
                                                                       
Semantic Analysis of E-Business Operations 
 
Mehmet Sayal, Akhil Sahai, Vijay Machiraju, Fabio Casati 
Software Technology Laboratory  
HP Laboratories Palo Alto 
HPL-2002-176 
June 18th , 2002* 
 
E-mail: [mehmet_sayal, akhil_sahai, vijay_machiraju, fabio_casati@hp.com] 
 
 
web services, 
business 
process, 
workflows, 
e-business 
management, 
analysis 
 

An e-business infrastructure is comprised of a large number of 
business processes that are exposed through web services. To 
manage such an infrastructure, it is necessary for business managers 
to be able to observe their e-business operations in greater detail. In 
particular, a framework and a tool is required that allows business 
users to define qualitative and quantitative metrics, depending on 
their own (business or IT) goals. Once metrics have been defined, 
the tools should be able to measure them and support users in 
semantic analysis of the results, allowing them to quickly identify 
quality degradations as well as their causes. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2002 



Semantic Analysis of E-Business Operations 

Mehmet Sayal, Akhil Sahai, Vijay Machiraju, Fabio Casati 

HP Laboratories 

1501 Page Mill Road 

Palo Alto, CA 94304 

[mehmet_sayal, akhil_sahai, vijay_machiraju, fabio_casati @hp.com]�

�

Abstract. An e-business infrastructure is comprised of a large number of business processes that are 

exposed through web services. To manage such an infrastructure, it is necessary for business managers to 

be able to observe their e-business operations in greater detail. In particular, a framework and a tool is 

required that allows business users to define qualitative and quantitative metrics, depending on their own 

(business or IT) goals. Once metrics have been defined, the tool should be able to measure them and 

support users in semantic analysis of the results, allowing them to quickly identify quality degradations as 

well as their causes.  

Keywords: business processes, web services, analysis, management. 

�� ,QWURGXFWLRQ�

An e-business infrastructure would comprise of large number of business processes [1]. Steps in a business 

process are handled by either humans (as is the case in work-flow management systems [2]), automated 

systems, or some times will be outsourced to external e-businesses. As the intention of an e-business is to 

undertake business on the web, they will also need mechanisms that enable customers to access their 

services through the Internet. Web services [3] are becoming a well-accepted way of putting e-businesses 

on the web so as to enable users (either humans or other web services) to use them. Web service refers to a 

service delivered using standard web technology, such as HTTP (Hypertext transfer protocol), XML 

(Extensible markup language) [4], and SOAP (Simple object access protocol) [5]. According to many 



market research firms [6, 7], it is likely that, before the year 2005, many of the companies’ offerings will be 

available as web services, and that large corporations will deploy tens or hundreds of web services. These 

web services have to be interfaced with the internal business processes to receive, fulfill and deliver orders. 

A complex infrastructure is usually a reality in an e-business. In order to manage the e-business 

infrastructure it is necessary to have frameworks and tools that allow business managers/analysts/users to 

define, compute, and analyze business and IT metrics.  

In this paper, we present a platform called Business Cockpit (BC) that assists users in managing their 

processes and services. In particular, the cockpit supports users in defining, computing, and analyzing 

business and IT metrics on e-business data, in order to assess the quality of their operations, understand 

problems, and identify their root causes.  

The business cockpit operates by tracking and logging message exchanges as well as the execution of 

internal business operations, by extracting logged data and transferring them into a data warehouse, and by 

then adding a semantic layer that enables the specification of user-defined, qualitative metrics on top of the 

detailed, low-level data extracted by the e-business infrastructure. For example, using the cockpit, users can 

define a metric quote outcome with values of quote delivered on time, quote delivered late, or quote not 

delivered, and define how it can be computed based on the available data. Once computed, measures can be 

analyzed under different perspectives and aggregated at different levels of abstraction. 

One of our goals in designing the cockpit is its simplicity. In fact, users can deploy the cockpit (including 

the instrumentation, the data warehouse, and the semantic mapping layer) as well as define and analyze 

business metrics without writing code. This is in general a desirable feature that becomes a fundamental 

requirement when users are at the business level. Another important aspect of the solution is that users can 

look at heterogeneous collections of objects (e.g., different business processes or web services) in a 

homogeneous way, i.e., using a reduced set of metrics that can be used to analyze most or all of them. To 

achieve this goal, the cockpit separates the definition of the metric from its computation logic, depending 

on the specific object being measured. This independence enables the specification of different ways to 

compute the same metric for different objects. For example, the outcome of a supply chain process can be 

considered successful if the process ends its execution in a purchased state, while a driving direction 

service is successful if the directions are delivered within 3 seconds. In this way, analysts can assess at a 



glance the behavior of their services, regardless of their type (e.g., they can see which services are 

successful or unsuccessful), easily identify the problematic ones, and then drill down to understand the 

source of the problem.  

In the following, we first present a scenario that motivates our work and provide an example that will be 

used throughout the paper to demonstrate our solution. Then, we dive into the details of the cockpit, by 

presenting its three main components: the instrumentation, the data warehouse, and the semantic mapping 

layer. Finally, we show how the cockpit can be used to quickly and easily analyze e-business operations. 

�� (�EXVLQHVV�,QIUDVWUXFWXUH�

An e-business infrastructure will comprise of set of business processes that are exposed through web 

services to other e-businesses. This will necessitate definition of web services that interact with other web 

services. Analyzing e-business operations will necessitate analysis of business process and web service 

data.  

We will use the following scenario for explaining our motivation, problems that we want to attack, and our 

solution. We assume that business partners provide web services in order to enable dynamic interactions 

with each other. Individual web services are implemented as business processes that are managed by 

workflow management systems. Figure 1 summarizes overall layout of our example scenario. The names of 

web services provided by participating businesses are shown in brackets. 

The scenario includes the following participants: 

− Clients: PCBuyer1 and PCBuyer2 are two example clients that purchase PCs from a vendor 

(PCMaker). We assume that some clients, such as PCBuyer1, are capable of using the web service 

provided by their vendors in order to submit their purchase orders; whereas, some other clients, such as 

PCBuyer2, prefer to submit their orders through fax or phone calls. 

− Providers: PCMaker Sales Department provides the web service “PCSupply” in order to allow its 

clients to interact with itself electronically. This department also acts as client and uses web services of 

various service providers and product suppliers in order to satisfy its own clients’ orders. In our 

scenario, PartSupplier, DeliveryProvider, and PaymentProvider are three external service providers, 

and PCMaker Assembly Department is an internal service provider. There may be many more 



providers, customers, and internal departments involved in such a scenario, but we list only few for 

simplicity. 

                                                                              Figure 1: PC Purchase scenario 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Business processes and web services in PCMaker 

The PCMaker.com e-business is shown in Figure 2. This infrastructure is set up by PCMaker.com that 

receives orders from companies/humans interested in buying PCs. It has internal business processes like 

user authentication, PC manufacturing, preparation of invoices etc. For some of the PC order parts, it needs 

PCMaker
Sales Dept

PartSupplier

PCMaker
Assembly Dept.

Delivery
Provider

PCBuyer2

PCBuyer1

PaymentProvider

[ChipSupply]

[Assembly]

[PCSupply]

[PaymentService]

[Delivery]

Login

Success/ Failure

Order_Request

Order_Ack
Send_Invoice

Invoice_Accept

Shipment_sent

Shipment_Recvd

Process_Order

Authenticate_User

Search 

Ship_Order

Prepare_Invoice

Order_PC_Parts

Assemble_PC

Ready_Shipment 

Shipment_Done 

Order_Parts

Get_Price_Quote

Price_Quote

Login

Success/ Failure

Order_Request

Order_Ack
Send_Invoice

Invoice_Accept

Shipment_sent

Shipment_Recvd

Process_Order

Authenticate_User

Search 

Ship_Order

Prepare_Invoice

Order_PC_Parts

Assemble_PC

Ready_Shipment 

Shipment_Done 

Order_Parts

Get_Price_Quote

Price_Quote



to contact its supplier and similarly uses a shipping company to ship the PCs it makes. In order to do 

business on the web it needs to have a web service, that enables other users to access its e-business. The 

PCMaker.com web service has a web service that has operations, namely Login, Price_quote, 

Order_request, Send_invoice, and Send_shipment. It also has other operations, namely Order_parts and 

Ship_order.  

Figure 3 shows the definition of a sample business process that runs at the back-end of Price_quote 

operation. The process is initiated when a Get_PriceQuote (PQ) request is received from a client. The 

process proceeds in three parallel branches to collect quote information from three business partners, then 

calculates the total cost, and finally sends the total cost to the client. Similarly, there could be many other 

business processes implemented to handle client requests at the back-end of a web service. 

Start split

Get quote for assembly quotes received?

Calculate total cost Done

Get quote for computer parts

Send quote to client

Calculate delivery cost

check validity

Notify inability to quote Failed

No

Yes

OK

not OK

 

Figure 3: Business process that handles price quote requests 

Behind all the logical business processes, web services and operation as described above, the e-business 

infrastructure needs hardware, software and humans that support the web service infrastructure. For 

example, it would require web sites, web server farms, applications servers and business processes 

execution platforms (e.g., Process Manager, MQSeries, Web Methods).  

From a business manager’s point of view, it is important to have overall information about the activities of 

a business and its interactions with business partners. For example, a manager at the Sales Department of a 

PC manufacturing company might want to know what percentage of the Purchase Orders (PO) with a 

particular client are satisfied within a reasonable amount of time. Such information may be critical for the 

manager in evaluating the success of the business. The manager may also want to see other summary 

information, such as total purchases made by a particular client, overall value of products sold by the 

business in the current month, or what percentage of clients that sent a Price Quote request also sent a 



Purchase Order within a week following the quote request. Moreover, the manager might like to define 

taxonomies over the data based on user-defined criteria and view the data using his own definitions. For 

example, the manager might want to categorize the internal business process instances that handle POs into 

three categories: slow, acceptable, and fast. Then, she might want to see how many instances of POs fall 

into each category in order to estimate the satisfaction of the clients. Considering similar examples to those 

listed above, our goal is to provide high-level and flexible business view to managers so that they can 

observe and control both the activities inside their own businesses and the interactions with business 

partners. 

�� $QDO\]LQJ�(�EXVLQHVV�2SHUDWLRQV�

In order to manage the e-business infrastructure, it is thus necessary to obtain a complete picture and to 

collect raw measurement data from both the web service and business process infrastructure (Figure 4). The 

collection of measurement data is done through instrumentation as described in section 3.1. Once the data 

is collected, it is cleaned from inconsistencies and transferred to a data warehouse. The data model used in 

the warehouse is described in section 3.2. Once the data is collected and modeled, it can be used for 

semantic analysis by the business cockpit as described later in section 3.3. 

 

 

 

 

 

 

 

 

Figure 4: Architecture of business cockpit 

3.1 Instrumenting the e-business infrastructure 

Instrumentation of e-business infrastructure consist of two stages: 

Data Warehouse 

  Business Cockpit 

 

              E-Business Infrastructure 

                       Instrumentation 



• Instrumentation of web service interactions in order to keep track of message exchanges among 

business partners 

• Instrumentation of business process management tools in order to keep track of internal business 

processes that automate internal activities 

Before we go into details of each stage, we explain our basic assumptions. 

3.1.1 Assumptions 

First of all, we assume that the web services communicate with each other using a standard protocol, such 

as SOAP. We also assume that the interfaces of web services and their interactions with each other are 

described using industry standards, such as Web Services Definition Language (WSDL) [8], Web Services 

Flow Language (WSFL) [9], and Universal Discovery, Description, and Integration (UDDI) [10] models.  

We assume that most web services make use of a back-end software component, such as a Workflow 

Management System (WfMS), in order to carry out their complex tasks, which usually involve multiple 

sub-tasks. We also assume that such WfMS either provide APIs in order to collect data about their 

execution, or log such data to a file or database table that is accessible by other software components. 

We use the term Global Flow (GF) to describe the activities that are executed by the web services in order 

to satisfy a client request. A GF instance starts when a client submits a request, which is not triggered by 

the receipt of another message at the client side, to a web service. This initial request may cause the web 

service to submit sub-requests to other web services in order to carry out sub-tasks for satisfying the 

client’s request. After getting back responses for the sub-requests, the web service responds to the client 

with one or more messages that explain the result of the initial request. The initial request message of the 

client, the sub-requests and responses that are exchanged among web services, and the result messages sent 

to the client describe the execution of one GF instance. Each web service knows for which activities it is 

responsible in a particular GF definition, and which messages it is supposed to send and receive. We have 

to assume that web services use industry standards for communicating, exposing their interfaces, and 

describing the Global Flow of activities. Without those assumptions, it is not possible to easily deploy a 

new solution on existing web services and start collecting and analyzing data about their interactions. 



Finally, we assume the existence of a unique identifier for each Global Flow (GF). We assume that each 

global flow instance can be assigned a Globally Unique Identifier (GUID), and this GUID will be 

forwarded among the web services and other back-end software components (e.g. WfMS) that are involved 

in the execution of the global flow instance. 

3.1.2 Instrumentation of web service interactions 

It is necessary to interfere with message exchanges among web services in order to collect information 

about the interactions with business partners. An acceptable solution should not impose any modifications 

or limitations on existing web services. Since SOAP is rapidly becoming the preferred standard for web 

service interactions, we assume SOAP messages are used among web services in order to submit request 

and response messages. We have implemented a small proxy component that tries to capture incoming and 

outgoing messages, and records data about the message exchanges, then forwards the captured messages to 

the actual recipients. We have considered various alternatives for easily attaching a proxy component to 

existing web services in order to listen to incoming and outgoing messages: port sniffing, server-side filters 

(Microsoft’s Internet Server Application Programming Interface [11], or Netscape’s Netscape Server 

Application Programming Interface [12]), API provided by web services themselves, and modification of 

SOAP toolkit. Port sniffing and server-side filters are usually not suitable because the message contents are 

encrypted by SOAP toolkit. Most web services do not provide an API for controlling or querying about 

their activities due to security issues or simply because the web service developers did not feel any need for 

such interfaces. Consequently, we have chosen to keep track of message exchanges among web services by 

modifying SOAP toolkit. 

The most popular implementations of SOAP toolkits share common components, called routers. SOAP 

routers receive the messages from SOAP clients and submit them to the receivers. SOAP toolkit encrypts 

the message at the sender site, and decrypts it only when it reaches the receiver’s site. A proxy can be 

easily attached to SOAP toolkit routers with minor modifications to the toolkit. This is the most appropriate 

way to automatically attach a proxy in order to capture SOAP messages and collect information from those 

messages. It does not require any modifications to existing web services, and does not require re-



compilation of existing SOAP toolkit installations. We used this approach for collecting data from SOAP 

message exchanges among web services. 

In order to correlate individual message exchanges with each other, we use the notion of Global Flow (GF) 

as described within our assumptions above. The GUID is used for keeping track of a GF. Every time our 

proxy component catches a message that is exchanged between web services, it first checks whether a 

GUID exists. If a GUID does not exist in the message, the proxy inserts a GUID into SOAP header of the 

message. All web services and other software components propagate the GUID in their communications. 

Consequently, our proxy components that are attached to SOAP toolkits at business partner sites can easily 

figure out which SOAP message is sent in the context of which previous messages. 

3.1.3 Instrumentation of business process  

Since activities of web services are automated by WfMS at the back-end, it is necessary to collect data from 

those software components in order to gather detailed information about internal activities of a business, 

and correlate those internal activities with external message exchanges. As we indicated among our 

assumptions, most WfMS log data about internal business process executions into a raw log file or 

database. For example, HP Process Manager (HPPM) logs execution data into a raw file, which is then 

uploaded into database tables by a dedicated process. A proxy component can be configured in order to 

read logged data from proper database tables. This component can also correlate the message exchanges 

with internal process executions using the GUID that is passed through all web services and their back-end 

software components. 

Some WfMS provide interfaces or adapters for other software components to interfere with the execution 

of the business processes, or at least collect limited data about the progress of process execution. HPPM 

provides a Java API for process executions to be controlled by other software components. A proxy 

component uses this Java API to feed in the GUID into HPPM process instances and retrieve it when 

necessary. 

3.2 Modeling e-business infrastructure 

Once the instrumentation data is collected it is necessary to model the data in the data-warehouse for 

semantic analysis by the business cockpit. The data model that we use is inspired by the web service and 



business process standards. These standards (e.g., WSDL and WSFL) propose how web services should be 

defined, how business processes should be defined, and the latter should be interfaced with the former. 

3.2.1 Standards 

In WSDL, a web service is implemented through a set of endpoints. An endpoint is in turn a set of 

operations. An operation is defined in terms of messages that they receive and send out:  

- Message – an abstract definition of data being communicated. Messages are made up of message 

parts. 

- Operation – an abstract definition of an action supported by the service. Operations are of the 

following type namely, one-way, request-response, solicit-response, notification.  

- Port type – an abstract set of operations supported by one or more end points 

- Binding – a concrete protocol and data format specification for a particular port type 

- Port – a single end point defined as a combination of a binding and a network address  

- Service – a collection of related end-points 

WSFL introduces the notion of activities and flows – which are useful for describing both local business 

process flows and global flow of messages between multiple web services. WSFL models business 

processes as set of activities and links. An activity is a unit of useful work. The links could be control links 

where decisions are made to follow one activity or another, data links where data is fed into an activity 

from another. These activities could be exposed through one or more operations that are grouped through 

end-points (as defined in WSDL). A service is comprised of a set of end-points. A service provider can 

provide multiple services. Just like internal flows, global flows can be defined. Global flow consists of plug 

links that link up operations of two service providers.  This helps in creation of complex services that can 

be recursively defined.  

3.2.2 Model 

The data warehouse uses a model inspired by the web services and business processes.  It models the e-

business infrastructure in terms of web service constructs (namely operations, end points, services) and 

business process constructs (namely business processes, activities, plug-link, global flows).  



A business owns a set of processes, each of which consists of a set of activities. Each of these activities 

could be implemented or exposed as an operation. An end-point is a construct that groups operations 

together. An end-point is associated with an address and a protocol (TCP/IP, http, etc). A service could be 

comprised of a set of end-points. Each operation is defined by messages that they exchange. A service-

provider groups services. A plug-link links two operations from two different services. This is useful for 

modeling a B2B infrastructure that involves multiple suppliers and customers.  A UML representation of 

the managed object model with these constructs is shown in Figure 5. 



Business

Service
processFllow

Activity
i

Serviceprovider

endPoint

Operation

exposed as

Message

Link

1..*

1

12

1...*

0...*

2

1

0...*

1

1..*

1

1..*

globalflow

1

1..*
1..*

1

1..* pluglink

1

1..*

part

1

0...*

1..*

1

1

1..*

Customer

1...*1...*

1...*

1

0..*

0..*

0..*

0..*

implemented as

0...*

0...*
1

 

Figure 5: Managed object model in data warehouse 

3.3 Business cockpit metric model 

The management infrastructure presented in the previous sections is in itself very beneficial to users that 

need to analyze business operations, in that it provides a repository of operational data collected from 

different, possibly heterogeneous platforms, cleaned from errors and inconsistencies always present in 

operational systems, and endowed with correlation information, so that analysts can identify the different 



data items that relate to the same Global Flow. However, this by itself is not sufficient to fulfill the analysis 

requirements described earlier in the paper. Indeed, the analysis of the data repository can provide users 

with reports on the average execution time for each node in the process, or on the total number of 

execution, but such reports are of limited usefulness to business analysts, who are interested in information 

that is at a higher level of abstraction. For example, analysts could be interested in viewing the number of 

successful quotes depending on the customers, suppliers, or items for which the quote has been requested; 

or they could require information on the processes that delivered the requested service (e.g., provided the 

quote) within the time agreed with the customer. In addition, besides these “objective” reports, users may 

want to define subjective criteria for the analysis of operational data, to look at process and service 

execution under their own perspective. For example, they may want to define their own notion of quality, 

and be able to analyze which processes, services, customers, suppliers, or other entities are responsible for 

low quality execution of the business operations. 

In order to enable this semantic analysis of operational data, the cockpit allows users to define business and 

IT metrics for measuring and analyzing e-business operations. Once metrics have been defined, the cockpit 

can compute measures and support users in analyzing results.  

The metric framework is composed of three basic entities: the metrics to be computed, the mappings, that 

define how operational data can be mapped into qualitative and quantitative measures, and meters, that 

define which mapping should be used to compute which metric depending on the element being measured, 

thereby allowing the homogeneous analysis of heterogeneous objects, as described in the introduction (see 

Figure 6). We next discuss these three different components of the semantic analysis cockpit model.  

3.3.1 Metrics 

In the cockpit, a metric is characterized by: 

A name, unique within the cockpit system. 

A data type, that can be Numeric, Boolean, or Taxonomy. For taxonomies, the definition also includes a 

description of the categories that are part of the taxonomy. For example, a quote outcome taxonomical 

metric could be characterized by categories quote delivered in time, quote deliverved late, quote not 

delivered. Quote amount is instead an example of numeric metric. 

 



Measure

Meter parameter

Category

Entity (e.g., processFlow,
service provider,....)

Meter

Template

Uses

Metric

1..*
1

0..*
Context

Template
parameter

computes

computes

1

1

1..*

1

0..*

0..*1

1

0..*

0..*

1

defines a condition on

1..*

0..*

0..*

0..*

1
0..*

0..*

1

Defines the value for 10..*
 

Figure 6:  Schema of the cockpit metric database 

 
Metrics (like every other the cockpit abstraction) can be defined in XML, internally transformed into 

insertions into the cockpit’s (relational) database. Alternatively, we provide a user interface that can be 

used for both defining and analyzing metrics (see Figure 7).   



Figure 7: Metric definition 

3.3.2 Mapping templates 

A mapping template is a parametric definition of a mapping from operational data into a numeric or 

Boolean measure. Examples of templates are:  

A. Did conversation end in state S? (Boolean template) 
B. Number of invocations (numeric)  
C. Percentage P of the value of numeric output variable V (numeric)  
D. Did at least P% of the operations take less than M minutes to complete? (Boolean).  

 
Meters can then instantiate templates (i.e., reuse templates with specific values of the parameters) and 

apply them to specific elements in the data warehouse, to define how measures for a given metric are 

computed, depending on the elements being measured.  

Templates are defined by XML documents. Each template includes a specification part and an 

implementation part. The specification part has three purposes: first, it provides a human readable 

description about the purpose of the template and about how to use it (i.e., the semantics of the template 

parameters). Second, it provides information that can be consumed by a (Java or otherwise) Graphical User 

Interface (GUI). This is important, because new templates can be dynamically added to the cockpit library: 

Since different templates may have different characteristics (e.g., different number and type of parameters), 

the GUI that assists users in selecting and instantiating templates also needs to be dynamic, and must be 



able to "understand" which are the valid options that can be given to users in managing templates. Third, it 

provides information that the cockpit engine can use to optimize measure computation. 

The implementation part contains the (parametric) code executed by the cockpit to compute the metric. In 

the current prototype, the implementation is specified in SQL, although other languages may be used if the 

data sources are not relational (the cockpit passes the query for execution to the underlying DBMS). More 

in detail, the specification part of a template includes a name (unique in the cockpit template library), a 

description, and a set of attributes: 

− Composition type defines whether the mapping is only based on service data (direct), or it is an 

aggregation (aggregate) or composition (composite) of other measures.  

− The target entity specifies the kind of elements that are measured (e.g., process flows, services, etc).  

− The return type defines the data type of the value returned by the template. This can be either Numeric 

or Boolean.  

− For each template parameter, the definition includes the indication of the parameter name, data type, 

default value, and a textual description that can be used to convey the semantics of the parameter (for 

example, whether a numeric value is interpreted by the template as describing seconds, minutes, 

Dollars, Euros, etc). Data types include any SQL type.  

Template definitions have other parameters used by the run time engine to compute measures in the most 

efficient way. The description of such parameters is omitted due to space limitations. 

The implementation part of the template is represented by an SQL query that returns (i.e., selects) a tuple 

compatible with the cockpit tables where measures are stored. The tuple includes the measure plus 

attributes qualifying the measure, such as the identifier of the element being measured and the 

measurement time. In the condition part, the query must be able to capture, for all meters using the template 

to compute measures, both the template instantiation parameters and the set of elements that should be 

measured with this template, in order to compute measures appropriately. 

As an example, we next show a simple template that determines whether the quoting process described 

above belongs to the category quote not delivered. The determination depends on which node is executed in 

the process: if node “notify inability to quote” is executed, then the mapping logic will determine that the 

process instance falls into the quote not delivered category of the quote outcome metric.  We observe that 



the template definition is rather simple, and only requires basic XML and SQL knowledge. In addition, the 

cockpit assists users in preparing templates in that it automatically inserts the (SQL) code necessary to 

capture the template instantiation parameters and the set of elements that should be measured. In the 

example below, code that is automatically generated is shown in italics.  

<MAPPING> 
<NAME>Node executed</NAME> 
<GROUP>Process-node</GROUP> 
<DESCRIPTION>Determines whether a node has been executed at least once in a process instance 
</DESCRIPTION> 
<RETURN_TYPE>BOOLEAN</RETURN_TYPE> 
<TARGET_ENTITY> PROCESS_FLOW </TARGET_ENTITY> 
<CONTAINED>TRUE</CONTAINED> 
<INVARIANT>TRUE</INVARIANT> 
<COMPOSITE>FALSE</COMPOSITE> 
<COMPLEMENT>Node not executed</COMPLEMENT> 
<MAPPING_PARAMETERS> 
<PAR> 
  <PAR_NAME>Node name</PAR_NAME> 
  <PAR_DESCRIPTION>  

Name of the node whose execution must be detected 
</PAR_DESCRIPTION> 

  <PAR_TYPE>STRING</PAR_TYPE> 
</PAR> 
</MAPPING_PARAMETERS> 
<IMPLEMENTATION> 
<TYPE>SQL</TYPE> 
<CODE> 
INSERT INTO MEASURES  
( 
SELECT DISTINCT 
MTE.METRIC_ID, 
MTE.ID, 
E.ID,  
SI.PROC_DEF_ID, 
SI.PROC_INST_ID, 
NULL, 
NULL, 
MTE.CATEGORY_ID, 
NULL, 
SYSDATE, 
NULL, 
NULL 
FROM ACTIVITY_INST SI, NODE_DEFS_D ND, PROC_FLOWS_D PD, MAPPINGS MP, 
U_PROCESS_EXECUTIONS PE, ACTIVE_METERS MTE, CONTEXTS CTX, METER_PARS METP, ENTITIES E 
WHERE MP.NAME=’’Node executed’’  
AND MP.GROUP_NAME=’’Process-node’’  
AND E.EXTENDED_NAME=’’PROCESS INSTANCE’’ 
AND MTE.MAPPING_ID=MP.ID 
AND METP.METER_ID=MTE.ID 
AND CTX.METER_ID=MTE.ID 
AND SI.NODE_DEF_ID=ND.ID 
AND ND.NODE_NAME=METP.VALUE 
AND SI.PROC_DEF_ID=PD.ID 
AND PD.ID=PE.PROC_DEF_ID 
AND ND.PROC_DEF_ID=PD.ID  
AND  ( 
  (PD.PROC_GROUP_NAME=CTX.PROC_GROUP OR CTX.PROC_GROUP IS NULL) AND 



  (PD.PROC_NAME=CTX.PROC_NAME OR CTX.PROC_NAME IS NULL) AND 
  (PD.PROC_VERSION=CTX.PROC_VERSION OR CTX.PROC_VERSION IS NULL)  
  ) 
) 
</CODE> 
</IMPLEMENTATION> 
</MAPPING> 

The cockpit includes a large number of predefined, built-in templates, stored in the cockpit template 

library. Pre-defined templates range from simple ones, such as the one defined above, to more complex 

ones, computing measures on composite services, such as the number of basic services invoked within a 

composition, or the total operation cost based on the sum of the costs of the invoked operations. Users can 

define additional, more sophisticated templates that are aware of the extended service model, and possibly 

of other user-defined data structures.  

3.3.3 Meters 

Meters are the "instruments" used to compute metrics. In particular, meters define which mapping should 

be applied to compute a metric within a given context. For example, a meter can define which mapping 

should be used to compute the metric quality for  price quote  operations, while another meter can define a 

different mapping for computing the quality of process order operations. It is this capability of using 

different meters for different contexts that allows users to map heterogeneous elements into a homogeneous 

metric, i.e., allows analysts to see all elements under the same lens. 

Mappings are specified by instantiating templates. To do so, each meter must specify which template it 

instantiates and which are the values to be given to instantiation parameters.  For example, to compute the 

metric quote outcome, and specifically to compute whether an instance belongs to category quote not 

delivered, the analysts can reuse mapping “process node executed” (that detects whether a certain node was 

executed within a process instance), instantiated with parameter “notify inability to quote”.  

<METER> 
<NAME>Compute quote rejected</NAME> 
<DESCRIPTION>Computes the semantics of rejection </DESCRIPTION> 
<VERSION>1</VERSION> 
<METRIC> 
 <METRIC_NAME>Quote outcome</METRIC_NAME> 
 <METRIC_GROUP_NAME>Supply Chain</METRIC_GROUP_NAME> 
 <CATEGORY_NAME>Quote not delivered </CATEGORY_NAME> 
</METRIC> 
<MAPPING> 
 <MAPPING_NAME>Node executed</MAPPING_NAME> 
 <MAPPING_GROUP_NAME>Process-node</MAPPING_GROUP_NAME> 
</MAPPING> 



<ENABLED>TRUE</ENABLED> 
<MEASUREMENT_TIME>SYSTEM</MEASUREMENT_TIME> 
<MAPPING_PARAMETERS> 
<PAR> 
  <PAR_NAME>Node name</PAR_NAME> 
  <PAR_VALUE>notify inability to quote</PAR_VALUE> 
</PAR> 
</MAPPING_PARAMETERS> 
<CONTEXTS> 
 <CONTEXT> 
   <ENTITY_NAME>PROCESS_FLOW</ENTITY_NAME> 
   <ELEMENT_NAME>PRICE QUOTE</ELEMENT_NAME> 
 </CONTEXT> 
 </CONTEXTS> 
</METER> 
 

In a meter, the context defines the set of elements used as the base for the computation, and it includes a 

space and a time component. The space component restricts the set of elements being considered in the 

computation. For example, the above described meter should only be applied to price quote processes.  

The time component, if present, limits the computation to elements (processes, operations, etc..) that have 

been started, completed, or both started and completed within a specified time window.  

Finally, we observe that mappings can compute metrics not only based on operational data, but also on the 

measures computed for other metrics. In this way, the cockpit natively supports composite metrics. 

�� (�EXVLQHVV�2SHUDWLRQ�$QDO\VLV�

The previous sections have shown how metrics can be defined and computed in the cockpit model. In the 

following we focus instead on quality measure analysis. The cockpit metric database (shown in Figure 6) is 

structured according to data warehousing techniques. Measures, along with operation and conversation 

execution data, are represented as facts. These facts can be analyzed according to several warehouse 

dimensions, represented by the different entities in the warehouse data model (such as processes and 

activities) and by the metrics that need to be analyzed. Structuring measure information along a star schema 

such as the one shown in the figure enables and simplifies multi-dimensional analysis of quality measures, 

and allows the cockpit to take advantage of the star schema optimization techniques offered by most 

DBMSs.  

Once metrics have been defined, the cockpit operates by defining database views that can be used to access 

measures. Users also have the option of pre-computing measures as soon as new data are loaded into the 



warehouse. To compute measures, the cockpit executes the templates associated to the meters that have 

been defined. Note that, due to the set-oriented nature of SQL, a single execution of a mapping template is 

sufficient to compute all the metrics that make use of that template. 

7HPSODWH�([HFXWLRQ�(QJLQH

2WKHU�XVHU�GDWD�
RU�PHWDGDWD

PHWULF�
GDWDEDVH

3URFHVV�DQG�
6HUYLFH�

:DUHKRXVH

3UHFRPSXWHG
0HDVXUHV

0HDVXUHV�
�YLHZV�

*UDSKLFDO�LQWHUIDFH62$3�$3,

�����������	��
�������
� ������� �	�
�� �����	


7HPSODWHV

 

Figure 8: Business cockpit 

One the metrics have been defined and operational data collected by the instrumentation starts flowing into 

the warehouse, users can begin analyzing their operational system according to the different perspectives 

they consider significant.  

In particular, the cockpit allows users to view metric data from three different perspectives: 

− By elements, that is, depending on the element on which the metric has been computed. For example, 

users can view how the distribution of a quality metric varies with the process flow being considered 

− By time. For example, users can view how the value of an operation-level metric changes with the 

operation invocation time 

− By metric. For example, users can view how the value of a metric “execution cost” changes with the 

value of metric quality, thereby enabling the identification of correlations among these two metrics. 

We next provide an example of how the cockpit can be used to analyze business metrics. Assume that the 

metric quality (including categories good, fair, and poor) has been defined for several different processes. 

By combining meters and mapping templates, users can define different ways to measure quality depending 



on the process being considered. The definition of the quality metric as well as of the meters is performed 

through a GUI. Then, users can analyze how the quality distribution varies with the process being 

considered, as shown in Figure 9. The figure displays data in the form of a stacked bar chart. The width of 

the bars is proportional to the number of elements used in the computation. This is helpful in that in not 

only gives an indication of low quality area, but also of the significance of the quality problem, i.e., how 

many process executions it affects. 

 

Figure 9: Quality distribution analysis by process group 

 

The chart enables the identification, in one shot, of the low-quality areas, regardless of what the definition 

of “quality” is for the different elements being considered.  

Users can then "zoom in" on problematic processes to further analyze the problem. For example, the chart 

shows that most processes have satisfactory quality. However, almost 75% of the processes belonging to 

group “Supply Chain” have either fair or poor quality. Users can then “zoom-in” into the problem, to 

further analyze it by drilling down to the details. In the present example, users can drill down by clicking 

on the “problematic” bar in the chart and requesting a detailed analysis of supply chain processes, for 



example by service provider, as shown in Figure 10, thereby revealing that many of the problems are 

caused by the invocation of money transfer services within supply chain processes. 

 

Figure 10: Quality metric shown by service provider invoked in the execution of supply chain processes 

Note that the polymorphic nature of the metric model enables analysts to not only examine the quality 

across different processes, but also switch from process quality to service quality. The metric being 

analyzed is always the same. 

In this way, analysts can quickly and easily detect problems and identify or locate their causes.   We 

observe that, unlike “traditional” analysis tools, that typically require the users to (1) be aware of the details 

of the data model, (2) write code to define new metrics, and (3) write code to get reports, by using the 

business cockpit analysts can easily add new metrics, as well as flexibly define their computation logic 

depending on the elements being considered. 



Further analysis (not shown here) on the problem can be performed by accessing the meter used for the 

computation, to understand what exactly is the nature of the low quality detected by the tool. 

�� 5HODWHG�:RUN�DQG�&RQFOXVLRQV�

To the best of our knowledge, there are no platforms that enable the definition, computation, and analysis 

of quality metrics on web services. However, there is a huge body of research on metrics in general, in just 

about every field of science, ranging from physics to philosophy. In fields close to web services, a lot of 

work has been done in the domains of networks, distributed systems, and distributed objects running on top 

of interoperability platforms. Despite the fact that this earlier work had different scope and objectives, it 

inspired some of our design choices. In the following, we briefly present some existing contributions, and 

highlight differences with respect to the approach we propose.  

Networks and distributed systems are probably the areas in which the most work on measuring and 

management issues has been done, resulting in the development of standards and even commercial 

management platforms, such as HP OpenView or IBM Tivoli. For example, ITU-T in the early nineties has 

defined recommendations for measuring distributed software applications, and for deriving statistics from 

collected measures [13, 14]. In particular, ITU-T defines a framework for measuring and monitoring 

distributed objects, to standardize the interface and protocols of managing and managed applications. The 

basic component of the framework is the metric object, that specifies how a certain application object 

should be monitored by defining how the application object’s attributes should be transformed into 

measures (represented by counters, gauges, and derivatives of gauges), and which are the measure 

thresholds above which a management application should be notified. Metric objects can also define data 

collection details such as sampling frequency. Support for the definition of statistics on measures is also 

provided (mean managed class, or moving average managed class).  

Although ITU-T recommendations, like other network and distributed systems standards and applications 

(such as the Simple Network Management Protocol and the Open Group Universal Management 

Architecture [15]) are concerned with metrics for distributed objects, they mostly focus on interfaces and 

protocols for management applications, and are mostly concerned with performance and monitoring issues. 

They do not deal with what we consider to be the innovative aspects of this paper, i.e., how to define IT and 



business-level metrics for web services, how to separate metric definition from computation, how to reuse 

metric computation logic, how to perform metric aggregation over user-defined web services models, how 

to compute and analyze such metrics efficiently, and how to make the tool easy to use and accessible to 

business users. 

More recently, several research contributions have appeared in the measurement of distributed objects 

running on top of middleware platforms.  

The majority if these contributions focus on the definition of Quality of Service (QoS) criteria. This is 

relevant to the approach described in the paper, as QoS is one of the most common metric that business 

users want to analyze. For example, Adam [16] is a tool for the management of QoS requirements in 

middleware applications. It assumes that basic measures are available, and it then allows the definition of 

composite measures by processing basic metrics through arithmetic functions. QoS goals can then be 

specified constraints on composite measures. 

An interesting approach is presented in [17]: the paper proposes a language, called QML (QoS Modeling 

Language), for specifying QoS criteria and associating QoS requirements to objects’ interfaces. QoS 

requirements are defined by contracts, that define constraints on the value of a set of basic metrics (such as 

average response time < 10 msec). Profiles can then be used to associate contracts to interfaces. The 

framework also includes a programming language, called Activity Monitoring Language (AML), that 

declaratively specifies what should be measured, and provides abstractions to map end-user business 

metrics into a Service Level Objective (SLO). AML includes the notion of events, qualified by a name and 

a set of parameters. Objects that produce events are called providers. Metrics can be associated to 

providers, to specify ho events should be transformed into measures meaningful for the user.  

The above approaches have been inspiring, in that they propose the notion of having high-level, user-

defined metrics as well as a method for composing basic metrics into complex ones, which are two 

problems that are also addressed in this paper. However, the approach presented in this paper has many 

differences with respect to the above: it is focused on web services, enabling the definition of extensible 

service models and the automatic computation and aggregation of metrics on top of the user-defined model. 

It is more flexible in the metric definition and computation, going beyond QoS and allowing more generic 

forms of composition, and including support for measure analysis. Other important differences are in the 



provision for a measurement system that performs correlation among operations executed within the same 

global flow, and in the development of a concrete implementation that has a strong emphasis on simplicity, 

being (also) targeted to business users.  

Finally, we mention that contributions in the area of metrics for web services exist, but are focused on the 

collection of performance measures to support performance and availability, and capacity planning. They 

do not address the problems and therefore do not include any of the innovative features discussed in the 

introduction. The interested reader is referred to [18] for a comprehensive coverage of this topic. 

In the future we plan to extend the approach proposed in the paper to enable automated system 

management. In particular, users will be able to define Service Level Agreements (SLA) on top of the 

framework presented in this paper, and the system will then monitor SLA compliance as well as use 

predictive algorithm to foresee SLA violations and react to such (predicted) violations, in order to avoid 

their occurrence or at least to reduce their impact. 

 

References 

1. Frank Leymann, Dieter Roller. Production Workflows. Prentice Hall, 2000. 

2. The Workflow Management Coalition. The Workflow Handbook 2002. Future Strategies Inc. 

2002.  

3. Ethan Cerami. Web Services Essentials. O’Reilly. 2002. 

4. Natanya Pitts and Cheryl Kirk. The XML Black Book. Coriolis Technology press, 2000. 

5. Don Box, David Ehnebuske, Gopal Kakivaya et al. Simple Object Access Protocol (SOAP) 1.1. 

Available from http://www.w3.org/TR/SOAP/. 

6. Milind Govekar. Managing Total Business Integration. Procs. of the Garner Symposium ITXPO. 

Cannes, France. Nov. 2001. 

7. Jim Kerstetter. The Web at your service. BusinessWeek e.biz cover story. March 18, 2002. 

http://www.businessweek.com/magazine/content/02_11/b3774601.htm. 

8. Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web Services 

Description Language (WSDL) 1.1.  Available from http://www.w3.org/TR/wsdl. 



9. Frank Leymann. Web Services Flow Language (WSFL) 1.0. May 2001. Available from 

http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf. 

10. The UDDI consortium. UDDI Technical White paper. September 2000. Available from uddi.org 

11. Internet Server API (ISAPI) Extensions From Microsoft. http://www.microsoft.com 

12. Netscape Server API (NSAPI) Programmer’s Guide. Available from 

http://developer.netscape.com/docs/manuals/enterprise/nsapi/index.htm. 

13. International Telecommunication Union. Systems Management: Summarization function. 

Recommendation X.738. Nov 1993. 

14. International Telecommunication Union. Systems Management: Metrics Objects and Attributes. 

Recommendation X.738. Nov 1993. 

15. Open Group, UMA model.  http://www.opengroup.org. 

16. Joseph Martinka, Kave Eshghi, An Architecture for Adaptable Distributed Application 

Management, HP Technical Report HPL-96-30, March 1996. 

17. Svend Frolund, Jari Koistinen. Quality of Service Specification in Distributed Object Systems 

Design. Distributed Systems Engineering Journal 5(4), Dec. 1998. 

18. Daniel Menasce’, Virgilio Almeida. Capacity Planning for Web Services. Metrics, Models, and 

Methods. Prentice Hall. 2002. 

19. Akhil Sahai, Vijay Machiraju, Jinsong Ouyang, Klaus Wurster. Message Tracking in SOAP-Based 

Web Services. In the Proceedings of IEEE/IFIP NOMS. April, 2002, Italy. 


