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Abstract
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I. INTRODUCTION

Interest in quantum computing began to grow rapidly after the discovery of the factoring

[1, 2] and searching [3] algorithms, which demonstrate that if a quantum computer could

be built it would be capable of tasks impossible with conventional classical machines. This

interest was further stimulated by the development of quantum error correction [4, 5] and

fault tolerant [6, 7] techniques. These show that, rather than requiring the decoherence of

the qubits comprising a quantum computer to be completely negligible during the evolution

corresponding to a computation, it simply needs to be small. Then the redundant encoding

of quantum information using additional quantum bits (and the more sophisticated fault-

tolerant techniques) can be employed to maintain the coherence of the qubits effectively

responsible for running the quantum algorithm. All this was a real stimulation for quantum

computing hardware. Real quantum systems always have some level of decoherence and

whilst it is hard to envisage removing this completely, making it small is a reasonable

practical goal.

Consequently, over the past few years numerous systems have been examined (theoret-

ically and/or experimentally) to assess their potential for qubits and quantum computing

hardware [8]. These include photons [9], ions in an electromagnetic trap [10–13], atoms

in beams interacting with cavities at optical [14] or microwave [15] frequencies, electronic

[16] and spin [17] states in quantum dots, nuclear spins in a molecule in solution [18, 19]

or in solid state [20], charge (single Cooper pair) states of nanometre-scale superconductors

[21, 22], flux states of superconducting circuits [23–26], quantum Hall systems [27] and states

of electrons on superfluid helium [28].

Five main criteria have been identified for quantum computing hardware [8, 29]: (i)

Clearly identifiable qubits and the ability to scale up in qubit number; (ii) The ability to

prepare “cold” initial states (such as the thermal ground state of the whole system); (iii)

Small decoherence (so correction [4–6] can be utilized) - a rough benchmark is a fidelity

loss of 10−4 in an elementary quantum gate operation; (iv) The ability to realize a universal

set of quantum gates – arbitrary single qubit rotations and an entangling two-qubit gate

are enough to build up any general evolution [30–32]; (v) The ability to measure (in the

usual sense of projective quantum measurements) qubits to determine the outcome of a

computation.
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Any qubit candidates have to be assessed against this “DiVincenzo checklist”, to see how

they fare. Although all the above-mentioned candidates do reasonably well, there is to date

no clear favourite route for quantum computing hardware. It is certainly true that so far the

few-qubit experiments which have been performed have used fundamental entities for qubits,

such as photons, atoms, ions or nuclear spins (in liquid state NMR). Such systems exist or

can be placed in low-decoherence environments and have thus provided the first few-qubit

demonstrations. However, it seems likely that scalabilty in qubit number, up to the size of

useful many-qubit devices, may well be more easily achieved with condensed matter systems,

making use of fabrication or self-assembly techniques to produce many-qubit arrays. The

trade-off is that decoherence in such systems is generally higher than for fundamental qubits.

At present, there is thus considerable interest in solid state approaches to qubits. These

have to match up well against (i), (ii), (iv) and (v) of DiVincenzo’s list, and in the first

instance for (iii) must at least offer small enough decoherence for the demonstration of

quantum gates. With flexibility in fabrication, choice of materials, etc., it is then possible

that decoherence may be reduced down to the required level for actual quantum computa-

tion. In this paper we discuss a solid-state approach to qubits based on a particular form of

quantum dot.

In some recent work [33, 34] we have shown that a few electrons in polygonal quantum

dots, which are sufficiently large that the mean electron separation is greater than their effec-

tive Bohr radius, always have a charge-spin multiplet at low-energy which is well separated

from higher-lying states. This isolation is a consequence of electron correlations, which tend

to force the electrons into configurations close to their classical electrostatic ground state.

Such states always have a quasi-degeneracy of at least 2N where N is the number of elec-

trons, and further degeneracies may arise due to equivalent electrostatic minima [33]. An

isolated ground multiplet of degeneracy m suggests that such systems could form the basis

for a realisation of quantum computing elements, where each element is an m state quantum

system or ‘qumit’. In this paper we focus on one such possibility, a square 2D semiconductor

quantum dot containing two electrons. When the dot is large compared with the electron

effective Bohr radius, the Coulomb repulsion dominates and tends to repel the electrons to

diagonally opposite corners of the dot and the charge density is peaked in these regions,

as shown in figure 1, in which the exact ground-state charge density is plotted. There are

in fact 8 states in the ground manifold (2 singlets and 2 triplets) which arise from the two
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base states shown in figure 2, each of which may be a singlet or a triplet depending on spin.

These states could in principle form a base-8 quantum computing element. However, it is

simpler to stay within one spin manifold, which is valid provided the spin-flip scattering

time is sufficiently long. The initial state may be prepared in a given spin state in various

ways. For example, in zero magnetic field at low temperatures the ground state is a singlet,

whereas application of a magnetic field will give a triplet lowest when the flux through the

dot is of order a half-integral number of flux quanta (see next section for further details).

The Zeeman splitting will then give a spin-polarised ground state.

In the next section we analyse this system in detail and show how it forms the basis

for a scalable qubit element. This element is very similar to the so-called quantum cellula

automata, which has been proposed [35, 36] as a basic building block for a new kind of com-

puting system in which the elements are either in one state (0) or the other (1). However,

we emphasise that the system proposed here is fundamentally different in that we consider

cellula automata as a fully coherent system in which the qubit (or array of qubits in general)

are in superposition states in the true sense of quantum computation. Such quantum coher-

ent cellula automata have been considered recently by Tóth and Lent [37] who also suggested

square qubit cells consisting of four quantum dots in the corners. In this scheme there is

vertical tunnelling between dots. Our work complements and extends theirs in several ways.

Our qubit cells consist of a single quantum dot of square geometry in which the electrons are

confined by their mutual Coulomb repulsion (strong correlation regime). The two-electron

states are allowed to take on the full square symmetry with electrons tunnelling around the

perimeter of the square. This lifts the spin degeneracy and produces independent two-state

systems for singlets and triplets. These states are further controlled by corner gates and ex-

ternal magnetic fields. We also propose a new method of producing two-qubit entanglement

via the Coulomb interaction .

II. BASIC MODEL

We consider two electrons in a semiconductor quantum dot with a square confining po-

tential in the x − y plane and sufficiently high confinement in the z direction that the

electrons always occupy the lowest bound state in this direction. Such structures may be

fabricated, for example, from a gated two-dimensional electron gas at a heterojunction in-
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terface. In reality this would not produce a perfectly square confining potential though such

deviations would not change qualitatively the results which follow and may be accounted

for quantitatively by a straightforward extension of the theory. Further control of the two-

electron states may be achieved by placing gate electrodes in the four corners of the dot,

since applying a positive voltage to a corner electrode would provide a potential well for an

electron in a region at the heterojunction interface below the gate. We consider low-lying

two-electron states of the quantum dot in a magnetic field, which may be modelled using

the 2D Schrödinger equation (after integrating over z) [52]

ih̄
∂Ψ(x, y, t)

∂t
= HΨ(x, y, t) (1)

where

H =
1

2m

[

2
∑

i=1

(−ih̄∇i + eAi)
2 + V (ri, t) + EBs

i
z

]

+
e2

4πε|r1 − r2|
(2)

and where V (r, t) is the total one-electron confining potential, m is the effective mass of

the electrons and A is the vector potential of a magnetic field B oriented perpendicular

to the plane of the dot and EB = gµBB is the Zeeman energy. When the length-scale of

the confining potential is small compared with the effective Bohr radius of the electrons,

the eigenstates of H (with time-independent confining potential) may be computed to good

accuracy using the Hartree-Fock approximation. This is rather like what is done in atomic

physics and the term ‘artificial atoms’ has been used to describe such structures [38]. How-

ever, it should be realised that the energy scale is much smaller than in real atoms since

the effective Bohr radius is typically two orders of magnitude larger. In this paper we shall

be concerned with the opposite limit in which the size of the dot is large compared with

the effective Bohr radius. In this regime, electron correlations become dominant since the

Coulomb repulsion energy between the electrons scales like a/L whereas the electron kinetic

energy scales like (a/L)2, where a is the effective Bohr Radius and L is the confinement

length. For large L/a the ground state of the electrons tend towards the classical minimum

energy given by electrostatics. For the present case of two electrons in a square confinement

potential, the electrons are pushed to diagonally opposite corners, as shown in figure 2. We

can see immediately that such a ground state is degenerate since there are two equivalent

positions which the pair of electrons may occupy and furthermore their spins may each take

two values, giving a total degeneracy of 8 in the limit of infinitely large dots. For finite sized
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dots with L/a >> 1, kinetic energy partly lifts this degeneracy resulting in two singlets,

with two degenerate triplets lying approximately midway between the singlets in zero mag-

netic field. This spectrum is shown in figure 3 for the case of a square quantum dot of side

length 800nm and material parameters corresponding to GaAs, giving a ratio L/a ≈ 100.

Also shown in the spectrum are the next few excited states, which are somewhat higher in

energy. In fact this isolation of a low-lying multiplet is a common feature of few-electron

states in the strongly correlated limit to which we refer to reference 33 for further details.

This feature was also one of our main motivations for considering their use as quantum

computing elements. However, one price to pay for this is that the absolute energy scale

is small, though this is material dependent. For the given example, the singlet-separation

in the ground manifold is of order 5µeV whereas the next singlet is some 33µeV higher in

energy, as shown in figure 3. This spectrum was obtained numerically by expanding the

eigenstates in basis functions of the noninteracting electron system and diagonalising the

resulting Hamiltonian matrix. We emphasise that this seemingly simple problem requires

considerable computing resources to obtain convergence for the lowlying eigenstates when

the dot is large. For example, in the case of the 800nm dot, the order of the matrices to be

diagonalised was around 10000 and this grows rapidly with dot size. However, the simple

electrostatic picture suggests that for the lowlying multiplet a simpler approximate method

should be possible in which the electrons are in localised states near the corners of the

dot. We have shown that this is the case in which one-electron Hartree states may be con-

structed, in which the electron is in one of the four corners. These are then used to construct

suitable anti-symmetrised two-electron states, rather like Heitler-London molecular states.

Restricting ourselves to the lowest Hartree states in the ‘ground manifold’ and eliminating

higher energy states by quasi-degenerate perturbation theory gives excellent agreement with

the numerically exact results and is computationally very efficient [39]. More importantly,

it gives us a simple description of the lowest multiplet shown in figure 3, which may be

described by the following effective Hamiltonian :

Heff =
∑4

i=1
εi(B)ni +

(

∆(B)ei2φRπ/2 +H.c.
)

(3)

where εi(B) = εi(0) + EBs
i
z, ni = c†i↑ci↑ + c†i↓ci↓, Rπ/2 is a rotation operator which rotates

both electrons simultaneously through an angle π/2 about a point at the centre of the dot,

∆(B) is an energy parameter which has only weak dependence on B (which we neglect)
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and φ is a Pierls phase factor which an electron picks up when hopping from a localised

(Hartree) state on one corner to an adjacent corner. This phase factor is related to the total

magnetic flux through the dot by 4φ = 2πΦ/Φ0, where Φ is the total flux through the dot

and Φ0 = h/e is the flux quantum [53]. The zero field one-electron energies, εi(0), depend

on the corner gate voltages and may be used to force the ground-state of the system to

be either one or the other of the states shown in figure 2. Conversely, when all 4 corner

gate voltages are the same, the ground state is then an equal superposition of these base

states. It is important to realise that Heff only operates in the subspace defined by these base

states, all other states consisting of electrons occupying adjacent corners of the dot must be

omitted from the basis set. All such ‘excited’ base states (and many others corresponding

to higher energy Hartree states) are accounted for in the energy parameters of equation (3).

We stress that these parameters are calculated from the underlying Hartree states, not fitted

to the numerically exact solutions. The method thus gives an efficient scheme for analysing

the low-lying multiplet and calculating the associated energy parameters and their variation

with magnetic field, dot geometry and gate potentials.

It is now straightforward to diagonalise Heff within this restricted subspace for fixed

magnetic field and gate potentials. If we neglect the Zeeman term, then the eigenstates

must consist of two singlets and two triplets. These correspond to symmetric and anti-

symmetric orbital states respectively. It is straightforward to show that the resulting 2X2

Hamiltonian matrices are:

Hsinglet =







E0(B) 2∆ cos(2φ)

2∆ cos(2φ) E1(B)





 (4)

and

Htriplet =







E0(B) 2∆ sin(2φ)

2∆ sin(2φ) E1(B)





 (5)

where E0(B) = ε1(B) + ε3(B) and E1(B) = ε2(B) + ε4(B), numbering clockwise from the

top left-hand corner. The eigenenergies are thus,

Esinglets =
E0 + E1 ±

√

(E0 − E1)2 + 16∆2 cos2 2φ

2
(6)

and

Etriplets =
E0 + E1 ±

√

(E0 − E1)2 + 16∆2 sin2 2φ

2
(7)
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These energies are in agreement with the exact low-lying multiplet shown in figure 3 for

the special case when all corner gate voltages are the same (E0 = E1) and zero magnetic field

(φ = 0). At finite magnetic field, the energy of the singlets and triplets oscillate sinusoidally

and also increase overall in energy with increasing magnetic flux through the dot, as shown

in figure 4. The important points to note are that (i) the ground multiplet becomes a triplet

with maximum splitting to the other triplet when half a flux quantum passes through the

dot (and also for odd multiples of half a flux quantum) (ii) the coupling between states of

the same symmetry may be ‘tuned’ by the magnetic field, e.g. when half a flux quantum

passes through there is no coupling between singlets (degenerate) and maximum coupling

between triplets [54]. These properties may be exploited for quantum computing in that the

interstate coupling (and hence time scale) may be tuned. Furthermore, when the Zeeman

term is switched on, the triplets split with the Sz = −1 states lowest. Thus we may initialise

the system to be in the lowest spin-polarised Sz = −1 by choosing the magnetic field so

that the magnetic flux through the dot is a half-integral, allowing the system to settle

into its ground state at low temperature (T << EB). Alternatively, we may make a spin-

singlet lowest in energy by choosing a magnetic field for which an integral number of flux

quantum pass through the square, or indeed zero magnetic field. The choice of singlets or

spin-polarised triplets for the qubit states is to some extent arbitrary but the choice should

take into account the energy scales of the Zeeman spiltting and the singlet-triplet splitting.

For large dots, EB can easily exceed ∆ and the spin-polarised state is preferred since all

other states are pushed to higher energies. This has the disadvantage that the absolute

energy/temperature scale is low, e.g. for an 800nm square dot ∆ ≈ 1µeV = 12mK in GaAs

for which the Zeeman energy for a magnetic field of 1 tesla is about 25µeV = 0.3K. Although

such large dots have obvious advantages for fabrication and lithography, they would require

very clean samples. Conversely, decreasing the dot size to, say, 100nm raises ∆ to around

0.5meV = 6K which is now somewhat greater than the 1 tesla Zeeman splitting. With

corner gates this would be close to the present limits of what can be achieved by electron-

beam lithography.

As with any 2-state system, we can map the Hamiltonian onto a pseudo-spin model,

which takes the form,

Hps = Ē + εσz + γσx (8)
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where σx and σz are the usual Pauli operators, Ē = (E0 + E1)/2, ε = (E1 − E0)/2, γ =

2∆cos(2φ) for singlets and γ = 2∆ sin(2φ) for triplets. Despite the simplicity of this ef-

fective Hamiltonian, the main physics of the two-electron qubit system is contained within

the energy parameters in equation (8), which have, in general, complicated functional de-

pendencies on the confining region (defined by the boundary of the dot and gate electrode

potentials), the mutual coulomb repulsion of electrons within the dot, and the external

magnetic field through the dot. Nevertheless, these dependencies may be computed for any

specific geometry and magnitudes of external potentials and fields and hence the parame-

ters calibrated. In what follows we shall continue to refer to the 2-electron pseudo-spin base

states as |0〉 and |1〉 to distinguish them from true single-electron spin base states | ↑〉 and
| ↓〉.

The Hamiltonian (2) and corresponding effective Hamiltonians (3) and (8) are readily

generalised to two or more identical dots each containing two electrons. Such structures

could be fabricated with gates and we envisage that the separation between the dots would

be greater than the size of the dots themselves. This ensures that the Coulomb repulsion

between electrons on different dots is always smaller than the Coulomb repulsion between

the two electrons on the same dot and may thus be treated as a perturbation. Furthermore,

the confining barriers and dot-dot separation ensures that tunnelling of electrons between

dots, even as virtual states, is negligible. In this situation, only diagonal elements of the

Coulomb interaction of the density-density type are non-negligible. Hence, the effective

Hamiltonian for an array of N two-electron quantum dots may be written, in pseudo-spin

notation (dropping a constant energy term):

Hps =
∑

i=1

[εiσiz + γiσix]−
1

2

∑

i,j=1;i6=j
vijσizσjz (9)

where the intra-dot energy parameters have the same meaning as in equation (8) and vij

is half the difference in coulomb repulsion energy between dots i and i with parallel and

anti-parallel pseudo-spins, i.e.

vij =
〈0i, 1j|V2|0i, 1j〉 − 〈0i, 0j|V2|0i, 0j〉

2
(10)

where

V2 =
e2

4πε|r1 − r2|
. (11)
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Note that by symmetry, 〈00|V2|00〉 = 〈11|V2|11〉 and 〈00|V2|01〉 = 〈00|V2|10〉 = 〈11|V2|01〉 =
〈11|V2|10〉.

If we neglect screening between electrons on different dots then since the electron wave-

functions are localised in the corner of the dots,

vn ≡ vi,i+n '
e2

8πε

( 1

nd− L
+

2
√

(nd)2 + L2
+

1

nd+ L
− (12)

2

nd
− 1

√

(nd− L)2 + L2
− 1

√

(nd+ L)2 + L2

)

where d is the spacing between adjacent dots. Expanding (1) in L
nd

to lowest-order gives,

vn '
3e2

4πεnd

( L

nd

)4

In practise, there will be some screening due to image charges in the corner gates giving,

vn '
5e2

2πε

( δ

nd

)2( L

nd

)4

where δ is the distance between an electron and its image charge. Hence, vn

v1
= n−6 and while

this decay is quite rapid, it is still sufficiently slow that the neglect of second and higher

neighbour interactions would give rise to significant errors [40]. In section IV we show

how such systematic errors may be reduced to acceptable levels by changing the tunnelling

parameter γ on some of the dots. This effectively turns off the qubit interaction. In addition

to restricting the effect of the Coulomb interaction to nearest neighbours, this technique is

also used when performing single-qubit transformations for which even the nearest-neigbour

coupling is turned off, as discussed elsewhere for qubits based on Josephson junctions [41, 42].

In the next two sections we will show how 2-electron square quantum dots described by

this model and the pseudo-spin Hamiltonian (8), have potential for quantum computing

elements.

III. INITIALISATION AND SINGLE-QUBIT GATES

As emphasised by DiVincenzo and coworkers, a practical quantum computer has to satisfy

a certain minimal list of requirements [29]. In this section we show how the 2-electron

quantum dot can fulfil two of them, namely initialisation of the system and a universal single-

qubit gate. Since the 2-electron quantum dot is an 8-state system, it is convenient to reduce
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this to a 2-state ‘qubit’ system. This is not strictly necessary as in principle one can deal

directly with octal elements though this poses many practical problems of implementation.

The simplest way to reduce the quantum dot to a 2-state system is to essentially remove the

spin degrees of freedom, as described in the previous section. This has the added advantage

that the resulting two charge degrees of freedom may be manipulated electrostatically using

gates. To be specific, we shall assume that we are dealing with singlets, for which the system

is first allowed to relax into its ground-state at low-temperature and zero magnetic field (or

constant field in which an integral number of flux quanta pass through the dot). The single

cell may thus be described by only two coherent singlet states, with charge ordering as shown

in figure 2 and effective Hamiltonian given by equation (4) or, equivalently, the pseudo-spin

Hamiltonian, equation (8), with γ = 2∆cos(2φ). We shall confine ourselves to this singlet

manifold for the remainder of the paper, though it is straightforward to extend the results to

the spin-polarised triplet states using the effective Hamiltonian given by equation (5). These

states may be manipulated using the electrostatic gates in the four corners. For example,

we may initialise the ‘0’ state by applying a large positive bias to corner gates 1 and 3 and

allowing the system to relax to its ground state. Removing these potentials at t = 0 will,

according to equation (4) (with cos 2φ = 1), cause the system to oscillate between the states

|0〉 and |1〉 with a period T = π/2∆. This follows directly by expressing the initial state in

terms of eigenvectors and applying the time evolution operator as follows.

|ψ(t)〉 = e−iHt|0〉 = e−iHt |+〉+ |−〉√
2

(13)

=
e−iE+t|+〉+ e−iE−t|−〉√

2

= e−iE0t(cos 2∆t|0〉+ i sin 2∆t|1〉)

where we have used

H =







E0 2∆

2∆ E0





 (14)

giving E± = E0 ± 2∆ and |±〉 = |0〉+|1〉√
2

.

Thus, after time π/8∆ a Hadamard transformation has taken place, with a NOT operation

at time π/4∆. These timescales are typically of order a picosecond, e.g. for a 100nm dot

in GaAs, T=0.6ps. The 2-state time translations given by equation (13) are not completely
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general since they are restricted to a plane through the centre of the Bloch sphere [43].

However, the most general transformation, of the form:

|ψ(t)〉 = eiα(t)
[

cos θ(t)|0〉+ eiφ(t) sin θ(t)|1〉
]

(15)

may be achieved by applying a second rotation (time evolution) for which the Hamiltonian

is changed by the application of a gate voltage to two diagonally opposite corners of the

dot. This will change the energy of one of the base states in a predictable way. Neglecting

the small change in the tunnelling matrix element ∆, the new Hamiltonian takes the more

general form of equation (4) with E0 6= E1. When the energy difference between these

diagonal matrix elements is much greater than ∆, the eigenstates of the new Hamiltonian

are approximately |0〉 and |1〉 and hence after a further time τ we get,

|ψ(t+ τ)〉 = e−iHt|0〉 = e−itτe−iE0t(cos 2∆t|0〉+ i sin 2∆t|1〉) (16)

≈ e−iE0(t+τ)(cos 2∆t|0〉+ ie−iEgτ sin 2∆t|1〉)

where Eg = E1 − E0 ≈ eVg, and Vg is the gate potential. This clearly has the general form

(15). It is straightforward to further generalise this procedure to any sequence of transforma-

tions in which gate voltages are changed in a stepwise fashion, including corrections to take

into account the change in off-diagonal matrix elements of the Hamiltonian. In practise it

may be advantageous to use a magnetic field to control the latter since they have little effect

on the diagonal elements. For example, if we again apply a gate potential to the system in

the state |ψ(t)〉 given by equation (13), and simultaneously a magnetic field which produces

half a flux quantum through the dot (thereby switching off the off diagonal matrix elements),

we may again generate the general transformation (15), but with the advantage that the

gate voltage need not be large. It may thus be ‘tuned’ to give the optimum switching time.

IV. TWO-QUBIT GATES

Two qubit transformations are performed using the coulomb interaction, i.e. the last

term in the pseudo-spin Hamiltonian (9). A disadvantage of using the coulomb interac-

tion for inter-qubit interactions is that it is difficult to control. DiVincenzo and coworkers

circumvent this problem by modulating the exchange interaction between (real) spins on

adjacent quantum dots by changing the potential barrier between them. In reference 37
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three cells (qubits) were considered as a means of producing entanglement via the direct

coulomb interaction. Here we consider a simpler scheme in which the effect of the coulomb

interaction between two cells is controlled rather than its absolute value. The latter may

only be changed by dynamical screening between cells, the possibility of which we consider

briefly in the final section. In order for the coulomb interaction to be effective in producing

entanglement between adjacent cells, we need to initialise the cells in such a way that a

simple product state, degenerate or nearly so with some other product state, evolves into a

linear combination of the two product states which cannot be factored in any basis. A poten-

tial candidate would be to start with one of the simple product states |0, 0〉, |0, 1〉, |1, 0〉 or
|1, 1〉, and observe the evolution. However, although this evolution does eventually produce

full entanglement, it is dominated by single-qubit rotations (since γ >> v in equation (9)

with N = 2), which produce rapid oscillations in the entanglement with time. We can in

principle switch off these single-bit rotations with a magnetic field, for which γ = 0 when a

half-integral flux passes through the dot. However, this would also not lead to entanglement

since the inter-dot Coulomb interaction is diagonal in the |0, 1〉 basis and the states initial

state would remain a simple product. Indeed, we may choose such simple product states

in the ’computational’ basis as initial states prior to pure single qubit rotations in order

to ensure that the states remain unentangled. Entanglement may be produced by initial-

ising the two-qubit state as a simple product of energy eigenstates. These are obtained by

diagonalising the single-qubit Hamiltonian, e.g. equation (8) with ε = 0 and the constant

energy term dropped, giving E± = ±γ and |±〉 = (|0〉 ± |1〉)/
√
2. Starting in the product

state |+,−〉, time evolution will mix in the state |−,+〉 via the coulomb interaction, without

which the state would not change. Note that only the |−,+〉 state is mixed in since the

Hamiltonian only couples to this state. This is analogous to the case of two electrons on

the surface of liquid helium, for which the computational basis is given by the ground (|α〉)
and first excited (|β〉) states of each electron in a 1D Coulomb potential above the helium

surface [28]. In this system, with no applied fields |α, β〉 and |β, α〉 are degenerate, but

this degeneracy can be broken by a Stark shift on one of the qubits. The (weak) Coulomb

interaction between adjacent qubits then splits the degeneracy, with eigenstates given by the

symmetric and anti-symmetric superpositions of |α, β〉 and |β, α〉. Starting with either |α, β〉
or |β, α〉 away from degeneracy (with the Stark shift dominating the coulomb splitting), and

turning off the Stark shift for a chosen time, can in principle produce maximal entanglement
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(a ROOT SWAP gate) with good fidelity [44]. In our quantum dot system, the state |−〉
and |+〉 play the role of |α〉 and |β〉 in the helium system.

In the cell-diagonal energy basis, the two-qubit hamiltonian matrix is

H =





















−2γ 0 0 −v
0 0 −v 0

0 −v 0 0

−v 0 0 2γ





















(17)

where the rows and columns are ordered in ascending single-cell energy. The eigensolutions

are shown in figure 5. It follows directly that the state vector at time t is

|ψ(t)〉 = e−iHt|+,−〉 = e−ivt|g〉+ eivt|e〉 (18)

= cos vt|+,−〉 − i sin vt|−,+〉

which is clearly fully entangled for t = (2n+ 1)π/4v, n = 0, 1, 2 . . .. The degree of entangle-

ment is not so apparent in the original |0〉, |1〉 basis. However, we may obtain an absolute

measure of entanglement by computing the so-called concurrence [45] which is basis inde-

pendent,

c(t) = 2|〈a, a|ψ(t)〉〈b, b|ψ(t)〉 − 〈a, b|ψ(t)〉〈b, a|ψ(t)〉| (19)

where |a〉 and |b〉 are any orthonormal single-qubit basis states. Choosing these to be the

energy eigenstates we see directly from (19) that

c(t) = | sin 2vt| (20)

showing that c(t) = 1 again for t = (2n + 1)π/4v, n = 0, 1, 2 . . .. We note that the entan-

glement depends only on v and is independent of γ, the energy parameter which controls

single-qubit rotations. By contrast, a plot of c(t) starting with a product state in the ’com-

putational’ basis, shows rapid oscillations on a timescale of h/γ, as shown in figure 6.

Two further issues arise when considering the above procedure for producing entangled

states. The first is how to prepare the initial state, |+,−〉, and secondly how to preserve an

entangled state once it has been produced, bearing in mind that the degree of entanglement

oscillates with time. A further, and related, potential difficulty is being able to perform

single-qubit operations for which the effect of the intra-cell coulomb interaction is made

negligible. Clearly the most direct, and probably the most difficult, way to do this is by
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selectively switching off the coulomb interaction between cells (see next section). An indirect

way is to lift the degeneracy between the states |+,−〉 and |−,+〉 whilst the single qubit

operations are being performed. For the Helium system it is proposed to implement this

through application of an electric field to one electron creating a Stark shift [44]. For the

quantum dots a magnetic field is applied to one dot but not the other, thereby changing the

value of the tunnelling parameter γ on one of the dots. For example, if the magnetic flux

through one of the dots is half a flux quantum the corresponding coupling is zero and the |+〉
and |−〉 states for that dot become degenerate. Hence the states |+,−〉 and |−,+〉 now differ

in energy by 2γ, where γ is the tunnelling parameter on the other dot. The eigensolutions

of the two-cell Hamiltonian are then E = ±ε and |g〉 = cos θ|+,−〉 + sin θ|−,+〉 and |e〉 =
− sin θ|+,−〉+ cos θ|−,+〉, where ε =

√
γ2 + v2 and tan θ = v

γ+
√
γ2+v2

. If we again start in

the state |+,−〉 at t = 0, the state at time t becomes

|ψ(t)〉 = eiεt sin θ|g〉+ cos θe−iεt|e〉 =
[

eiεt cos2 θ + e−iεt sin2 θ
]

|+,−〉+ i sin 2θ sin εt|−,+〉
(21)

Hence, the probability of finding the (other) state |−,+〉 at time t is |〈−,+|ψ(t)〉|2 =

sin2 2θ cos2 εt which has a maximum value of sin2 2θ ≈ (v/γ)2 when v/γ is small. This

should be compared with the previous case for which the states and the maximum value of

|〈−,+|ψ(t)〉|2 is unity.

An alternative measure of the effectiveness of ‘detuning’ in preserving a state is the

concurrence. This is zero for the state |+,−〉 at t = 0 and 2| sin 2θ sin εt
√
1− sin2 2θ sin2 εt|

at later times when the system is in the state (21). This is plotted in figure 7 with γ = 0 on

the one dot and v/γ = 0.1, 0.2 and 1 on the other. We see that the maximum concurrence

decreases rapidly as the intra-dot tunnelling increases relative to the inter-dot coulomb

interaction, with cmax(t) ≈ 2 sin 2θ ≈ 2v/γ = 0.2 for v/γ = 0.1. Note also that when v/γ

is small, the concurrence oscillates with angular frequency ε ≈ γ. This should be compared

with the case when γ is the same on both dots, for which c(t) oscillates between 0 and 1

at the much lower frequency 2v (equation 20). We note that such detuning of the initial

state in order to remove its degeneracy with the state |−,+〉 may also be done by applying

positive gate voltages to all four corner gates on one dot. This will change the confinement

potential profile such as to again reduce the tunnelling parameter γ.

Although the above de-tuning procedure will significantly reduce the maximum concur-
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rence caused by the Coulomb interaction, this may still give rise to systematic errors for

single-qubit transformations that are not sufficiently small to be quantum error corrected.

However, we have shown that the entangling effect of the Coulomb interaction may be elim-

inated completely by starting with product states that are diagonal in the ’computational’

basis (i.e. the states |0, 0〉, |0, 1〉, |1, 0〉 or |1, 1〉) and setting γ = 0 on one of the dots (or

all dots apart from one in an array of qubits). Since the Coulomb interaction is diagonal

in this basis, we might expect that it would be ineffective in producing entanglement since

there are no single-qubit rotations on the dots for which γ = 0. This is indeed the case as

may be proved by expressing the initial state in the basis of exact two-qubit eigenvectors,

propagating with the time evolution operators, and re-expressing the result in product basis

states, from which the concurrence is calculated and shown to be zero by exact cancellation.

A related situation exists in the proposed scenario for Josephson junction qubits [41, 42],

where it is not possible to do simultaneous one-qubit operations on adjacent qubits without

turning on the (controllable) coupling between these qubits.

The concurrence may also be preserved by detuning a state that is maximally entangled.

For example, we have shown that a fully entangled state may be produced at time t = π/4v

(see equation 19). If at this time we change the Hamiltonian by switching off the tunnelling

process in one dot (as described above), then the concurrence is,

c(t) = | sin 2vt| (t ≤ π/4v) (22)

=
√

1− sin2 2θ sin2 2ε(t− π/4v) (t ≥ π/4v)

This is plotted in figure 8, again for v/γ = 0.1, 0.2 and 1, and we see that c(t) remains close

to unity when v/γ is small. In fact, preservation of an entangled state is more effective

than preservation of an unentangled state by this method (compare figure 7). Even the case

γ = v has a minimum entanglement of cmin = 1/
√
2 = 0.7071 and rapidly approaches unity

with decreasing v/γ. For small v/γ the correction ∼ (v/γ)2 giving maximum deviations in

concurrence of order a percent for realistic parameter values. Whilst this may still not be

sufficiently small to allow full quantum error correction, it is well within the error necessary

to unequivocally observe entanglement experimentally.

With the qubits essentially decoupled, we may prepare the initial state |+,−〉 by single-

qubit rotations. A novel way to do this is to first allow the two qubits to relax into their

ground states, when a magnetic field is applied to one dot such that the magnetic flux
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through the dot is one flux quantum. Removing this magnetic field at t = 0 on the first dot

will give the desired state since this exchanges the ground and excited states [39].

We have discussed here the realization of a ROOT SWAP gate, which is a suitable

universal two-qubit gate [30–32]. It is well known how to convert such a gate into other

two-qubit gates, such as a controlled phase flip or a CNOT, using single qubit rotations

[46]. In any actual computation, the most suitable two-qubit gate(s) would depend upon

the algorithm, also taking into account physical optimization [46]. For now, we remark that

in the initial stages of investigation of new candidates for quantum computation, the most

important two-qubit issue is the capability to produce entanglement. Thus the simplest gate

to consider is that which requires no (or the minimum number of) additional single qubit

gates. Experiments to investigate entanglement in dot systems such as those proposed here

will therefore probably focus first on ROOT SWAP.

V. SUMMARY AND DISCUSSION

In this paper we have analysed the potential of two electrons in square semiconductor

quantum dots as a basis for a scalable array of quantum computing elements. As with all

few-electron quantum dots in the strong correlation regime, there exists an isolated low-

lying multiplet of states which has the potential to form a controllable finite-state system,

or ‘qumit’. For two electrons, this is a two-state, i.e qubit, system for the orbital degrees

of freedom. This requires that the spin-state (singlet or triplet) does not change during the

computation period between initialisation and measurement. It has been argued elsewhere

[47] that this is feasible due to the long lifetime of spin states in semiconductors, though it

is by no means certain that these will be sufficiently long for practical implementation of

a spin-based quantum computer. In addition to this, we require that the orbital states be

sufficiently long-lived for meaningful computations to be made. This is also uncertain at

present though various schemes can be envisaged which would reduce the inelastic scattering

of electrons by the relevant acoustic phonons of energy equal to the energy splitting of

the ground multiplet states. Note that at low-temperatures the main process would be

spontaneous phonon emission and it had been suggested that this may be inhibited by

device geometry and material choice at heterojunction interfaces [48]. Indeed, very recent

theoretical work has demonstrated this quantitatively [49]. A further possibility would be
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a molecular system for which the relevant low-lying electronic energy splitting would be

chosen so that they were not resonant with the molecular vibrational modes. In order that

the electrons remain strongly correlated in such a small molecular system, they would have

to be screened by filled outer shells as in d or f electron systems [50].

Initialisation of our proposed system is performed by corner gates, which force each

qubit into one of the two computational-basis states. Subsequent single-qubit operations

(rotations) are then performed by removing the voltages on the corner gates and allowing

the system to develop ballistically in time. Further control may be achieved during the

computation phase by the application of a magnetic field, which changes the magnitude of

the tunnelling energy parameter, and by further application of corner gate voltages. In this

way we have shown that any single-qubit transformation may be performed.

We have shown how two-qubit transformations may be performed via the coulomb in-

teraction between qubits provided this is small compared with the intra-qubit tunnelling

energy. A potential problem is the control of the coulomb interaction itself. This is achieved

by appropriate choice of initial states and intermediate states which are ‘tuned’ by changing

the tunnelling parameter on one of the qubit-dots. In this way, entanglement is maximised

via an initial state in which one dot is in its ground state and the other in its excited state.

When this has been achieved, an entangled state is preserved by changing the tunnelling

parameter in one dot only, via a magnetic field. A more direct control of the Coulomb

interaction would be to physically change its magnitude during computation. This may be

achieved in principle by introducing screening charge between the qubits. Control of this

charge could be via surface gates or by controlling supercurrents, which are driven normal by

exceeding their critical value. Although such schemes would be technologically challenging,

they cannot be ruled out on fundamental grounds and may ultimately be a practical way

forward in directly controlling the coulomb interaction.

Finally, we consider readout, i.e. the means of measuring the state after computation.

For the spin system proposed by DiVincenzo and coworkers, a suggested method was to use

spin-dependent tunnel barriers in which an electron of the appropriate spin would tunnel

into a quantum confined region where it would be detected by a single-electron transistor

[51]. A similar scheme is envisaged here but with the added simplicity that the tunnel barrier

would not be spin dependent. It would be located at one or more corners of the quantum

dot (one is sufficient in principle but more may be desirable to reduce errors). When the
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qubit state is measured, the tunnel barrier is lowered and if an electron is in that corner of

the dot it will tunnel into a quantum-confined region and be detected by the single-electron

transistor. This uniquely defines the measured state. After measurement the system may

be ‘reset’ using appropriate gate bias voltages.

Note that in order for a coherent time-development of the qubit to be negligible during

the measurement process, the tunnel barrier must be lowered and raised on a timescale which

exceeds the electron tunneling time but is sufficiently short for intra-dot time-development

(e.g. single-qubit rotations) to be small, ideally negligible. This may be achieved in principle

by the arrangement of gates shown schematically in figure 9. The square quantum dot

(A) is extended at one corner by a quantum wire leading to a further quantum dot (B).

This is essentially two very weakly coupled quantum dots for which the two electrons are

normally located in the larger dot, A. As far as the quantum computation is concerned, the

dots are decoupled and the states are controlled by corner gates as described earlier. The

measurement is performed by lowering the electron potential energy in dot B via a positively

biased gate (shown dotted). If an electron is in the corner of dot A, which is connected to

dot B, then it will be transferred to the latter. Subsequently raising the electron potential

energy of dot B to its ’normal’ voltage will trap the electron in dot B where it can be

later measured by a single-electron transistor. It should be realized that the process of

transferring the electron from dot A to dot B does not necessarily destroy the coherence of

the full quantum state involving both dots. If the initial single-qubit state is a superposition

of states |0〉 and |1〉 then the final state after the possible transfer of an electron will also

be a superposition of states in which an electron is either in dot B or not. However, since

the two dots are essentially decoupled, this superposition does not change with time, unlike

the ’quantum computation’ states which continually oscillate between the base states. It is

only when the presence (or not) of an electron on dot B is measured by the single-electron

transistor that the wavefunction ’collapses’ giving a probability that is essentially |〈0|ψ〉|2.
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FIG. 1: Ground-state charge density, peaked in diagonally-opposite corners, for a two-electron

GaAs quantum dot with side length 800nm (≈100 effective Bohr radii).

FIG. 2: Contour plots of two-electron basis functions which yield the ground-state charge density

of figure 1.
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FIG. 3: Energy spectrum of a two-electron quantum dot showing an isolated low-lying manifold of

two singlets and two triplets.
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FIG. 4: Variation of low-lying eigenenergies with magnetic flux of a two-electron quantum dot.

Φ0 = h/e is the flux quantum.
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FIG. 5: Eigensolutions of the two-qubit quantum-dot Hamiltonian with weak coulomb repulsion

between cells.
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FIG. 6: Concurrence for starting state |0, 0〉 and v/γ = 1, 0.2 and 0.2, showing oscillations on a

timescale h/γ before reaching full entanglement.
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FIG. 7: Time dependence of concurrence for an initial state |+,−〉 in which γ = 0 on one dot.
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FIG. 8: Time dependence of concurrence with an initial state |+,−〉 for which γ is switched off on

one dot only at t = π/4v.
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FIG. 9: Schematic diagram showing arrangment for final-state measurement.
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