

Throttling Viruses: Restricting propagation to defeat
malicious mobile code1

Matthew M. Williamson
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-172 (R.1)
December 10th , 2002*

E-mail: matthew_williamson@hp.com

anti-virus Modern computer viruses spread incredibly quickly, far faster than

human-mediated responses. This greatly increases the damage that
they cause. This paper presents an approach to restricting this high
speed propagation automatically. The approach is based on the
observation that during virus propagation, an infected machine will
connect to as many different machines as fast as possible. An
uninfected machine has a different behaviour: connections are made
at a lower rate, and are locally correlated (repeat connections to
recently accessed machines are likely). This paper describes a
simple technique to limit the rate of connections to “new” machines
that is remarkably effective at both slowing and halting virus
propagation without affecting normal traffic. Results of applying
the filter to web browsing data are included. The paper concludes
by suggesting an implementation and discussing the potential and
limitations of this approach.

* Internal Accession Date Only Approved for External Publication
1 ACSAC Conference, December 20002, Las Vegas, NV, USA
 Copyright Hewlett-Packard Company 2002

Throttling Viruses: Restricting propagation to defeat malicious mobile code

Matthew M. Williamson
HP Labs Bristol, Filton Road, Stoke Gifford, BS34 8QZ, UK

matthew williamson@hp.com

Abstract

Modern computer viruses spread incredibly quickly, far
faster than human-mediated responses. This greatly in-
creases the damage that they cause. This paper presents
an approach to restricting this high speed propagation au-
tomatically. The approach is based on the observation that
during virus propagation, an infected machine will connect
to as many different machines as fast as possible. An unin-
fected machine has a different behaviour: connections are
made at a lower rate, and are locally correlated (repeat
connections to recently accessed machines are likely).

This paper describes a simple technique to limit the rate
of connections to “new” machines that is remarkably effec-
tive at both slowing and halting virus propagation without
affecting normal traffic. Results of applying the filter to web
browsing data are included. The paper concludes by sug-
gesting an implementation and discussing the potential and
limitations of this approach.

1 Introduction

This paper presents a technique to automatically control
the spread of computer viruses. This addresses an important
problem, as while the speed of propagation of viruses has
increased dramatically over recent years [8], the speed of
responses has not increased as quickly.

In order to combat these fast spreading viruses, there is a
need to respond automatically to the virus before it has been
identified (which is often the work of a human). Automatic
systems are problematic for most security applications be-
cause of the problem of false positives. Most responses are
irrevocable e.g. quarantining files, shutting down, patching
etc. and if these actions were carried out on every false pos-
itive error the performance would be poor.

A possible solution to this is to use “benign” responses,
those that slow but do not stop the virus. This can then hope-
fully slow the propagation of the virus until an irrevocable
human-driven response can be applied.

The technique relies on the observation that under nor-

mal activity a machine will make a fairly low rate of out-
going connections to new or different machines, and that
connections are locally correlated e.g. it is more likely to
connect to the same machine regularly than to different ma-
chines. This contrasts with the fundamental behaviour of a
rapidly spreading virus. An infected machine will attempt
to make as many outgoing connections as possible (high
rate), to as many different machines as possible (no local
correlation). This observation makes sense for desktop ma-
chines and for servers (which primarily handle incoming
connections), and makes less sense for machines running
notification services. Evidence from [9, 10] supports this
observation, showing that most machines interact with a few
other machines.

The idea is to implement a filter on the network stack
that uses a series of timeouts to restrict the rate of con-
nections to new hosts such that most normal traffic is un-
affected. Any traffic which attempts connections at a higher
rate is delayed. Newness is defined by temporal locality
(comparing the connection to a short list of recently made
connections). The delays introduced by the timeouts are
such that false positives (occasional periods when normal
traffic is at a higher rate than allowed) are tolerated with
small delays, but malicious traffic (at a rate much higher
than allowed) is heavily penalised. The paper will show
that for web browsing traffic, normal traffic is not impeded
by even quite low allowed rates (0.5–1 connections per sec-
ond (cps)), a rate that would severely impede most viruses
(the Code Red virus [2, 5] propagated at a rate of at least
200 cps1).

This approach is related to “behaviour blocking” [12]
where a policy for the allowed behaviour of an application
is defined, and infringements of that policy are detected and
reported. Products in this space are sold by [13] and [6].
Techniques for filtering network traffic are also relevant, ei-
ther based on source IP addresses (ingress/egress filtering
[7]), or based on statistical measures of network traffic (e.g.
products from [11]). This work differs from all of these ap-
proaches because it consists of an automatic response with
a benign action. This makes it faster and more tolerant to

1Measured with our test setup on a slow machine (Win2K, 500 MHz).

is request
to new host?

add to
delay queue

process as
normal

a b c dY

YN

N request?

n = 4
working set

Figure 1. Processing loop for new requests.
Whenever a request is made it is compared
against a list of recently used hosts (shown in
the dotted ellipse) to determine whether it is
new or not. If the connection is to a new host,
(e.g. to host ‘e’ which is not in the working
set) it is placed on a delay queue to await
processing, while if it is not new (say to host
‘b’), it is processed immediately.

false positive errors in detection.
Work in network intrusion detection e.g. [9, 10] ex-

ploits the locality of interactions between machines to de-
tect anomalies in network traffic. The locality makes the
problem of learning the “normal” behaviour more tractable.
In these systems, detection errors are picked up by a human
operator. This work differs because the outgoing connec-
tions of each machine are monitored rather than traffic on
the network as a whole. In addition this work explicity ex-
ploits locality and uses benign responses to handle errors.

Other related work by [1] suggests ways to limit ma-
chines so that they cannot participate in network attacks,
and [14] give an example of benign responses used in an
intrusion detection application.

The rest of the paper describes the filter in detail, show-
ing how it can effectively block high rate traffic. It then
examines the filter behaviour with normal traffic, using the
example of web browsing. The results back up the assump-
tions of low rates and local correlation. Data from other
protocols is presented to support the generality of this ap-
proach. The paper then suggests a possible implementation
on the Windows platform and concludes by discussing some
of the vulnerabilities of this approach.

2 Filter algorithm

The aim of the filter is to limit the rate of connections
to new hosts. The overall system is split into two parts that

timeout
expired?

anything in
delay queue

Y

YN

N

pop off 1st request
flush out requests
process host

reset timeout
update working set

Figure 2. Processing loop for rate limiting.
Whenever the timeout expires, if there is any-
thing in the delay queue, the first request on
that queue is processed. This involves flush-
ing out any other requests to the same des-
tination from the queue, making the connec-
tions, updating the working set with the new
destination, and resetting the timeout.

run in parallel: a system to determine whether requests for
connections are to new hosts; and a system based on a series
of timeouts that limits the rate of those connections.

The first part is shown in Figure 1. Whenever a request
is made, a check of the newness of the host is performed.
If the host is new it is added to a “delay queue” waiting to
be processed by the other system, and if not new it is pro-
cessed as normal. Newness is determined by comparing the
destination of the request to a short list of recently made
connections. The length of this list or “working set” � can
be varied so altering the sensitivity of the system. For exam-
ple, if ����� , requests other than consecutive connections
to the same host will be determined as new.

The rate limit is implemented as shown in Figure 2. Ev-
ery time a timeout expires, if there is anything in the de-
lay queue (new hosts waiting to be processed), then the
first request is removed to be processed. At the same time
any other connections to the same destination are also pro-
cessed. The connection to the host is made, and the work-
ing set is updated. This involves removing a host from the
set, and inserting the host that was just processed. The re-
placement strategy could either be first-in-first-out or least-
recently-used. The timeout is only reset when there is some-
thing in the queue so that if the next new connection is at-
tempted after the timeout has expired it will be processed
immediately.

The overall system thus allows traffic that is locally cor-
related to pass unrestricted (controlled by the length of the
working set �), and restricts connections to new hosts to one
per timeout period.

2

If the time between timeouts is � , then the system limits
the rate of connection to new hosts ���������
	��� � ��� � . If an
attempt is made to make connections at a higher rate � ����������� ,
then every � seconds the size of the delay queue � will grow
by ��� ����������� ��� ��� or at average rate

�
�� � ��������������� �!� ���
� � � �"�����������#�$�����%���&	��& (1)

or

��'��(� � ���"�����������#�$�������)�&	��� � ((2)

where (is time. Since the hosts are popped off the delay
queue once per timeout, the overall delay to a particular
connection is equal to � times the length of the queue when
that host was at the back of it, or

(&��*����+ � �'��,��(�- � � �.���"�����������#�$�������)�&	��� � (�- (3)

where (- is the time that the connection was placed on the
queue.

Taking (2) and (3) together, if the attack rate is a lot
greater than the allowed rate, then the delay queue will grow
at roughly the attack rate, and the delay to the individual
connections will grow as the queue length grows. Mali-
cious code that has a high attack rate will thus be severely
delayed.

An infected program can thus be quickly detected by
monitoring the size or rate of increase of the delay queue.
It can then be suspended or stopped, so stopping the fur-
ther propagation of the virus. Figure 3 shows the size of
the delay queue against time for different attack rates. If
the maximum size of the delay queue is set to 200, a virus
spreading at 50 cps will be halted in 4 seconds, after making
only 4 connections to other machines2.

Figure 3 also shows that for low rates of ������������� the
queue size and thus the delays grow slowly. This means
that if a normal program has a brief period where it’s rate
is greater than � �������
	��� , there will be some delay, but the
delays should be small.

The system thus acts as a filter that quickly and heav-
ily delays high rate traffic, but is tolerant to fluctuations of
rate that are just higher than �"���%���&	��& . By monitoring the
delay queue, rapid spreading behaviour can be quickly de-
tected and the offending program stopped. Rates lower than
�������)�&	��� are not affected. The parameters of the algorithm
are the allowed rate �"�������
	��� and the length � of the work-
ing set. The following sections examine the algorithm using
data from web browsing traffic, concentrating on the effects
of these parameters.

2There may be a natural limit to the size of the queue. For example the
Code Red virus uses 99 parallel threads to propagate itself. Each thread
waits for its connection before attempting another. This means that the
queue length will quickly reach about 99 then stay stable at that value. The
output rate will still be one connection per timeout period.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

Time (seconds)

Le
ng

th
 o

f d
el

ay
 q

ue
ue

 2
 5
10
20
50

Figure 3. Figure showing the size of the delay
queue against time for different attack rates in
cps. This data was plotted for �"���%���&	��& � � cps.
The size increases linearly with time with a
gradient equal to �"�����������/���"�������
	��� . The delay to
each connection is � times the queue length
(in this case � � � second). Normal traf-
fic, which might occasionally be faster than
�������)�&	��� , will also be put on the delay queue.
However, the relatively low rate will mean that
the queue will not grow large, and the traffic
will not be greatly delayed.

3 Evaluation under normal traffic

Given that the filter can effectively delay traffic that is at
a much higher rate than allowed, this section considers the
ability of the filter to allow normal traffic through without
delay. The normal traffic chosen is web traffic (http) be-
cause it is a common network protocol and also because a
number of recent high profile (i.e. damaging) viruses used
http to propagate ([2, 3]).

The browsing behaviour (time, url visited) of five fel-
low researchers was collected over a five month period,
as detailed in Table 1. From the url the host e.g.
www.google.com can be extracted. While this is not an
enormous amount of data, it is enough to demonstrate the
practicality of the idea.

The first issue is the effect of the working set size � , used
to determine whether a given host is new or not. The data
was run through the filter using a first-in-first-out (FIFO) re-
placement strategy on the working set. The total number of
“new” hosts expressed as a percentage of the total number
of requests is shown in Figure 4.

Four of the users have very similar profiles with one out-

3

Table 1. Details of the web browsing data. The
data captures all of the browsing for users 1
and 2, and is a partial record for the others.

User Time period Number of
(months) requests

1 5.67 162373
2 5.2 23535
3 4.5 7144
4 4.3 10010
5 3.46 7095

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

working set size

pe
rc

en
ta

ge
 o

f n
ew

 h
os

ts

Figure 4. Graph showing the number of new
hosts (expressed as a percentage of the total
number of requests) as a function of work-
ing set size � , for a FIFO replacement strat-
egy. The different lines correspond to differ-
ent users. All of the users show the same pat-
tern, the number of new hosts is reduced as
� increases, and flattens out for larger � . The
number of new hosts is low (� 10%) showing
that the data is locally correlated.

lier. As � increases, the number of new hosts decreases,
with the effect tailing off for ����� . This supports the
assumption that the connections are locally correlated and
makes sense for web browsing: the loading of each page
may make multiple requests to the same site for images
etc., and to different sites for advertisements. The relatively
small size of working set required is also good news for im-
plementation, showing that large amounts of memory are
not needed. Other replacement strategies such has least-
recently-used have also been tested, with results very simi-
lar to the FIFO case.

A second issue is the rate of connections to these new

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Time (minutes)

F
re

qu
en

cy
 (

cp
s)

0 4 8 12 16 20 24
0

1

2

3

4

Time (hours)

F
re

qu
en

cy
 (

cp
s)

Figure 5. Plot showing local frequency
against time for a one hour (top plot) and a
24 hour period. The browsing only occurs
during working hours and is bursty.

hosts. This can be measured by calculating the time se-
quence of new hosts as above, and then sliding a time win-
dow along the sequence, measuring the local frequency.
Figure 5 shows the result of this calculation, giving the lo-
cal frequency against time for a one hour and 24 hour pe-
riod. The data has a low frequency (generally 1–2 cps) and
is bursty, with sporadic loading of pages during working
hours.

A histogram of the local frequencies for a single user are
shown in Figure 6, removing the zero frequency that ac-
counts for 99.97% of the time. For small working set sizes
(�) there are more new hosts, and they occur at higher fre-
quencies, but for larger set sizes there are less new hosts, at
lower frequencies. In all cases the maximum frequency is
low i.e. � � cps, and most of the traffic is concentrated at
low frequencies e.g. 1–2 cps. This suggests that a reason-
able value for the allowed rate should be 1–2 cps.

The third issue is the effect of the allowed rate �������)�&	��� .
Figure 7 shows the effect of simulating the complete fil-
ter (calculation of new hosts, delay queue and timeouts)
on a single users data with different values of allowed rate
�����%���&	��& � ��� � . The plot shows the number of requests
that are delayed (as a percentage of the total number of re-
quests) against the amount that they are delayed, for dif-
ferent values of � �����)�&	��� . The delays are low, and affect
few requests: less than 1% of requests being delayed for
� � � ���%���&	��& � � . Even for smaller rates the delays are not
excessive. The data suggests that reasonable performance
would be obtained with an allowed rate of 0.5–1 cps. Ma-
licious code propagation would of course be limited to the

4

1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Frequency in cps

F
re

qu
en

cy
 o

f o
cc

ur
an

ce
 a

s
pe

rc
en

ta
ge

 o
f t

ot
al

 ti
m

e

1
2
5
10
20

Figure 6. Local frequency plot for user 1 for
different working set sizes (�). The x-axis
is the local frequency observed in the data,
and the y-axis measures the percentage of the
total time that that frequency was observed.
The zero frequency has been removed, as it
accounts for 99.97% of the data. The plot
shows that increasing working set size re-
duces the number of new hosts, with the ef-
fect becoming less as window size increases.
It also shows the low frequency content of the
data, with the highest frequency being 5 cps
for � � � , and 2–3 cps for � � � .

same rate.

The question remains as to which requests are actually
delayed. Table 2 shows the top 6 delayed hosts for user
1. The table shows the host, the percentage occurrence of
that host in the entire trace and the percentage of requests to
that host that were delayed by one second. The top 6 hosts
are the most delayed, however they are not very common.
e.g. about a third of the requests to ads.inet1.comwere
delayed, but requests to that site form just 0.1% of the to-
tal data. The most delayed sites are advertisements, pre-
sumably because when a page loads, multiple requests are
sent to the same host for html, images, frames etc.. Ads
are loaded from a different host so are more likely to be de-
layed. The lower set of 6 hosts are ordered by occurrence.
While these hosts are visited frequently (� 10% of all re-
quests), they are delayed by low amounts (less than 5 % or
1 in 20). A similar pattern is observed for other users and
other time delays.

To summarise, this preliminary analysis suggests that for
web browsing the rate of connections to new hosts is gen-
erally low (� 2 cps) and that connections are locally cor-

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 2
1

0.5
0.3 0.2

P
er

ce
nt

ag
e

of
 r

eq
ue

st
s

to
 h

os
ts

 d
el

ay
ed

Delay in seconds

Figure 7. Plot of simulation of filter, show-
ing the proportion of requests that were de-
layed (as a percentage of the total number
of requests) plotted against the time that they
were delayed (in seconds). The different lines
correspond to different values of �"�������
	��� . This
data is for user 1, with a working set size
of 5. The delays are small and few requests
are affected, particularly for higher values of
�������)�&	��� (� � % for � � �"�������
	��� � �).

related (increasing the size of the working set reduces the
number of “new” hosts). It suggests that the algorithm will
give low delays on normal browsing for quite small allowed
rates (0.5–1 cps). In addition the most delayed sites are
quite likely to be advertisements.

Even given this analysis, it is hard to determine what
these delays would “feel like” to a user of the machine. An
implementation is the subject of ongoing research [16], and
is described in section 5.

4 Other protocols

The data presented so far has shown that traffic created
by web browsing is locally correlated and thus is suitable for
throttling. This section considers whether this is the case for
other protocols.

Data was collected from the complete network behaviour
from five machines over a 24–48 hour period. This data
was then filtered to recover instances of TCP connections
being initiated or UDP packets being sent. This data was
then processed using the working set to determine how the
number of “new” connections varied with working set size.
The data was split up by destination port, choosing the nine
most common ports. The actual numbers of data points for

5

Table 2. Delayed hosts that were delayed by 1
second for user 1, using � � � and �"�������
	��� � �
cps. The hosts are ordered by % occurance
(number of requests to this host as percent-
age of all requests made) and % delayed
(number of requests delayed as percentage
of requests made to that host). The top six
hosts are the most delayed, and interestingly
they are mostly advertisement sites, and oc-
cur relatively rarely. The bottom six are the
most common sites, with correspondingly
lower delay rates e.g. 1 in 50 calls to por-
tal.hp.com will be delayed.

Host % occurance % delayed
‘ads.inet1.com’ 0.1 33.3
‘gserv.zdnet.com’ 0.2 32.7
‘www.vibrantmedia.com’ 0.1 16.4
‘ummail4.unitedmedia.com:80’ 0.2 16.3
‘www.computercreative.com’ 0.0 15.9
‘a708.g.a.yimg.com’ 0.3 15.6
‘gserv-cnet.zdnet.com’ 17.5 5.7
“portal.hp.com’ 13.5 2.2
‘secure.webconnect.net’ 8.9 0.1
‘visit.geocities.com’ 4.3 5.9
‘www.ebay.co.uk’ 1.4 0.4
‘a248.e.akamai.net’ 0.8 1.9

Table 3. Table showing number of data points
for each port in the data set, together with an
indication of what protocols use each port

Port Number Usage
53 388 dns
80 2191 http
137 12263 Microsoft windows naming (netbios)
138 23946 Microsoft file sharing
139 367 Microsoft file sharing
143 1023 imap
445 262 Microsoft directory service
8088 2290 web proxy
11000 1101 local usage ?

each port is shown in Table 3.

Figure 8 shows the results of this analysis. For some
protocols, all connections are to the same machine e.g. mail
(143) and web proxy (8088). Some of the traffic is locally
correlated (e.g. dns (53) and http (80), Microsoft directory
service (445) and file sharing (139)). Two protocols stand
out as not having a locality property, Microsoft file sharing
(138) and naming (137). On closer inspection the traffic on
these protocols is bursty with the machine making rapid in-
teractions with about 20 hosts, repeated every 50 seconds
or so. The average rate of interactions is thus low. It thus
might be possible to throttle these protocols too by develop-

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

53

80

137

138

139

445

working set size

P
er

ce
nt

ag
e

of
 n

ew
 h

os
ts

Figure 8. Graph showing percentage of new
hosts against working set size for traffic on
different protocols. Each line is labelled ex-
cept the three at the bottom which are 143,
8088, and 11000. All of the protocols exhibit
some form of locality (number of new hosts
reducing with working set size) except 137
and 138.

ing a filter that allows bursty activity but restricts the long
term average rate of connections.

To summarize, the data from other protocols confirms
the observation that machines make outgoing connections
to few other machines at a fairly low rate. This shows that
throttling is immediately applicable to some protocols, but
that others might require slight modifications to the algo-
rithm.

5 Implementation

This section describes how the virus throttle could be im-
plemented on the Windows platform. The implementation
is shown in Figure 9, and is similar in architecture to that
used by “personal firewall” software, e.g. [17]. The net-
work software of a PC has a layered architecture, and the
filter is best implemented as an extra layer, or shim. Thus
all the traffic from the computer can be processed by the fil-
ter. The logical way to implement the delays is to delay the
initial connection attempt (e.g. the first SYN packet of the
connect handshake in TCP). Since no packets will leave the
machine while a connection is being delayed, any network-
ing timeouts will not be a problem. If the malicious code
sets its own timeout and restarts connection attempts, these
will be added to the queue as normal.

As described in Section 2, when an application is in-

6

Windows
service

Request for
connection to host

pop up window
Suspend and

Network
stack

Application

Delay shim

Queue too large/
growing too fast

Figure 9. A possible implementation of this
system on the Windows platform based on
the architecture of a software firewall. The
delay queue and working set is implemented
as a “shim” in the network stack. The queue
becoming too large suggests the presence of
an infected application, and a windows ser-
vice is used to suspend the application and
pop up a window asking the user for direc-
tions.

fected by a virus and is attempting to propagate vigorously,
the filter can detect this very quickly by monitoring the size
or rate of increase of the delay queue. A suitable response
is then to suspend the offending application and pop up a
window to alert the user. A windows service is required for
this functionality. This has two important functions: firstly
the spreading of the virus is stopped (the process in sus-
pended); and secondly the user can (hopefully) determine
whether this is a real problem or an error.

For protocols like e-mail where the address used by the
virus is not the machine address, the implementation needs
to be more sophisticated. This is because a single mail
server will handle sending mail to many different addresses,
so monitoring connections to new machines will not catch
an e-mail virus. The solution is a more detailed examination
of the packets sent to determine the destination address for
each e-mail, and applying the same filter (with longer time-
out settings) to those addresses. This could be implemented
in the network stack, using a proxy, or at the mail server.

6 Conclusions

This paper has presented an approach to throttling the
spread of viruses by targeting their propagation. The fun-
damental assumption used is that for a virus to spread ef-
fectively it needs to contact as many machines as possible,
as fast as possible. This is in contrast to the normal be-
haviour of machines, where connections to new hosts occur
at a lower rate, and those connections are temporarily cor-
related (the probability of returning to a recently accessed
host decays with time).

The algorithm developed has two parts: a method for

determining whether a connection to a host is new or not,
using a short list of past connections; and a method for en-
suring that the rate of connections to new hosts is limited,
using a series of timeouts. Data from web browsing be-
haviour was analysed verifying the assumptions above and
showing that the rate limit can be set as low as 1 cps with-
out causing undue delay. The nature of the filter ensures
that delays to normal traffic are significantly less than those
on high rate traffic, and that by monitoring the size of the
delay queue the virus propagation can be quickly detected
and stopped. Data from other protocols was also analyzed
lending support for the generality of this approach.

This approach should be effective against scanning
viruses such as Code Red [2] and Nimda [3], and also
against email viruses such as I Love You [4]. Reducing
the propagation rate by large factors3 and stopping the of-
fending application when the delay queue is too long would
greatly reduce the threat of these viruses.

Computer security is an arms race, and each security ad-
vance changes the likely future threats. The most obvious
consequence of widespread deployment of this technique is
for viruses to become more stealthy (spread at low rates).
This is not altogetherly bad as the longer the virus takes to
spread the more effective human-mediated responses will
be.

In a recent article [15] suggested a variety of extremely
virulent theoretical worms. These included the Warhol
worm that has sophisticated scanning algorithms to search
for susceptible machines effectively, and the Flash worm
that pre-computes the addresses of susceptible machines
and is estimated to spread through the entire Internet in
seconds. The technique described in this paper would be
effective against full-speed versions of both worms, and a
stealthy Warhol worm would not spread quickly. Unfor-
tunately since a Flash worm knows exactly what hosts to
attack, even a stealthy one will spread very quickly. For
example a Flash worm spreading at 1 cps will infect 10m
machines in around 100 seconds. This is slower than the
30 seconds that the full speed version might take, but is not
really slow enough. Combating this type of threat is funda-
mentally difficult.

Further work consists of building an implementation to
validate the behaviour of the system with real data and
checking the sensitivity of applications to delays in their
network connections.

In conclusion, this paper has shown how an automatic
response to computer viruses using benign responses can be
used to both slow and stop the propagation of viruses while
at the same time tolerating normal behaviour. The system
should be effective against all but the most sophisticated of
viruses.

3For example 200 in the case of Code Red, assuming a propagation rate
of 200 cps and a rate limit of 1 cps

7

References

[1] D. Brushi and E. Rosti. Disarming offense to facilitate
defense. In Proceedings of the New Security Paradigms
Workshop, Cork, Ireland, Sept. 2000.

[2] CERT. CERT Advisory CA-2001-19 “Code Red” Worm
Exploiting Buffer Overflow In IIS Indexing Service DLL,
July 2001. Available at http://www.cert.org/
advisories/CA-2001-19.html.

[3] CERT. CERT Advisory CA-2001-26 Nimda Worm, Sept.
2001. Available at http://www.cert.org/
advisories/CA-2001-26.html.

[4] CERT. CERT Advisory CA-2000-04 Love Letter Worm,
May 2002. Available at http://www.cert.org/
advisories/CA-2000-04.html.

[5] eEye Security. .ida code red worm, 2001.
http://www.eeye.com/html/Research/
Advisories/AL20010717.html.

[6] Entercept. Entercept web server, 2002.
http://www.entercept.com/products/.

[7] P. Ferguson and D. Senie. Network ingress filtering:
Defeating denial of service attacks which employ IP source
address spoofing, May 2000. RFC 2827.

[8] R. A. Grimes. Malicious Mobile Code: Virus Protection for
Windows. O’Reilly & Associates, Inc., 2001.

[9] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood,
and D. Wolber. A network security monitor. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
296–304. IEEE Press, May 1990. http://seclab.cs.
ucdavis.edu/papers/pdfs/th-gd-90.pdf.

[10] S. A. Hofmeyr. A Immunological Model of Distributed
Detection and its Application to Computer Security. PhD
thesis, Department of Computer Science, University of
New Mexico, Apr. 1999.

[11] Mazu Networks. Enforcer, 2002.
http://www.mazunetworks.com.

[12] E. Messmer. Behavior blocking repels new viruses.
Network World Fusion News, Jan. 2002. Available from
http://www.nwfusion.com/news/2002/
0128antivirus.html.

[13] Okena. Stormwatch, 2002. http://www.okena.com/
areas/products/products_stormwatch.html.

[14] A. Somayaji and S. Forrest. Automated response using
system-call delays. In Proceedings of the 9th USENIX
Security Symposium, pages 185–197, Denver, CO, Aug.
2000.

[15] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
internet in your spare time. In Proceedings of the 11th
USENIX Security Symposium (Security ’02), 2002.
Available at http://www.icir.org/vern/
papers/cdc-usenix-sec02/.

[16] M. M. Williamson and A. Norman. Throttling viruses II:
Implementation. Technical report, Hewlett-Packard Labs,
2002. In Preparation.

[17] ZoneAlarm. Zone alarm personal firewall, 2002.
http://www.zonelabs.com/.

8

