of aggregation and frequency,
as well as the transfer of agreed measurements from customer-side to provider-side. There are
in essence 5 different types of messages that form the protocol.

� Init: sent by the consumer to the provider for clauses whose measurement data need
to be exchanged. The init message carries possible choices of sampling function,
interval, duration and reporting interval details that the consumer supports as shown
below.

� Request: The provider decides the exact measurement specification (sampling
function, sampling params and reporting params) that it chooses and specifies it in its
request message.

� Agreement: The consumer sends this message if it agrees to the request

� Start: message from provider to commence the reporting.

� Report: actual measurement report messages

� Close: message to terminate the reporting.
SLAId
SLOId
ItemId
Metric type
Metric Reference
Sampling function
Sampled At
Sampling duration
Report at
Report interval
Report StartingOn
Report EndingOn
 - 16 -

 - 17 -

Is any clause.
measuredItem.item

measuredAt =
this.URI?

Receiving the SLA

Yes

for those that cannot be
evaluated on this side, send
init request to the provider

web service (the other party
in SLA)

has a message
arrived?

Has the init
message
arrived?

terminate

Yes
Has the request

message arrived?

Yes
send a request

message

Has the
agreement
message
arrived?

Yes
Has start message

arrived?
send a start message

Yes

Has any
message
arrived?

Yes

process the report
message

wait for new
message

send reports

done with reporting?

yes

No

Yes

No

wait
time-
out?

No
Yes

clean-up the
data

No

wait

time-
out? Yes

No

No

wait

time-
out?Yes

No

No

wait

time-
out?Yes

No

No
Send a close

message

All reports
received?

time-
out?

SLA.provider =
this.URI?

No

Are all
SLA.SLO.clause.

measuredItem.item.
measuredAt
= this.URI?

Yes

No

Yes

Has close
message
arrived?

Yes

No
Has report
message
arrived?

time-
out?

No

Yes

Yes

Yes

clean-up
the data

No

Customize the
SLA customizer

on this
(consumer) side
for evaluation of
these clauses

No

No

Yes

sort clauses that
can be completely
evaluated at this
side (consumer

side)

sort clauses that
can be completely
evaluated at this
side (provider)

Customize the SLA
customizer on this
(provider) side for

evaluation of these
clauses locally

configure local
instrumentation, send an

agreement message

configure local
instrumentation

 Fig8: The measurement process at the two BMP Agents

 - 18 -

init

request

agreement

start

report
report
report

close

close

report

Fig9: The measurement exchange protocol for exchanging measurements collected between
the BMP Agents

3.3.2 Violation Engine
Once the SLOs are invoked by the Alarm Manager, the SLO evaluator evaluates the function
(evalFunc) of the SLO. The query that is created uses daytime constraint, evalOn and evalFunc
components of the SLA specification. The results of these evaluations are compared against
thresholds and the details of the evaluation are maintained as a Violation Record in the
violation engine. It is also appended to the log File. The violation records can be used for
controlling the web service and business process infrastructure for contract assurance purpose
and for visual analysis by business managers.

3.4 Implementation
A Business Management Platform Agent was implemented (in Java). The BMP uses Apache
SOAP toolkit to exchange messages with each other. They execute management processes on
HP Process Manager. A sample web services scenario as described earlier and shown in Figure
10 was implemented and the messages, business processes involved were instrumented. For
the web service scenario the actual business processes were also created on HPPM. HPPM
provides a Java API to control process executions by other software components. A proxy
component uses this Java API to feed in the GUID into HPPM process instances and retrieve
it when necessary. The web services also use Apache SOAP toolkit for exchanging messages
with each other. The SOAP toolkit was modified to collect the message correlation and
instrumentation data. The measured data was stored and modeled in mySql database and
Oracl9i data warehouse.

T

#
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1

ChipVendor.com Client
[ChipSupply] 4,8

ChipVendor.com Client
[ChipSupply] 4,8
 - 19 -

Fig10: The web services scenario that was implemented

he message exchanges in the current scenario:

 MSG_TYPE SENDER RECEIVER
 submitLoginmsg PCBuyer1 PCMaker
 ConfirmLoginmsg PCMaker PCBuyer1
 SubmitQuoteRequestmsg PCBuyer1 PCMaker
 RequestChipQuotemsg PCMaker ChipSupply
 SendChipQuotemsg ChipSupply PCMaker
 SendQuotemsg PCMaker PCBuyer1
 SubmitPORequestmsg PCBuyer1 PCMaker
 SendChipPOmsg PCMaker ChipSupply
 RespondChipPOmsg ChipSupply PCMaker
0 SendAssemblyPOmsg PCMaker Assembly
1 RespondAssemblyPOmsg Assembly PCMaker
2 SendPaymentPOmsg PCMaker Payment
3 RespondPaymentPOmsg Payment PCMaker
4 SendDeliveryPOmsg PCMaker Delivery
5 SendDeliveryNotificationmsg Delivery PCBuyer1
6 sendReceiptNotificationmsg PCBuyer1 Delivery

PCVendor.com

AssemblyDept.com

BestDelivery.com

PaymentAuthority.com

[Assembly]

[PCMaker]

[Payment]

1,3,7
5,9

10

11

12

13

2,6

14

[Delivery]

[PCBuyer1]

15

16

PCVendor.com

AssemblyDept.com

BestDelivery.com

PaymentAuthority.com

[Assembly]

[PCMaker]

[Payment]

1,3,7
5,9

10

11

12

13

2,6

14

[Delivery]

[PCBuyer1]

15

16

 - 20 -

The example scenario as discussed earlier was implemented. The implemented scenario has
two SLAs between PCMaker.com and its customers namely PCBuyer1.com, PCBuyer2.com.
The two SLAs were namely SLA1 and SLA2. Each SLA has a single Service Level Objective.
The first SLA is with PCBuyer1.com. It guarantees that between the dates of 0.2/15/02 and
07/15/02 all the invoice processes from 9-5 and on weekdays will be undertaken in 6 hours.
The evaluation will be done every day at 6 PM.

<sla>
<slaId>2</slaId>
<partnerName>PcBuyer1.com</partnerName>
<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
<slo>
<sloId>1</sloId>
<dayTimeConstraint>Mon-Fri: 9-17</dayTimeConstraint>
<measuredItem>
<item>
<constructType>process</constructType>
<constructRef>PcMaker.com/Invoice</constructRef>
<measuredAt>PcMaker.com</measuredAt>
</item>
</measuredItem>
<evalWhen>6PM</evalWhen>
<evalOn>all</evalOn>
<evalFunc name =”averageResponseTime” operatior =”LT” Threshold =”6” unit
=”hours”></evalFunc>
</slo>
</sla>

This SLA is signed between PCMaker.com and PCBuyer2.com. It guarantees that between the
dates of 0.2/15/02 and 07/15/02 all the PC Delivery processes from 9-5 and on weekdays will
be done on an average within 6 hours. The evaluation of the SLAs will be done every day at 6
PM.

<sla>
<slaId>1</slaId>
<partnerName>PCBuyer1.com</partnerName>
<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
<slo><sloId>1</sloId >
<dayTimeConstraint>Wed-Thu: 12-17</dayTimeConstraint>
<measuredItem>
<item>
<constructType>process</constructType>

 - 21 -

<constructRef>PCMaker.com/PCDelivery</constructRef>
<measuredAt>PCMaker.com</measuredAt>
</item>
</measuredItem>
<evalWhen>6PM</evalWhen>
<evalOn>all</evalOn>
<evalFunc name=”averageResponseTime”operator=”LT” threshold = ”6”
unit=”hours”></evalFunc>
</slo>
</sla>
Also in order to demonstrate an SLA based on measurements from two different sites we
created the following SLA based on two messages from two different end-points. This SLA is
between PCMaker.com and PCBuyer1.com, but is based on two measuredItems. The BMP
Agent at PCBuyer1.com sends the measurements to PCMaker.com for evaluation of the SLA
everyday just before 6 PM and keep sending the reports from startDate to endDate.

<sla>
<slaId>3</slaId>
<partnerName>PcBuyer1.com</partnerName>
<startDate>Fri Feb 15 00:00:00 PST 2002</startDate>
<endDate>Mon Jul 15 00:00:00 PDT 2002</endDate>
<slo>
<sloId>1</sloId>
<dayTimeConstraint>Mon-Fri: 9-17</dayTimeConstraint>
<measuredItem>
<item>
<constructType>message</constructType>
<constructRef>PcMaker.com/submitPORequestmsg</constructRef>
<measuredAt>PcMaker.com</measuredAt>
</item>
<item>
<constructType>message</constructType>
<constructRef>PcBuyer1.com/sendReceiptNotificationmsg</constructRef>
<measuredAt>PcBuyer1.com</measuredAt>
</item>
</measuredItem>
<evalWhen>6PM</evalWhen>
<evalOn>all</evalOn>
<evalFunc name =”averageResponseTime” operatior =”LT” Threshold =”2” unit
=”days”></evalFunc>
</slo>
</sla>

 - 22 -

The BMP Agent corresponding to PCMaker.com is loaded with the SLAs as mentioned
above. These SLAs are passed as input to the Bmp Agent Process controller that in turn
determine that these SLAs are all locally measured and are then passed to the SLA customizer.
The SLA customizer creates the SLO objects and customizes the Alarm Managers. The
evaluations are done as these alarms arrive. The snapshots of BMP Agent console are shown
in Figure 11,12.

Fig 11: The Console of the BMP Agent

 - 23 -

Figure 12: The Visual Analysis of the SLA Violation Logs

3.5 Related Work
One of the earlier important works that researched SLA management in a federated
environment is presented in [3]. The SLA management engine requires a service model that
determines the services offered in the domain as well as dependencies between the service
components. It also needs the measurements available from them at each level to be specified
in the model. A systems dictionary is required that specifies which plugins to use to gather
which information. As the contracts defined in contract definition language are mapped to
measurements from the systems dictionary and the process in not totally automated the
specification can lead to ambiguities. A contract is defined by a triple (P,M,A), where P is a set
of properties, A is the set of assertions and M is the set of methods available on the contract.
An assertion is an atomic group of statements agreed upon between the parties agreeing to the
contract. Statements in an assertion are made up of logical predicates whose values can be
uniquely determined. The logical predicates are composed using variables as well as logical
operators, quantifiers, set operations and constraints on these variables. An example assertion
may be response time < 25 ms. For automation, it is necessary that the assertions be
unambiguously specified. Also the web services will sign numerous SLAs with multiple parties
over time and the SLA management process should be automated as much as possible. An
assertion as mentioned above could lead to ambiguities. This could mean an instance response
time or average response time. Again if it is average response time that is being referred to, is it
averaged over every 5 minutes, an hour or 24 hours. It is also necessary to indicate when the
averages are calculated. Is it at 6PM everyday? Or at any time? Also SLAs based on
measurements from multiple sites have not been addressed in the work.

 - 24 -

Inter-domain communication has been handled in telecommunication networks [6][7].
However, unlike the Internet their networks are regulated and typically designed to offer a
single type of service. Also they have not looked at SLA management in a federated
environment.

Most published work refers to managing network services and end to end mapping of
network QoS [8][9]. However, they have not focused on protocols for sharing management
information, and have not provided mechanisms to guarantee SLAs through unambiguous
specification and auto-customization of federated SLA management engines and federated
protocols to enable compliance.

C3DS [10] project exploits distributed object technology to create a framework for complex
service provisioning. It uses MOM/Agent, Transactional workflow and Architecture
description Language technologies to provide control to administrators to dynamically
reconfigure agents and workflows deployed by it through a specification. Our approach is to
automate the process of federated management and does not need administrators to perform
SLA management. The C3DS approach has also not looked into SLA management problem.

Conclusion and future work
Service Level Agreements are difficult to specify in a clear and unambiguous manner. It is
equally difficult to automate the monitoring of these SLAs. In addition, most of the SLAs deal
with provider side guarantees and neglect client side measurements. In this article, we have
proposed an automated and distributed SLA monitoring engine that monitors an SLA
specified in our language.

There is often a sequencing involved among the SLOs of an SLA. Only if an SLO is fulfilled
can the next SLO be evaluated. A sequencing logic on top of the specification is easy to
describe. To execute the SLO sequencing an engine is required. This engine hands over the
SLOs to be executed to the monitoring engine, and may initiate actions that are part of the
functional part of the SLO on an execution engine. For example, an SLO 2 specifying a
delivery timeliness guarantee may depend on an SLO 1 specifying a payment process
timeliness guarantee. In this case the sequencing engine, evaluates SLO1 first, may initiate a
payment PIP (say as specified in RosettaNet specification) and pass the SLO1 to the
monitoring engine. The monitoring engine evaluates the timeliness guarantees and informs the
sequencing engine about the outcome, which in turn can move to SLO2 according to the
specification. In future we intend to create an over-all architecture for SLA life-cycle
management which will include the sequencing engine, execution engine and the SLA
monitoring engine. We also intend to undertake SLA conflict-detection and automatic
contract/SLA assurance.

 - 25 -

Acknowledgement
We would like to thank Aad van Moorsel for providing insights, ideas and help in developing
the ideas presented in the paper. We would also like to thank Ming Hao for helping us in visual
analysis of SLA and SLO logs through pixel bar charts.

References
1. Sahai A, Durante A, Machiraju V. Towards Automated SLA Management. HPL-2001-310

2. Jerome Daniel, Bruno Traverson, and Sylvie Vignes. A QoS Meta Model to Define a Generic Environment for QoS

Management. Third International IFIP/GI Working Conference, USM 2000. Munich, Germany, September 12-14, 2000.
In Proceedings Lecture Notes in Computer Science 1890 titled “Trends in Distributed Systems: Towards a Universal
Service Market”. Springer Verlag.

3. Bhoj P, Singhal S, Chutani S. SLA Management in a federated Environment. HPL-98-203.

4. Lewis D, Bjerring L. An inter-domain Virtual Private Network Management System. In the proceedings of NOMS 96

5. Lewis et al. Experiences in Integrated Multi-Domain Management. IFIP/IEEE International Conference on Management of

Multi-Media Networks and Services, Montreal, Canada, 1997.

6. Hall J (editor). Management of Telecommunication systems and Services: Modelling and Implementing TMN based Multi-

Domain Management, Lecture Notes in Computer Science 1116, Springer-Verlag, ISBN 3-540-61578-4, 1996

7. Telecommunication Management Network (TMN) at ITU-T. Formerly CCITT. http://www.itu.int

8. Aurrecoechea, C., Lazar, A.A. and Stadler, R., Open Network Services for Management, IEEE Conference on Open

Architectures and Network Programming, San Francisco, CA, April 3-4, 1998.

9. Huard, J.-F. and Lazar, A.A., On QOS Mapping in Multimedia Networks, 21th IEEE Annual International Computer

Software and Application Conference (COMPSAC '97), Aug. 13-15, 1997, Washington, D.C.

10. Shrivastava S. C3DS Platform for Service Provisioning. C3DS Technical Report number 44. , 20 pages, 2001

http://www.newcastle.research.ec.org/c3ds/trs/abstracts/44.html

11. Dirk Thiβen and Helmut Neukirchen. Internet Trading and Load Balancing for Efficient Management of Services in

Distributed Systems. Third International IFIP/GI Working Conference, USM 2000. Munich, Germany, September 12-14,
2000. In Proceedings Lecture Notes in Computer Science 1890 titled “Trends in Distributed Systems: Towards a
Universal Service Market”.

12. Long T P, Jong W B, Woon HJ. Management of service level agreements for multimedia Internet service using a utility

model. IEEE communications Managezine Vol 39, no.5, May 2001

13. Forbath T. Why and how of SLAs [service level agreements]. Business Communications Review, Vol 28. No. 2, Feb 1998

14. Chatterjee BS, Sydir M, Lawrence T. Taxonomy for QoS specifications. In the proceedings of WORDS’97, February, 1997

15. Lewis L, Ray P. Service Level Management: Definition, Architecture, and Research Challenges. In the proceedings of

IEEE GlobeCom’99.

16. Katcgabaw M, Lutfiyya H, and Bauer M. Driving Resource Management with Application-Level Quality of Service
Specifications. In the proceedings of ICE 98, USA.

17. Tierney B, Crowley B, Gunter D et al. A Monitoring Sensor Management System for Grid Environments. http://www-

didc.lbl.gov/papers/JAMM.HPDC00.pdf

18. Mesnasce D, Almeida V, Fonesca R, Mendes M. Resource Management Policies for E-Commerce Servers.

19. Campbell A, Aurrecoechea C., Hauw L .QoS review Architectures, Proceedings of the 4th International Workshop on

Quality of Service (IWQoS)

20. Wolter K, Van Moorsel A. The Relationship between Quality of Service and Business Metrics: Monitoring, Notification
and optimization – HPL-2001-96.

http://www.itu.int/
http://www.newcastle.research.ec.org/c3ds/trs/abstracts/44.html
http://www-didc.lbl.gov/papers/JAMM.HPDC00.pdf
http://www-didc.lbl.gov/papers/JAMM.HPDC00.pdf

 - 26 -

21. Langer M, Nerb M. Defining a Trouble Report Format for the Seamless Integration of Problem Management into
Customer Service Management HP OpenView University Association (HP-OVUA) Plenary worhsop, Bologna, Italy,
1999.

22. Hauck R, Reiser H. Monitoring of Service Level Agreements with Flexible and Extensible Agents. HP OpenView

University Association (HP-OVUA) Plenary worhsop, Bologna, Italy, 1999.

23. Fonesca M, Agoulmine N, Cherkaoui O. Active Networks as a flexible approach to deploy QoS Policy based Management.
HP OpenView University Association (HP-OVUA) worhsop, Berlin, 2001

24. Nakamura Y et al. ENMA: The WWW Server Performance Measurement System via Packet Monitoring. In the

proceedings of INET 99, San Jose, CA, USA, 1999.

25. Web Services Description Language (WSDL) http://www.w3.org/TR/wsdl

26. Web Services Flow Language (WSFL) . http://www.ibm.com/software/solutions/webservices/

27. Tele Management Forum SLA Management Handbook, GB917, public evaluation version 1.5 , June 2001.
http://www.tmfcentral.com/kc/repository/documents/GB917v1.5.pdf.

28. Samani M, Sloman M. Monitoring of Distributed Systems (A Survey). Imperial College Research Report DOC 92/93.

Sept, 1992.

http://www.w3.org/TR/wsdl
http://www.ibm.com/software/solutions/webservices/
http://www.tmfcentral.com/kc/repository/documents/GB917v1.5.pdf

	Introduction
	Web Service Infrastructure
	Web Service SLA
	SLA specification
	Instrumentation
	Instrumenting the web service
	Instrumentation of business process

	SLA Monitoring
	SLM Engine
	Management Information Modeling
	
	
	
	Business

	Service Level Monitoring Process Flow
	Measurement Exchange Protocol

	Violation Engine

	Implementation
	Related Work

	Conclusion and future work
	Acknowledgement
	References

