

A Data Model Based on Service and Process Abstractions
for Management of Systems

Akhil Sahai, Vijay Machiraju
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-190
July 9th , 2002*

E-mail: {asahai, vijaym} @hpl.hp.com

web services,
business
processes,
modeling,
monitoring,
managed
systems,
management,
WSDL

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

A Data Model Based on Service and Process Abstractions
for Management of Systems

Keywords: Web Services, Business Processes, modeling, monitoring, managed systems, management

1 Introduction
Management of systems requires measurement data to be collected from managed systems.
The measurement data thus collected has to be maintained in the form of a data model that
builds relationships between components of the managed system. For example, SNMP [1], a
protocol for direct management of systems through agents, defined a Management
Information Base (MIB). A MIB is a set of attributes for describing the properties of a
managed system. The approach is simple, as the name suggests: represent systems uniformly
irrespective of what is actually being managed. The simplicity of SNMP is also its limitation.
Often to manage systems, it is important to capture more complex information about the
system such as information about operations, sequencing of interactions, and composition
relationships between components. Common Information Model (CIM) [2], on the other
hand, presents an object-oriented data model that captures complex relationships between
managed components. However, the complexity of CIM is its drawback. Every managed
system (e.g., network, machine, and application) is modeled differently in CIM and considering
all the complex relationships that have to be established between these components, the model
becomes very complex. We believe that a data model based on service and process abstractions
enables us to model any managed system generically. Such a model lets us develop a
management system that is more powerful than one that is based on SNMP and simpler than
one that is based on CIM.

The notion of a service as a set of operations is not particularly new. But using this as a core
abstraction for automation and management of all systems is. Treating all systems as services
that deliver some utility to other services is the fundamental principle behind the service
abstraction. It lets us clearly model the outward-facing aspects of a system and is hence useful in
interconnecting heterogeneous systems as well as in managing systems to quality of experience
[3]. Web services are an embodiment of this abstraction for interconnecting applications on
the Internet [4]. Web services definition language (WSDL) [5] is a standard for defining web
services.

The service abstraction by itself is not enough to model the composition relationships and the
flow of interactions between services. Modeling these is essential for representing the internal

 Akhil Sahai, Vijay Machiraju
HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94034

{asahai,vijaym}@hpl.hp.com

 - 2 -

aspects of a service, which in turn is essential for automating service execution as well as for
realizing automatic analysis and drill-down capabilities in a management system. Business
processes [6] are a well-understood technology for representing the flow of work in an
enterprise. We use the notion of a process as a flow of activities in order to represent the internal
aspects of a service. Web services flow language (WSFL) [7] is a business-process-like standard
for representing the flow of interactions between web services.

We have developed a data model that uses these two abstractions – services and processes -
while building a web services management system. In the course we discovered that the same data
model could be used for modeling any complex system. In this paper, we present our generic
management data model. The data model we propose is extensible in the sense that it provides
a basic set of attributes and enables creation of new attributes. Powerful management systems
that are capable of computing metrics (mathematical functions on data collected), measuring
SLAs (metrics within bounds), and enforcing policies (actions coupled to SLAs) can be built
on top of this data model. The rest of this paper is organized as follows: Section 2 explains
service and process abstractions in detail and presents our management data model. Section 3
articulates the benefits of this model. In section 4, we present a few examples to show how
managed systems can be managed through this data model. The wide variety of systems being
managed demonstrates the generic nature of our model. Section 5 presents a management
system that we have built for computing metrics on the top of our data model. We summarize
our conclusions and point at directions for future research in section 6.

2 Modeling systems as services and processes
2.1 Services
Web services definition standards such as WSDL do a good job at identifying all the
abstractions of a service. We borrow the terminology from WSDL in presenting our service
data model. A service is a collection of end-points. The meaning of an end-point is similar to that
of an interface in object-oriented languages. It is a collection of operations (methods or
functions in object-oriented languages). An operation can be represented as one or two messages
that are exchanged between the service and the user of the service1.

Depending on the number of messages and their order, an operation can be request-response
operation (one message from user followed by one message from service), solicit-response (one
message from service followed by one message from user), notification (one message from
service to user), and one-way (one message from user to service). Request-response and solicit-
response operations can further be classified as synchronous (second message is “returned” in
response to the first) or asynchronous (second message is “sent” in response to the first).

1 The user of a service is another service.

 - 3 -

For example, Unix operating system (Figure 1) on a machine can be viewed as a service with
operations like getTaskPriority and setTaskPriority. Both these operations belong to an end-
point called Tasks. Other operations would be modeled in CPU, Memory, and Users end-
points. Similarly, a router can be modeled as a service that exposes a set of operations like
routePacket and getStatus. More examples of services and end-points can be found in section
4.

 Figure 1. Unix operating system modeled as a service

2.2 Processes
In order to build management systems that can understand cause-effect relationships of
problems in components (e.g., root-cause analysis), it is important to model the dependencies
between services. One simple way to do this is to represent composition relationships (or
“uses” relationships) between services. For example, a Travel web service uses a Payment web
service. This kind of model still does not capture the order or sequencing of interactions
between the composite service and the component services, which is required (see section 5)
for developing management systems that can do automatic analysis and inference.

The process abstraction captures such relationships between composite services. A process is a
flow of activities, where each activity is handled by executing an operation on a service. The
binding between an activity and a service operation can be established at process design time
(static composition) or at run-time through a policy or a mediator (dynamic composition). The
process itself is initiated by invoking an operation of a service. Thus, a process both
implements an operation as well as uses other operations.

This notion of a process is commonly used in enterprise workflow systems, where each activity
of a process is either handled by humans or is executed by a piece of software. We make the
notion of an activity more precise by connecting it to service operations. Viewed this way, a
process expresses how services (more specifically, operations) are composed of each other and
use each other. Sometimes, this process is publicized by a service provider to all the
participating services; in other cases it is not. In the former case, depending on how much of
the process is publicized, the term global flow [4] (only connectors between operations are
exposed, but not sequencing), global process (entire process is publicized), or conversation

 Unix OS
 on a machine

 - 4 -

model [11] (states of interaction between services are exposed) are used to describe the public
process or its variants.

Figure 2 shows a sample process that is executed when an operation called “getQuote” is
invoked on a service. Notice how the process determines the order of activities and the
service/operation that has to be invoked for fulfilling an activity.

Start split

Get quote for assembly quotes received?

Calculate total cost Done

Get quote for computer parts

Send quote to client

Calculate delivery cost

check validity

Notify inability to quote Failed

No

Yes

OK

not OK

 Figure 2. A process behind a getQuote operation.

While it is natural to capture process information at higher levels in the software stack (e.g.,
business processes and workflows at business and application level), it is quite uncommon to
do the same at lower levels in the software stack (e.g., the process invoked when a
getTaskPriority operation is called on an operating system). However, the process model is
implicitly coded in the implementation of such operations. We believe that the lack of an
explicit process model is the key reason for why it has been hard to bridge the gap between
management systems at various levels in the software stack. Management systems are still not
capable of automatically relating business and application related measures and events to those
at system and machine level. Having a commonly used process model throughout would help
solve this problem.

2.3 Management data model
Having described the two abstractions – services and process – we are now ready to present
our management data model. We show the data model as a UML diagram. Classes from the
UML diagram can readily be transformed into objects in an object-oriented repository or into
tables in a relational database. A particular implementation of this model that we used in
building a management system is described in section 4.

We distinguish between two sets of classes in the data model. One set is used to describe the
“types” of managed systems whereas the other is used to describe “instances” of managed
systems. Figure 3 shows the data model for the managed system types. Each of the classes in

 - 5 -

this data model is suffixed by the word “Type”. By instantiating classes in this figure, one
would create new types of managed systems. For example,

 Organizations or individuals create systems for achieving certain business objectives2. These
systems provide functionalities so as to be useful to the businesses. These useful systems
could be viewed as exposing a set of operations that they support. These operations in turn are
invoked by consumers of these systems. These systems also sometimes have internal processes
that are inter-linked with one or more exposed operations. These systems help in achieving
business end-goals. Managing such systems means managing the business, processes and
operations such systems expose.

The web service abstractions (namely, that of service provider, service, end point, operations,
messages as captured in WSDL) and business process abstractions (processFlow, activities,
links, globalFlow) are fairly general and can be mapped to any useful system. A management
model can be defined on the basic web service and business process abstractions that will
enable management of systems in a generic manner. This approach is similar to the SNMP
approach where a MIB is defined for managed systems. These MIBs define a set of attributes
on which get and set operations can be performed. However, these MIBs are often
handicapped by the amount of information they can possibly expose and because of the

2 These objectives could be driven by profit or non-profit requirements

Business An organization that executes business processes. The business marks the boundaries of an administrator’s domain
of responsibility. A business can put out one or more service providers. A service provider controls its Business
Process Flows.

Service provider

A service provider provides services and has its functionalities implemented as Business Process Flows.

Service A service comprises of multiple end points

EndPoint A collection of operations combined with a binding, protocol and address for access

 ProcessFlow A sequence of one or more workflow activities that achieve some intended purpose on behalf of the business.

Activity Logical entities that form a workflow. Is realized by one or more applications and exposed as one or more
operations

Link A link connects activities. These links could be data links or control links.

Operation Exposed part of the activities in a WSDL description. An activity could also be implemented as an operation.

Message

An Operation is made up of one or more messages

Part Part of the message. A message can have multiple parts.

User A specific business, which invokes operations. A user could be a service provider too in a B2B scenario.

globalFlow A set of service providers can link up their operations through plug links. The plug link links two operations from
different service providers

plugLink A plug link connects two different operations from two service providers. This helps implement conversation,
collaborative process models between web services.

 - 6 -

limited control functionality they offer.

Business

Service
processFllow

Activity
i

Serviceprovider

endPoint

Operation

exposed as

Message

Link

1..*

1

12

1...*

0...*

2

1
0...*

1

1..*

1

1..*

globalflow

1

1..*
1..*

1

1..* pluglink

1

1..*

part

1
0...*

1..*

1

1

1..*

User
1...*1...*

1...*

1

0..*

0..*

0..*

0..*

implemented as

0...*

0...* 1

 Fig 3: The basic WS+BP model

 - 7 -

3 Managed Object Model
The intent of the basic managed object model is to create a simplified measurement model for
managing systems based on web service and business process abstractions. In our model, the
basic web service and business process constructs can be viewed as derived from a base class.
We term the base class as the managed object. Every managed object has a set of attributes. An
attribute is defined in the attribute definition. The attribute definition comprises of the identifier,
name, datatype, calculable, units of the attribute. The identifier uniquely refers to an attribute
definition while the name provides a label for it. The permissible data types are namely,

Calculable determines whether an attribute conforming to the definition will be summable.
There are three different values possible for calculable, namely non-calculable, summable and
non-summable. Non-calculable attributes are those that cannot be calculated (e.g. strings).
Summable attributes are those that can be summed over multiple instance values. Units is a
string that defines the specific units of the attribute (Bytes, ms..). New attributes can be
defined by creating new attribute definitions and attaching them to the managed objects. This
enables extensibility of the managed object model.

ManagedObject
id

context
status
userId

Business serviceProvider businessProcess
Flow activity operation message

Figure 4: Hierarchy of managed object class and other web service constructs

 - 8 -

The managed object has the base attributes of id, context, status, userId. All the other constructs,
like operations, activity, processFlow, globalFlow, .. etc extend managed object. All the
constructs thus have id, attribute, context, status, userId and other attributes that are specific to
them. The additional attributes that would need to be measured at the different web service
constructs (in addition to the base attributes) are shown in figure4.

4 Extensibility of the Managed Object Model
The basic managed object model is extensible. At each of the constructs new attributes
conforming to the data types mentioned above can be defined through new attribute
definitions. This will allow for management systems that are capable of collecting additional
information about the constructs. Also derived attributes can be defined that manipulate the
base attributes.

In addition, metrics can be defined on top of the managed object model as defined in the
previous section. A management system may create a metric object for modeling a (set of)
managed object(s). The ITU-T model is quite applicable in our case of managed systems
modeled through web service and business process abstractions [6]. The ITU-T metric object
model for example provides for definition of mean monitor, moving average mean monitor.
Mean and variance monitor, mean and percentile, mean and min max monitor.

In order to understand the applicability of the managed object model in various scenarios lets
consider certain examples.

 - 9 -

Business

Service

lastDownTime
UpTime

processFllow

startTime
elapsedTime

lastModificationTime
currentActivity

currentOperation

Activity

startTime
elapsedTime

lastModificationTime

Serviceprovider

initTime
totalUpTime

totalDownTime

endPoint

initTime
lastDownTime

UpTime

Operation

startTime
elapsedTime

lastMesgRecvdTime
lastMesgSendTime

noOfMsgRecvd
noOfMsgSent

exposed as

Message

sendTime
recvTime

Link

timeStamp

1..*

1

12
1...*

0...*

2

1
0...*

1
1..*

1
1..*

globalflow

startTime
elapsedTime

lastModificationTime
currentOperation

1

1..*
1..*

1
1..* pluglink

timeStamp

1

1..*

part

1
0...*

1..* 1

1 1..*

User

lastMesgRecvdTime
lastMesgSendTime

noOfMsgRecvd
noOfMsgSent

1...*1...*

1...*

1

0..*

0..*

0..*

0..*

implemented as

0...*

0...*

 Figure 5: Managed Object model

5 Examples
5.1 Example1
The following shows a flow between a service provider (stationary.com) and the customer
(officeSupplies.com). We are interested in creating a management system for Stationary.com so
we will model stationary.com in terms of our general WS+BP model in Figure 7.

Return

Estimate

Process

 Solicit
Estimate

OfficeSupplies.com Stationery.com

o

o

endPoint: officeSuppliesSellerEP endpoint: officeSuppliesPurchaserEP

op: requestEstimate
 msg:requestEstimateOutput: allItems
 msg:requestEstimateInput:
 totalEstimate

Figure 6: Flow between Service Provider and Customer

We can create a managed object model for stationary.com, which will have t
for the managed objects as shown in Figure 7.

Assuming that Stationery.com has established a Service Level
OfficeSupplies.com based on the WSDL and WSFL defined by these two se
of this SLA 1 is on four key performance agreements:

Send
Order Order

Get

Shipment
Details Ship

Order

p: placeOrder
msg:placeOrderOutput: totalEstimate

p: receiveShipmentConfirmation
msg:shipmentConfirmationMsg:
 confirmation

 Se
Inve
op: processEstimate
 msg:processEstimateInput: allItems
 msg:processEstimateOutput:
 totalEstimate
- 10 -

he basic attributes

Agreement with
rvices. The focus

op: processOrder
 msg:processOrderInput:
 totalEstimate
 msg:processOrderInputAck

op: sendShipmentConfirmation
 msg:shipmentConfirmationMsg:
 confirmation

arch
ntory

 - 11 -

1. Stationery.com will guarantee an average response time to estimate requests less
than 5 minutes.

2. Stationery.com will provide 100% availability to all “estimate” requests, Monday
through Friday.

3. Stationery.com will provide 90% availability to all “process order” requests,
Monday through Friday.

4. Stationery.com will process and ship orders in less than 24 hours of receiving the
“process order” request.

Business
Acme Corp

Service

StationarySellerService

BusinessProcessFllow
StationarySellerProcessFlow

Activity
createEstimate

Serviceprovider

Stationary.com

endPoint
officeSupplierSellerEP

Operation
processEstimate

Message

processEstimateInput

Operation
processOrder Operation

sendShipConf

Message

processEstimateOutput

Message

processOrderInput

Message

shipConfirmMessage

Activity
processOrder

Activity
sendShipment

Message

processOrderInputAck

Activity
searchInventory

 Figure 7: WS+BP Model for Stationary.com

In order to enable Stationary.com to manage its infrastructure and detect violations of any
clauses, Stationary.com management system has to guarantee the following

SLO 1 : For all “estimate” requests the average of response time (the time elapsed between
receiveTime of processEstimateInput and sendTime of processEstimateOutput) should be
less than 5 minutes. This will mean creation of a mean metric monitor on the derived gauge
attribute (difference of gauges namely receiveTime of processEstimateInput and sendTime of
processEstimateOutput)

 - 12 -

SLO 2: All the processEstimateInput must be responded to with processEstimateOutput
requests Monday to Friday. This will mean scanning no of processEstimateInput messages
sent and no of processOutputMessages received. These are basic attributes. They can be
matched against each other to determine whether responses were sent to every request or not.

SLO 3: This example is similar to SLO2. This SLO is ensured by monitoring that for all
processOrderInput messages received at least 90% of them must be replied to with
processOrderInputAck messages.

SLO 4: This SLO is ensured by making sure that for all instances the time elapsed between
receiveTime of processOrderInput message and sendTime of sendConfirmShip message
should be less than 24 hours.

Let us consider some internal SLAs. Stationary.com also has an internal activity that of
searching inventory. It has no corresponding operation (see Figure 7). This particular activity
locates the product stocks in the inventory and then ships it. The management system for
stationary.com also needs to monitor the activity “search inventory” so as to guarantee the
following internal SLA

1. Stationery.com will search Inventory in not more than 6 hours

For monitoring the internal SLO, however it needs to do the following

SLO 1: The time elapsed between startTime and endTime of activity search Inventory should
not be ever more than 10 seconds

5.2 Example 2

The managed object model can be used to capture system and resource management processes
involved. Assume the organization ACME has about 10,000 Unix machines, 15,000 NT based
machines, 500 Linux Machines, connected by an enterprise network comprised of large
number of routers, hubs, repeaters that form backbone of the network connecting these
machines (Figure 7). There are also processes that are executed at regular intervals of time. The
processes are versioning processes that update the software on each of these machines, do a
regular weekly backup of data on these machines into a back-end storage area network, other
administrative processes. There are also processes for outdating certain machines at regular
intervals of time and replacing them with new ones either on request or as a part of policy.

The machines (NT, Unix, Linux based), the network hardware (repeaters, hubs, routers) can
be all visualized as services that have well defined operations. Desktop machines can be
modeled as services that have operations (namely, getCurrentUsers, getAdmin, setAdmin,
getCPUUsage, getMemUsage…) with attributes like (topProcesses, users, administrator,

 - 13 -

OSType, IPAddress, sysUpTime, , sysDescr, purchaseDate, ….) defined on top of them.
Similarly network hardware can be visualized as services with attributes(like sysUpTime,
ifPhysicalAddress, ifAdminStatus, ifOperStatus, ifInOctets, IfInUcastPkts, ..) and get and set
operations for these attributes (getsysUptime, getifPhysAddress…).

The processes can be again modeled in terms of business processes with activities for software
version update, for syncing up a storage area network with the data stored on these machines,
or even a process based on a policy that involves changing machines at regular intervals of
time (by basing decision on purchaseDate attributes of a machine).

 Figure 8: Enterprise network of ACME corp

5.3 Example 3

In this example we will look at the Internet infrastructure of Acme. The internet infrastructure
will comprise of web server farm, a set of application servers (in this case J2EE based), and a
storage area network (Figure 9). Clients connect through the web server farm to certain EJBs
on one or more of the J2EE Application Server.

Linux
Machine

Unix
Machine Unix

Machine

Linux
Machine

NT
Machine

NT
Machine

NT
Machine

Router

 - 14 -

Listener
Framework

Standby
Firewall Standby Firewall

BizQoS
Mgmt
Layer

SAN with
database

Personalization/
Proxy
Engine

Client Request

 Firewall Firewall

Proxy
LBPersonal

Profile

J2EE App
Server

J2EE App
Server

J2EE App
Server

State
Server

Web server

Load
Balancer

(LB)

Web server

Load
Balancer

(LB)

Web server

Load
Balancer

(LB)

 Figure 9: Internet infrastructure of ACME corp.

Our managed object model can be used to model the internet infrastructure. The web servers
can be each modeled as a service with attributes (no of connections, lastDownTime, UpTime,
administrator, averageSizeOfPayload, ..) and operations to get and set them. The application
servers can be modeled again as services with attributes (noOfEJBsActive,
noOfServicesHosted, J2EEVersion…) and operations like getAllHostedServices,
getNumberOfbeansForService, getActiveBeans, getStatusOfBean….The SAN again can be
modeled as a service with attributes and operations.

Certain processes are also involved in the Internet infrastructure. These involve the load
balancing process for routing transactions, adding or removing additional application servers
and web servers depending on the load, failover to standby databases in case of failure in the
SAN. All these processes can be modeled as business processes with corresponding activities.

6 Related Work
SNMP [1], though meant for direct management of systems through SNMP agents, did that by
defining standard interfaces in terms of Management Information Base (MIB) for
management of varied systems, ranging from network router, repeaters to machines. The
approach is simple, as the name suggests represent resources uniformly irrespective of what
actually is being managed. The simplicity of SNMP also is its limitation. Often to manage
systems, it is important to capture more complex information about the system like the
sequence of operations that are performed. It is important thus to capture the process aspects

 - 15 -

of the model which SNMP fails to do. Also SNMP MIB(s) are typically focused on the
Network Element Layer and are not used for provisioning and configuration, nor is SNMP
implemented in all problem domains (that is due to the fact that expressing complex
relationships requires a complex object-oriented model rather than a simple list of name-value
pairs).

CIM [4] is a fairly complex object-oriented model that is used for modeling managed systems.
The object hierarchy is rooted by managed element. The CIM Core Schema abstractions are:
ManagedElement, Collection, Setting, StatisticalInformation, PhysicalElement,
LogicalElement, LogicalDevice, System, Service, and ServiceAccessPoint. Collection is used
for grouping instance data into category bags. Statistical Information class is used for modeling
statistical information on the ManagedElement. It is also desirable to have a clean separation
between describing the physical world and the logical world. PhysicalElement is the parent of
the class hierarchy that describes the physical world (things that adhere to the laws of physics
that can be seen or touched). Logical Element is where most of the management occurs. The
sub-classes of LogicalElement are LogicalDevice, System, Service, ServiceAccessPoint.
CIM takes a bottom-up approach trying to model every managed element as a class in the
model. Though there are some core abstractions (as described above) in CIM code model, the
real way that management systems are built are around CIM’s extension models, which vary
depending on the managed system (for e.g., CIM has different extension models for network,
system, applications, etc). This once again makes building management systems quite complex.
Another drawback of CIM is that it does not capture the abstraction of process, which is
essential for performing complex management tasks.

Conclusion

The intent of this article is to present a simple model for management of systems. This model
is based on the service and process abstractions. By creating a managed object model and a
metric object model, these managed systems can be monitored and controlled based on the
information collected. The simple model enables virtualization of managed systems and will
enable creation of generic management systems based on this model.

Acknowledgements
We would like to thank Aad van Moorsel for his help and insights in developing the ideas
presented here. We would also like to thank Mehmet Sayal for his inputs.

 - 16 -

References
1. Simple Object Access Protocol (SOAP) . http://www.w3.org/TR/SOAP

2. Universal Description Discovery Integration UDDI . http://www.uddi.org

3. Web Services Description Language (WSDL) Specification http://www.w3c.org/TR/wsdl

4. Web Services Flow Language (WSFL) specification. http://www.ibm.com/webservices/

5. Simple Network Management Protocol (SNMP). http://www.snmp.com

6. Recommendation X.721 at ITU-T http://www.itu.int/

7. Application Response Measurement (ARM) http://www.opengroup.org/management/arm.htm

8. Common Information Model (CIM) specification at DMTF http://www.dmtf.org/education/whitepapers.php

9. Java Management Extensions (JMX) http://java.sun.com/products/JavaManagement/

10. XLANG at Microsoft http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

11. Web Service Conversation Language (WSCL) http://www.w3.org/TR/wscl10/

http://www.w3.org/TR/SOAP
http://www.uddi.org/
http://www.w3c.org/TR/wsdl
http://www.ibm.com/webservices/
http://www.snmp.com/
http://www.itu.int/
http://www.opengroup.org/management/arm.htm
http://www.dmtf.org/education/whitepapers.php
http://java.sun.com/products/JavaManagement/
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.w3.org/TR/wscl10/

	Introduction
	Modeling systems as services and processes
	Services
	Processes
	Management data model
	
	
	
	
	
	Business

	Managed Object Model
	Extensibility of the Managed Object Model
	Examples
	Example1
	
	Stationery.com will guarantee an average response time to estimate requests less than 5 minutes.
	Stationery.com will provide 100% availability to all “estimate” requests, Monday through Friday.
	Stationery.com will provide 90% availability to all “process order” requests, Monday through Friday.
	Stationery.com will process and ship orders in less than 24 hours of receiving the “process order” request.

	Example 2
	Example 3

	Related Work
	Acknowledgements
	References

