

Structured Content Independent Scalable Meta-formats
(SCISM) for Media Type Agnostic Transcoding

Debargha Mukherjee, Amir Said
Imaging Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-166 (R.1)
August 6th , 2002*

Email: {debargha, said} @hpl.hp.com

scalable
media,
content
adaptation,
transcoding,
universal
meta-format

This paper develops a universal meta-format (SCISM) and
methodology for representation and transcoding of arbitrary
scalable content. The abstractions in the meta-format are generic
enough to be applicable to any type of media with only a loose
restriction on the encoding structure. Scalable bit-streams are
naturally organized in a manner such that representation in
compliance with the meta-format is straightforward. By interpreting
the generic meta-format, a universal transcoder can transcode the
content appropriately to suit the needs and preferences of recipients,
without knowledge of the specifics of the content, its encoding
and/or encryption. The transcoder just needs to be told what the
structure of the particular content that goes through it is, and how
this content is to be transcoded to achieve the desired transcoding
operation. This is meta-data information, which can either be part of
the header of the media itself, or can be conveyed to a transcoder
separately for an entire class of content. The media meta-data, along
with a standardized specification of the capabilities and preferences
conveyed by a media destination are all that a transcoder needs to
adapt format compliant scalable content appropriately. With
universal transcoders, different transcoding infrastructures are no
longer needed for different types of scalable media.
.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

 1

Structured Content Independent Scalable Meta-formats
(SCISM) for Media Type Agnostic Transcoding

Debargha Mukherjee and Amir Said

Email: {debargha, said}@hpl.hp.com
Imaging Systems Laboratory, HP Laboratories

1501 Page Mill Road, Palo Alto, CA 94304, USA.

Abstract
This paper develops a universal meta-format (SCISM) and methodology for

representation and transcoding of arbitrary scalable content. The abstractions in the
meta-format are generic enough to be applicable to any type of media with only a loose
restriction on the encoding structure. Scalable bit-streams are naturally organized in a
manner such that representation in compliance with the meta-format is straightforward.
By interpreting the generic meta-format, a universal transcoder can transcode the
content appropriately to suit the needs and preferences of recipients, without knowledge
of the specifics of the content, its encoding and/or encryption. The transcoder just needs
to be told what the structure of the particular content that goes through it is, and how this
content is to be transcoded to achieve the desired transcoding operation. This is meta-
data information, which can either be part of the header of the media itself, or can be
conveyed to a transcoder separately for an entire class of content. The media meta-data,
along with a standardized specification of the capabilities and preferences conveyed by a
media destination are all that a transcoder needs to adapt format compliant scalable
content appropriately. With universal transcoders, different transcoding infrastructures
are no longer needed for different types of scalable media.

1. Introduction
Users access the Internet today using devices ranging from puny handhelds to

powerful workstations, over connections ranging from 56 Kbps modems to high speed
100 Mb/s Ethernet. Even though the available bandwidth, display and processing
capabilities may continue to grow following Moore’s law, the heterogeneity and the
spread of capabilities at any point in time is here to stay. On the other hand, as bandwidth
and other factors grow, so will the richness of media that would need to be delivered to
users. Under these circumstances, a rigid media representation format, producing content
only at a fixed resolution and quality is clearly inappropriate. A delivery system based on
such a compression scheme can only deliver content satisfactorily to a small subset of
users interested in the content. The rest, either does not receive anything at all, or receives
poor quality and/or resolution relative to the capabilities of their network connections and
/or accessing devices. The inability to cater to this diversity has been a determining factor
that stunted growth of new rich media, because static rich content would cater only to

 2

power users comprising a small fraction of the whole. The bottom line is, without
adequate focus on seamless content adaptation, accessibility and usability of media will
always be severely limited.

1.1. Multiple versions
A practical approach to catering to heterogeneity is one where multiple versions of

any piece of media, suiting a variety of capabilities and preferences, are maintained
simultaneously. While this approach works well with delivery models where the recipient
directly connects to a media originator, for any other multi-hop, multi-recipient delivery
scenario, there is too much redundancy leading to wastage of bandwidth and storage.
This is especially so, when the media creator wishes to provide a wide range of choices
catering to a large consumer base, and therefore needs to maintain a large number of
versions differing in a variety of ways. In other words, this approach does not scale well
with the amount of flexibility a media creator would like to provide.

It is important to realize however, that this case is actually a fully redundant special
case of true scalability to be described next, and consequently the framework proposed in
the paper still applies.

1.2. Scalable Bit-streams
In order to provide a more elegant solution, scalable compression formats have been

proposed. In a scalable bit-stream, smaller subsets of the whole produce representations
at lower resolution, quality, etc. Different subset bit-streams extracted from the full
parent bit-stream, can readily accommodate a variety of users by automatically
maximizing multimedia experience for a given user’s computing power, connection
bandwidth, and so on. By adapting rich media content written for high-end machines to
less powerful machines in various ways, the overheads involved in producing different
versions for different scenarios can be virtually eliminated. Furthermore, content created
today at the highest possible quality, remains ‘timeless’ when represented in a scalable
format, and the experience it provides gradually increases, as the power of machines,
connection speeds, etc. improve.

There are various types of bit-stream scalability that can be designed, depending on
the type of media. For example, SNR (quality) scalability refers to progressively
increasing quality as more and more of the bit-stream is included, and applies to most
types of media. Resolution scalability refers to fineness of spatial data sampling, and
applies to visual media such as images, video, 3D etc. Temporal scalability refers to
fineness of sampling in the time-domain, and applies to video and other image sequences.
There are several types of scalability pertaining to audio, such as number of channels and
frequency band. In the future, with the evolution of newer, richer and more interactive
types of media, there will be newer types of scalability that we do not even know yet.

In recent years, there has been a great deal of interest in the research community on
scalable compression of various types of digital media. Here the challenge is to obtain a
scalable representation without sacrificing compression efficiency. So far however, it is
only in the area of still image compression that it has been possible to obtain efficient
scalable coders that even improve compression performance (Ex. EBCOT [1], SPIHT
[1]). EBCOT [1] led to the evolution of the new JPEG2000 [2] standard for contone
images. The JBIG and JBIG-2 standards for binary images are also scalable. Besides

 3

images, there has been considerable effort to obtain efficient and compact scalable
representations of video, audio, and other types of media. In fact, most existing media
encoding standards today, [3], [4], [5], [7], [8], [9] incorporate various scalability modes,
although generally there is a loss in compression efficiency to use them. With evolution
of new types of media, it is conceivable that there will be emphasis on scalable
representations for them as well.

A scalable bit-stream does not always have a single type of scalability. In fact,
different types of scalability may co-exist in a multi-dimensional structure, so as to
provide a wide range of adaptation choices. For example, while SPIHT [1], its
predecessor EZW, and several of their derivatives only support SNR scalability, EBCOT
[1] endeavors to combine quality scalability and resolution scalability in a common
format, to enable distribution and viewing over a wider variety of connections and
devices.

Furthermore, in new rich media, different media elements are often clubbed together
to provide a composite media experience. For example, an image with audio annotation
and some animation provides a composite experience of a presentation using three
elemental media elements (an image, an audio clip, some animation data). The composite
rich media model leads to newer types of scalability specific to the media, because
certain non-critical elements may be dropped to accommodate other more critical ones
within the limited resources of a recipient.

1.3. Scalable Content Adaptation and Delivery Infrastructures
In order to unlock the full potential of a scalable bit-stream, the format alone is

insufficient. It is necessary to develop and deploy complete infrastructures that support
appropriate adaptation and delivery of such content, so that a diverse recipient base can
experience it with a seamless ease of use.

For example, even though the JPEG2000 format itself is very powerful, the lack of a
complete infrastructure that supports appropriate transcoding of JPEG2000 content and
delivery to a heterogeneous recipient base has severely restricted the usability of its
scalable features. In recent years, a great deal of attention has been focused on delivering
streaming video over the Internet or wireless [10], [11], [12]. In order to reach
heterogeneous recipients in a dynamic transmission environment, video standards of
MPEG-X (mostly MPEG-4) [3], [4], [5], [7] and H.26X [8], [9] families incorporate
various forms of scalability. Although rudimentary in scope, functionality and efficiency,
as compared to JPEG2000, they hold considerable promise for supporting diversity.
Nevertheless, scalable video over the Internet has been limited to maintaining multiple
versions for a few different types of connections, because complete infrastructures that
support transcoding and transport of scalable video formats are non-existent.

1.4. Need for Generic Infrastructures
Any infrastructure, is expensive to deploy, and requires significant financial

commitments from the patron companies or patron consortia. In order to guarantee
constancy of the format it would also be desirable that the format the content is
represented in be standardized. On the other hand, standards take several years to come
into effect, typically much longer than is commensurate with the normal pace of change
in the multimedia industry. As new types of media beyond traditional images, video and

 4

audio evolve; it would become more and more difficult to expect standards to support
their representation.

Furthermore, even if efficient scalable formats evolve for every new type of media,
the inevitable difference in the structure of the content would necessitate use of different
infrastructures for scalable delivery of different types of media. The expenses involved
present a very formidable obstacle in adoption of such new media and supportability of
its scalability features.

The only way out is to develop infrastructures for content adaptation that are agnostic
of the type of media being transcoded. Such universal transcoding infrastructures only
need to be deployed once to support transcoding and delivery of all types of scalable
media, as long as they conform to certain loose restrictions on the encoding structure. Use
of universal infrastructures that support delivery and transcoding of a wide variety of
media types in a convenient manner is the key to successful adoption of new scalable
media.

1.5. Motivation for this work
In order to enable universal content adaptation infrastructures for scalable media, we

introduce a new paradigm for scalable media representation that standardizes a common
meta-format for all scalable media types rather than a single format for a specific media
type (such as JPEG2000 for images). The meta-format is called SCISM (Structured
Content Independent Scalable Meta-format). Media adaptation and delivery
infrastructures based on interpretation of such meta-formats would be truly universal and
cost-effective because they would support a wide variety of media types rather than a
single type. Such universal transcoding infrastructures can support transcoding and
delivery of all types of scalable media, as long as they conform to certain loose
restrictions imposed by the meta-format.

2. Media-Type-Independent Transcoding
Noting that the eventual purpose of scalable representations is seamless, flexible

delivery to a heterogeneous recipient base, it is not only enough to obtain a compact
scalable representation. It is also necessary to develop transcoders in the network that
convert content suitable for a higher set of capabilities and preferences to a lower one.
Because it is impractical to create new transcoders for every type of media that currently
exists and would evolve in the future, we need to dissociate the media-type from the
transcoding operation. This is referred to as media-type agnostic transcoding.

2.1. Universal Meta-format
In order to enable media-type agnostic transcoding, it is necessary to develop a

media-type agnostic meta-format that compressed scalable bit streams must conform to,
and which must be understood by all intermediate transcoding nodes within a delivery
architecture. This paper is essentially involved with developing such a universal meta-
format for all scalable media, called SCISM (Structured Content Independent Scalable
Meta-format), and an associated methodology that allows network transcoders to
generate content suitable for a variety of outbound bandwidths, display capabilities, user
preferences and so on, from the incoming content. Because transcoders based on SCISM

 5

are truly media-type- and content-independent, they can transcode different types of
content, both that are currently available (images, video, audio) as well as those that
would evolve in the future (different types of new 3D media, composite media etc.), as
long as the content bit-stream conforms to the loose SCISM meta-format. Although the
meta-format needs to be standardized, it operates at a more abstract level than traditional
standards, and requires only format compliance in a loose manner.

2.2. SCISM based Delivery Model
Consider Figure 1, which shows a generic media delivery model, where media data

created by the Originator is routed through an arbitrarily long chain of transcoders before
reaching an eventual recipient. It is assumed that both the Originator of the media as well
as the software or hardware system used to experience it at the Recipient end understand
the actual media-encoding format. It is likely that either the same company created both
the media content and the experiencing system; or the creator company opened up its
technology for another company to create the experiencing system for, as part of a
partnership; or the media format is a SCISM-compliant open standard known to all.
Irrespective of the actual encoding however, the scalable media data at a higher level is
conformant with SCISM, which all intermediate transcoders understand. Transcoders
receive SCISM compliant scalable content, and deliver transcoded content over multiple
outbound connections. All content after transcoding is also SCISM meta-format
compliant so that it can be re-transcoded at a subsequent stage of delivery.

It is also assumed that each transcoder has knowledge of the aggregated capabilities
and preferences of all eventual recipients connected to each of its outbound connections.
This information mostly originates from the recipients (shown in thin arrows in Figure 1),
but parts may be sensed by transcoders themselves, as it is aggregated up the transcoding
chain by the delivery infrastructure involved. For a particular transcoder at transcoding
time, this information is referred to as its outbound constraints, which in general may
change dynamically.

Scalable
Media

Conforms
to a meta-

format

Transcoded
Scalable
 Media

Still conforms to
meta-format for

subsequent
transcoding

Transcoder

Transcoder

Recipient

Recipient

Does not understand
the data, only the

meta-format.
Contains information
about all outbound

connection(s).

Originator Transcoder

Media Data

Capabilities & Preferences Data

Figure 1. Media-Type-Independent Transcoding

 6

Note that while the originator/creator of the media as well as the recipients/consumers
of the media must have specific knowledge about the encoding in order to provide an
experience for the end-user, the intermediate infrastructure does not need to know what
the content is and how it has been encoded in order to transcode appropriately. The
transcoding operation is based purely on an interpretation of the meta-format, and does
not depend on the specifics of the actual content. Furthermore, the content itself can be
encrypted, and transcoding can still proceed as before in the encrypted domain.

While transcoders in Figure 1 are solely functional blocks, in reality they can be part
of Media servers from where offline or online content originates; Midstream Routing
servers through which scalable content is transcoded and routed; or Edge servers that
connect directly to eventual recipients. Also the generic delivery model considered can
collapse to as simple as a client-server delivery system where a client requests content
from a media server with specified capabilities and preferences, and gets appropriately
transcoded content directly from it. In this case, the functional transcoder would be part
of the Media server itself.

2.3. Isolated Transcoder Model
From the generic model, we can isolate a single functional transcoder whose external

model is shown in Figure 2, to understand the scope of the work. The transcoder receives
a SCISM compliant piece of media, which it must transcode appropriately and forward in
a SCISM compliant manner to an eventual consumer or another transcoder. It also
receives another input, a specification of the capabilities and preferences of its output
connection referred to as outbound constraints for the transcoder based on which it must
adapt the content. The way the capabilities and preferences of an outbound connection, is
conveyed to a transcoder, depends on the specifics of the delivery architecture. The
transcoder may either be directly connected to a recipient who conveys its capabilities to
it, or aggregated capabilities of all downstream clients may be conveyed to a transcoder
by some network aggregation mechanism. Based on the information contained in the
SCISM meta-format and the outbound constraints, a transcoder performs the transcoding
operation on the input stream and delivers content to its outbound connections.

The actual SCISM meta-format consists of two parts: the first part contains meta-data
that describes the structure and properties of the content in a non-media-type specific
manner, and the second part that contains the actual bit-stream for encoded scalable data.

SCISM

TranscoderSCISM
SCISM

Outbound
Constraints

Meta-data Scalable Bit-stream

Figure 2. Transcoder external model

 7

The SCISM meta-data in the input media and the outbound constraint (Capabilities and
Preferences) specifications together provide all the information a transcoder needs to
decide how to transcode the content. For the most part, the transcoder only works with
numbers to make its decision.

In addition, the format is derived solely based on transcoding considerations and can
be applied at various levels of granularity, based on design choices for transcoding. It can
be interpreted as a file-format if transcoding is to be applied to a file as a whole, or as a
packet-format if the unit of transcoding is a network packet.

Formalizing, the internal model for the transcoder is shown in Figure 3. In particular,
it consists of the following functional blocks: 1) A parser to parse the SCISM meta-data,
2) a parser to parse the outbound constraint specifications, 3) An optimizer to decide on
transcoding options, 4) a meta-data transcoder to scale the media meta-data to obtain the
outbound media meta-data, 5) a bit-stream transcoder for the scalable bit-stream part.

2.4. Relation to Network Packetization
It is important to realize that while SCISM is about formats and meta-data describing

how format-compliant scalable content is to be adapted, in an actual delivery scenario the
content would probably need to be packetized and transmitted. While there may be
various design choices for usage of the SCISM format, there are two cases that would be
of particular interest, one based on using SCISM as a file-format, and another based on
using it as a packet-format.

In the file-format usage case, the scalable media content is actually much larger than
a typical network packet. The transcoder either transcodes an entire SCISM file in one
shot before network packetization and transmission, or the transcoding may happen
down-stream possibly in multiple stages. In the latter case however, it is important to
realize that it is not necessary that the entire SCISM compliant media file be available at
the transcoder before the transcoding operation can commence. In fact, the media meta-
data and the outbound constraint specifications are all that are needed for a transcoder to
decide how to transcode the media content. As long as the meta-data has been received in
full, the scalable bit-stream parts in Figure 3 may come in stages in multiple network
packets, and either forwarded or dropped by the transcoder as they arrive, based on the

Input
SCISM

meta-data

Input SCISM
Meta-data Parser

Outbound
Constraints Parser

Outbound
Constraints

Optimizer and
decision maker

Meta-data
Transcoder

Output
 SCISM

meta-data

Scalable bit-stream
Transcoder

Input
SCISM
scalable

 bit-stream
May be transmitted over
multiple network packets

Output
SCISM
scalable

 bit-stream

May be
 part
 of a

single
network
 packet

Figure 3. Transcoder Internal model

 8

transcoding decisions already made. Thus, the same transcoding model applies both to
files transcoded in one shot as well as to a streamed file.

In the packet-format case, the entire SCISM compliant content, including the meta-
data and the multi-tier scalable bit-stream, comprises one packet, which can be
transcoded by a mid-stream transcoder and transmitted. Packet based scalable
transcoding has been considered before in [10], [11].

In the rest of this paper, we will describe the specifics of the SCISM universal meta-
format: comprising the scalable bit-stream format, the meta-data that goes with the
media, as well as how the capabilities and preferences are conveyed. We will also
describe how the transcoding operation is conducted based on the meta-format, the meta-
data and capabilities. It is important to stress that this paper really attempts to understand
and specify what information needs to be conveyed in media headers and in outbound
constraints, to make media-type-agnostic transcoding possible. The design of the actual
bit-stream and/or XML syntax, to describe media and the outbound constraints, has not
been covered. Note that from interoperability and portability considerations, it may be
found more convenient to use XML based languages for the SCISM meta-data and
outbound capabilities and preferences specifications, but we do not discuss these issues in
this paper.

3. Scalable Bit-streams and SCISM Meta-Bit-Stream-Format
A scalable bit-stream is one where smaller subsets of the whole produce

representations at lower quality, resolution etc. Different types of scalability (e.g. SNR,
Resolution, Temporal, Interactivity) apply to different types of media, and often more
than one kind is combined. From an understanding of how a generic scalable bit-stream is
naturally organized, we propose a common media-type-agnostic bit-stream-format for all
scalable media, referred to as the SCISM meta-bit-stream-format. This corresponds to the
scalable bit-stream part of SCISM in Figure 2.

3.1. Nested Scalability Structure
Any scalable bit-stream inherently contains nested tiers of scalability. The bit-stream

is first divided into multiple layers of tier 1 scalability. Here tier 1 is an abstraction, and
depending on the actual content it may mean any one of resolution, temporal, SNR and so
on. Each data chunk in each tier 1 layer, is further divided into layers of tier 2 scalability,
and so on. Again, tier 2 is an abstraction, and may mean different things based on the
actual media content. And so on. As an example, consider a JPEG2000 bit-stream, which
can be readily cast into this meta-bit-stream-format. In one of the scalability progression
modes in JPEG2000 – RLCP – the highest tier is resolution scalability, and within the
resolution scalable layers there are nested SNR scalable layers. In an alternative
scalability progression mode – LRCP – the highest tier is SNR, and within SNR layers
there are nested resolution layers. However, the multi-tier nested scalability structure is
common in both.

3.2. SCISM meta-bit-stream format
The proposed SCISM meta-bit-stream-format is based on this inherent nature of

scalable bit-streams, and comprises nested tiers of scalability indexed by Tables of

 9

Contents (TOCs), as shown in either variant in Figure 4. The only difference between the
two variants is in the organization of the Table of Contents (TOC), which we will
describe soon. But the point to note first is that the essential data part in both is organized
in multiple nested scalability layers. While the actual content may vary from media to
media, the only requirement for transcoding is that the Header and the TOCs conform to
the meta-format exactly.

The above-described meta-bit-stream-format is analogous to that of a book, where
there are nested layers for chapters, sections, sub-sections and so on. It is conceivable that
the book-format be common across all books irrespective of content. Likewise, all
scalable bit-stream representations can be cast into a common nested scalability structure
that can be standardized into a bit-stream-format, irrespective of content.

The purpose of the TOCs is to provide easy access to chunks of the bit-stream for
dropping, or truncating during the transcoding operation. Depending on the way the
Table of Contents (TOC) is specified there can be two formats, shown in Figure 4(a) and
Figure 4(b) respectively. In the (a) Nested Relative Indexing case, there are multiple
small one-dimensional TOCs, each specifying the offsets relative to itself for its
constituent layers at the same tier. If the constituent layers have further nesting, at the
offsets specified there would be the next tier TOCs to provide the relative offsets to find
their constituent layers, and so on. In the (b) Absolute Indexing case, there is one big
multi-dimensional TOC at the beginning, which provides the offsets relative to itself to
each layer at the deepest nesting tier.

TOC (Tier 1) Layer 2 (Tier 1) Layer 1 (Tier 1)

TOC (Tier 2) Layer 2 (Tier 2) Layer 1 (Tier 2)

TOC (Tier 3) Layer 2 (Tier 3) Layer 1 (Tier 3)

(a) Nested Relative Indexing

TOC (All Tiers) Layer 2 (Tier 1) Layer 1 (Tier 1)

Layer 2 (Tier 2) Layer 1 (Tier 2)

Layer 2 (Tier 3) Layer 1 (Tier 3)

(b) Absolute Indexing
Shaded parts in both conform to the meta-format. The rest is free of requirements.

Figure 4. Meta-formats with nested scalability

 10

Formalizing the notation for the bit-stream, if the data has L nested tiers of scalability,
and the ith tier contains li layers, we can say that the data consists of an ordered
concatenation of l0×l1×…×lL–1 data chunks B(j0, j1, …, jL-1), where j0=0,1,…, l0–1;
j1=0,1,…, l1–1; …; ji=0,1,…, li–1;…; jL–1=0,1,…, lL–1–1. A way to visualize this data is to
consider a L-dimensional data cube of size l0×l1×…×lL-1, the (j0, j1, …, jL–1)th element of
which is the data chunk B(j0, j1, …, jL–1), called the atom. The full bit-stream is
essentially a concatenation of these data chunks if the indices are scanned in order from
jL-1 towards j0.

Using an example of the first two tiers of JPEG2000 RLCP progression mode, we can
visualize the data as organized in a 2-dim cube (L=2) as shown in Figure 5. The full bit-
stream apart from the header and the TOC can be visualized as being obtained by
scanning the atoms in the data cube in row-by-row order, starting from the bottom and
moving up. The same concept generalizes readily to more than two dimensions or nested
tiers. An example of a three-dimensional data cube is shown in Figure 6.

In the Absolute indexing case, it is also possible to change the order of the data atoms
so that the bit-stream is obtained by scanning the data cube in any order other than row-
by-row, such as zigzag etc.

TOC Spatial layer 1 Spatial layer 2

SNR layer 1 SNR layer 2 SNR layer 1 SNR layer 2

B(0,0) B(0,1) B(1,0) B(1,1)

B(0,0) B(0,1)

B(1,0) B(1,1)

SNR
(Tier 2) scalability

Spatial resolution
(Tier 1) scalability

Atoms

Figure 5. JPEG2000 example bit-stream

B(0,0,0) B(0,1,0) B(0,2,0) B(0,3,0) B(0,4,0)

B(1,0,0) B(1,1,0) B(1,2,0) B(1,3,0) B(1,4,0)

B(2,0,0) B(2,1,0) B(2,2,0) B(2,3,0) B(2,4,0)

B(3,0,0) B(3,1,0) B(3,2,0) B(3,3,0) B(3,4,0)

B(4,0,0) B(4,1,0) B(4,2,0) B(4,3,0) B(4,4,0)

B(5,0,0) B(5,1,0) B(5,2,0) B(5,3,0) B(5,4,0)

B(5,0,1)
B(5,0,2)

B(5,1,1)
B(5,1,2)

B(5,2,1)
B(5,2,2)

B(5,3,1)
B(5,3,2)

B(5,4,1)
B(5,4,2)

Tier 2

Tier 1 Tier 3

Atoms

Figure 6. Data cube representation of multi-tier scalable media

 11

While the meta-bit-stream format and the data cube representation has been defined
above for true scalable bit-streams where successive layers in each tier are handled
incrementally by an eventual recipient, the same format and representation applies to the
case when one or more tiers are handled exclusively. This is essentially equivalent to
multi-version scalability, where multiple independent versions are maintained
simultaneously in the layers of these tiers, but an eventual recipient would use only one
of them. Generalizing, each tier in the meta-bit-stream format can be either incremental
or exclusive in terms of scalability. The header contains a flag for each tier to denote
whether the layer is multi-version or incremental. If all tiers are exclusive, the bit-stream
is fully multi-version where each atom is an independent version. If all tiers are
incremental, the bit-stream is truly scalable. In the most general case, tiers could be
mixed between incremental and exclusive scalability. In all cases however, the same
meta-bit-stream format and data cube representation applies.

Also note that exclusive tiers may be regarded as a special case of incremental tiers,
but the transcoding is no longer efficient unless this distinction is made apparent to a
transcoder by header information.

3.3. Transcoding
The above meta-bit-stream-format allows multiple tiers of scalability to co-exist in a

bit-stream, and allows simple transcoding tasks like truncation, bit-stream skips and
rearrangement to produce bit-streams at different scales in a variety of ways, without
knowledge of the actual content or encoding scheme. If all media routed through a
transcoder abide by this meta-bit-stream-format packaged as part of SCISM, the
transcoder can transcode content without needing to decompress or decrypt. Furthermore,
since only the structure of the data is important, the same infrastructure can be used for
all types of media, both present and future, as long as they comply with SCISM.

Having understood the meta-bit-stream format and the data cube representation, we
next define formally a generic transcoding operation on it.

In particular, with a scalable bit-stream conformant with the above meta-bit-stream-
format, all transcoding is implemented as dropping layers, repacking the bit-stream and
updating the TOCs appropriately, while preserving the same generic multi-tier structure
so that it can be re-transcoded. For incremental tiers, layers can only be dropped from the
outer end whereas for exclusive tiers, all but one layer is dropped.

Using our previous notation, for the ith tier, either up to di layers are included if
incremental, or only the di

th layer is included if exclusive. The transcoded subset bit
stream would then be given by the concatenation of the atoms B(j0, j1,…, jL–1), where for
tier i=0,1,…, L–1 either ji=0,1,…, di–1 for incremental tier, or ji=di–1 for exclusive tier.
Note that if the transmitted data-stream has to be non-null, in all tiers at least one layer
must be transmitted. In other words, all non-null transcoded bit-streams must contain at
least the layer B(z0, z1,…, zL–1), where zi=0 for incremental tiers and zi= di for exclusive
tiers. Using the data cube visualization, dropping layers from the end in an incremental
tier is equivalent to chopping off the ends of the data cube in units of layers. Selecting a
particular layer from an exclusive tier is equivalent to extracting a slice from the data
cube. In general, a reduced cube from the original is transmitted after transcoding. A
couple of examples for the 2 nested tiers case are shown in Figure 7.

 12

3.4. Causality Requirement
Because transcoding can be implemented as simple dropping of layers, a transcoder

does not need to decode or decrypt content in order to transcode. However, an encoder or
an encrypter must maintain causality in data atoms, so that a decoder or decrypter can
still handle transcoded content. In general, it is necessary to ensure that there are no
dependencies across layers in excusive tiers, and the dependency across layers in
incremental tiers is limited to being causal.

Specifically, the causality constraint for encoding ensures that for encoding data atom
B(j0, j1, …, jL–1), the encoder only uses information from atoms B(k0, k1, …, kL–1), where
for incremental tiers i, ki ≤ ji, and at least one ki ≠ ji; and for each exclusive tier i, ki=ji;
within the usual limits 0 ≤ ji , ki ≤ li – 1. This ensures that for any usable transcoding, the
decoder at the consumer end can decode the content unambiguously.

The causality constraint for encryption is that the starting state of the encryption
engine for atom B(j0, j1, …, jL–1), is derived from the ending states of the encrypter for
adjacent causal atoms of incremental tiers B(k0, k1, …, kL–1), where for incremental tiers i,
0 ≤ ji – ki ≤ 1 and at least one ki ≠ ji; and for exclusive tiers ki=ji; within the usual limits 0
≤ ji , ki ≤ li – 1. Progressive encryption enabling transcoding without decryption has been
considered in [10], [11].

Finally note that even if the structure of the encoded bit-stream format is exclusive in
certain tiers, the type of encryption applied may modify the exclusivity. For example, a
fully multi-version bit-stream with all tiers exclusive can actually be converted to a fully

 Tier 1
scalability (Inc)

Tier 2
scalability (Inc) B(0,3)B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(5,0)

B(4,0)

B(5,3)

B(4,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

B(1,0)

B(1,0)

B(1,3)

B(2,3)

B(3,3)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 incremental
scalability nested with 4 layers of
tier 2 incremental scalability.
Transcoding drops one tier 2 layer
and two tier 1 layers. The shaded
atoms comprise the transcoded
bit-stream.

Atoms

Tier 1
scalability (Exc)

Tier 2
scalability (Inc) B(0,3)B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(5,0)

B(4,0)

B(5,3)

B(4,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

B(1,0)

B(1,0)

B(1,3)

B(2,3)

B(3,3)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 exclusive
scalability nested with 4 layers of
tier 2 incremental scalability.
Transcoding drops one tier 2 layer
and selects the 4th tier 1 layer. The
shaded atoms comprise the
transcoded bit-stream.

Atoms

Figure 7. Visualization of layer drops for 2-tier examples.

 13

incremental bit-stream for all practical purposes if the encryption applied uses
information across boundaries of exclusive tiers.

3.5. Mid-stream transcoding for combinations
While so far, what we have considered is the generic model for transcoding that

generates a single lower version that allows either decryption/decoding for eventual
experience, or re-transcoding to other lower versions, there are other scenarios where
different things may be done. This particularly applies to the case where a mid-stream
transcoder must deliver a combination of several versions of a piece of media, to be
eventually extracted by other downstream transcoders. In this situation, a mid-stream
transcoder could send the bounding box containing the different versions, which though
wasteful allows re-transcoding to unknown lower versions downstream. Exclusivity of
tiers is not considered so as to provide the option for downstream transcoders

Alternatively, if the versions needed are known exactly, it can save bandwidth by
converting the unused atoms in the non-intersecting region into empty ones while
preserving the same structure of the bit-stream corresponding to the bounding box.
Atoms can be made empty by dropping the corresponding bit-stream component, while
pointing the corresponding TOC entries to empty chunks.

4. Attributes

4.1. Definition
Now that we have seen the structure of the meta-bit-stream-format, and what a

transcoding operation involves, we next need to talk about ways a transcoder can decide
which layers to drop, without knowing what the media is all about. A transcoder is
expected to have knowledge of the capabilities and preferences of its outbound
connection(s). At the same time, headers in the input scalable media contain descriptions
pertaining to certain scalability properties based on which the content may be transcoded.
The bridge between the two sides is provided by attributes. The capabilities and
preferences as well as the media meta-data speak the same language through attributes, so
that a transcoder can decide how to drop layers to match the two sides. If a transcoder
finds that the capabilities of an outbound connection cannot support the full media data,
then layers are dropped until they can.

Attributes are nothing but certain quantifiable properties relevant to media
experience. However, they have different interpretations for different entities in the
delivery model. To the media creator/originator, they are quantifiable properties based on
which a content may be transcoded. To a media consumer they are quantifiable properties
to indicate its limitations and preferences. To a transcoder, they are simply numbers
based on which it must decide how to drop layers and transcode an input bit-stream.

In particular, the attributes and their quantified values are used to describe both the
capabilities and preferences of a transcoder’s outbound connection, referred to as
outbound constraints, as well as to describe a received media in terms of the minimum
capabilities that a client should have to experience it, referred to as media description that
occurs in the SCISM meta-data.

 14

However, note that not all attributes are relevant to all types of media, and not all
attributes may be specified for all media content. Likewise, not all attributes for an
outbound connection may be known to a transcoder. The transcoder only transcodes
content when attribute codes found in the media description are also involved in certain
outbound constraints.

Some examples of attributes are: size, display_resolution, processing_power,
number_of_speakers etc. Note that while bandwidth is a more commonly used term than
size, it is not strictly a property of the media, because it depends on the desired latency of
transmission. Bandwidth however could be an attribute under a standardized assumption
about the latency.

4.2. Attribute types and code space
 Attributes can be either reserved or custom. Reserved attributes, like the ones

mentioned above (size, display_resolution, etc.), have the same standardized meaning
across different media-types. Custom attributes are relevant only to one or a few specific
types of media.

In addition, each attribute is associated with a 4- or 8-byte code called the
Attribute_code that uniquely identifies the attribute. Thus, size would have a code that is
different from display_resolution, and so on. While codes for reserved attributes may be
standardized, other media specific custom attributes can be defined later by allocation of
the attribute code space to different companies creating media. Enough reserved and
custom code space is left free to allow extensions to denote properties of new types of
scalable media, as they evolve. If both the media creator and media experiencing systems
are owned by the same company or are owned by different companies in a partnership or
agreement, they can define their own attributes and what they mean in the way they want.
The only requirement they need to follow is to use a pre-allocated range of attribute
codes for their custom media.

4.3. Attribute values
The most important feature of all attributes is that they are expressed quantitatively in

terms of non-negative numbers, referred to as attribute values. For reserved attributes, the
quantification is also standardized along with the code. For example, size can be
expressed in KBytes, display_resolution may be expressed as the diagonal width of the
screen in number of pixels, processing_power may be denoted by CPU_speed ×
Number_of_processors, and so on. Whatever method is used to quantify the reserved
attributes must be standardized so that uniformity across different types of media and
how capabilities are conveyed is preserved. However, the transcoder itself does not need
to know what these attributes mean.

For most known attributes, the value is either non-decreasing or non-increasing with
layers. Thus, as more layers are added to a scalable media, the attribute values usually
change monotonically.

We will next describe the overall media format in detail and show how media
descriptions are conveyed in the headers, so that the transcoder has all the information it
needs to decide which layers to drop.

 15

5. SCISM Format

5.1. Parcels and Components
The content passed around in each transmission instance is called a parcel, defined as

the basic unit of transcoding. The size of a parcel is really a design choice, and may range
from an entire scalable compressed file to a network transmission packet. Each parcel in
the generic case may be comprised by multiple media components to provide a composite
experience. For example, one component may be an image and a second component may
be audio annotation that goes with it; both components are packaged together in a single
parcel to provide an experience of image viewing with audio annotation; when parcels
like that are transmitted at a high enough rate, we have video. Each media component in a
parcel is a coded unit of data that may be represented in the scalable meta-bit-stream-
format of Figure 4, along with a header containing its description. The overall media
description for a parcel consists of the descriptions for the individual components in its
header, while the overall parcel data consists of (scalable) coded data for the individual
components.

The top-level parcel construct is roughly shown in Figure 8. The parcel consists of
two parts: the parcel header and the parcel data. Without going into the details
immediately, the parcel header part contains among other things the number of media
components, as well as the individual headers for each constituent component. The parcel
data part contains the encoded data for the individual components.

We first describe the format of the component header containing the component
description, and then show in greater detail how multiple components are combined in a
single media parcel.

5.2. Component header format
The format for each media component header is shown in Figure 9. The header starts

with a flag specifying whether the media component is a SCISM meta-format compliant

1 Parcel Data

Parcel Header Parcel Data

Media Description

M Component Desc. List Component Data List …

Number of
Components

…

Comp 0
Header

Comp 1
Header

Comp M-1
Header

Comp 0
Data

Comp 1
Data

Comp M-1
Data

Figure 8. Top Level Parcel Format

 16

scalable media or not. If not, no transcoding is done, and the entire media parcel is
forwarded as is to the outbound connection(s). There is no component description in the
header in this case. If however the flag indicates that the parcel is scalable and SCISM
compliant, then the description follows in the header.

The component description contains L, the number of nested scalability tiers,
followed by li, a list containing the number of layers in each tier i. Next comes a list
called the consistency list, consisting of a subset of tiers that are important for preserving
consistency across parcels of the same type. We will explain this further in the section on
consistency (Section 7).

Following the consistency list is an L-bit field, called Incremental_Exclusive_Flags
that describes by a single bit for each tier, whether the tier is in an incremental scalable
format, or whether there are multiple independent exclusive layers packaged within the
tier. Recall that the same bit-stream format and consequently the media component
header can describe incremental, exclusive or mixed bit-streams. While exclusive tiers
are really a special case of incremental tiers, these flags are needed so that a transcoder
may increase the transcoding efficiency by knowing that some causal atoms will not be
used (see section 3).

Component Header

FC Flag Comp. Description

Format Compliance flag
Flag = 1 for scalable meta-format compliant media, = 0 for non-compliant. If flag = 0, Component
Description is null. No transcoding is done, and the entire media bit-stream is forwarded as is.

1 Comp. Description

L (l0, l1, …, lL–1) N Attribute data list (AD0, AD1, …, ADN–1)

Number
of tiers

Number of layers
in each tier

Number of
Attributes

AD0

Attribute code Ref Attribute value Distribution over layers/tiers

Empty fraction Dist0

Relevant data for
each attribute

AD1 ADk ADN–1

ID Comb

Consistency List

Mtype

Monotone TypeCombination flag

I

Incremental/Exc
lusive flags

Number of
distributions

P Tier-to-Dist Map Dist1 DistP–1

Figure 9. Header format for Media Component

 17

The next field is N, the number of attributes relevant to the media, followed by a list
of required data for each of them. The data for each attribute first contains the unique
Attribute_code code that identifies this attribute. The Atribute_code actually consists of
two fields, Attribute_ID and Attribute_combination. The Attribute_ID is a unique
identifier, and Attribute_combination is a field that describes how the attribute value
changes when combined with another media component having the same attribute.
Possible values are additive, maximum, minimum and so on. For example, size is always
additive in combination, but display_resolution is the maximum of individual
components after combination. That is, when two or more media components are
combined, the size required is the sum of the sizes required for all of them. On the other
hand, the display_resolution required is the maximum of all of them. The relevance of
this field will become clearer when we describe combination of media components in the
next paragraph. Overall, the unique Attribute_code not only identifies the attribute, but
also defines its behavior when combined with another component.

 The next field is the Attribute_Monotone_Type, which indicates how the attribute
value changes with increase in layers. Possible types are monotonic non-decreasing,
monotonic non-increasing, non-monotonic with the number of layers.

The next field in attribute data is the Reference_Attribute_value. This is the numeric
reference value of the attribute, which when multiplied with distribution values that
follow later, yield the attribute value for various layer drop options.

The Reference_Attribute_value field is followed by a specification of how the
attribute value changes when layers are dropped. This specification is called the
distribution because of its parallels with the cumulative distribution of a random vector.
The specified distributions can either be exact or approximate.

The distribution is similar to a multidimensional cumulative distribution. If there are
L nested tiers with li layers in the ith tier, we need to transmit a L-dimensional matrix of
size l0×l1×…×lL-1, whose (j0, j1, …, jL–1) th element denoted C(j0, j1, …, jL–1), for j0 =
0,1,…, l0–1; j1 = 0,1,…, l1–1; …; ji = 0,1,…, li–1;…; jL–1 = 0,1,…, lL–1–1, is a number in
[0,1] specifying a fraction of the reference attribute value, the component would have if
only up to (j0, j1, …, jL–1) layers were transmitted, along with an optional empty multiplier
Cφ in [0,1] specifying the fraction of the reference attribute value the component would
have when the entire component is dropped, i.e. none of the layers are transmitted. The
default empty multiplier is 0. The total number of fractions that need to be sent is
therefore 1 + l0×l1×…×lL–1. Note that for a monotonic non-decreasing type attribute, the
fraction C(j0, j1, …, jL–1) would be analogous to the cumulative distribution of a multi-
dimensional discrete random vector, if the Reference_Attribute_value were the attribute
value corresponding to the full media with no layer drops. In any case, the
Reference_Attribute_value multiplied by the last fraction C(l0–1, l1–1, …, lL–1–1) yields
the full attribute value, or the value of the attribute the media would have if it were
transmitted as is without any layer-drop transcoding.

For JPEG2000 RLCP progression mode, the size and display_resolution attribute
distribution specifications may look as in Figure 10. Both are non-decreasing monotonic.
Here we have four spatial scalability layers nested with three SNR scalable layers each.
Note that in Figure 10(b), the display resolution attribute does not change with SNR
scalable layers. As a result of transcoding, if a SNR layer and two Spatial layers are
dropped, the size attribute of the transcoded bit-stream shown shaded in Figure 10 would

 18

be 0.18 times the reference size value, while the display_resolution attribute would be
0.25 times the reference display_resolution value.

Oftentimes, it is be more convenient and less expensive in terms of overheads to
express the cumulative distributions only approximately using products of one or more
individual lower-dimensional marginal distributions. In this case, the element C(j0, j1, …,
jL–1) is obtained approximately as Ĉ(j0, j1, …, jL–1) using a product combination of
marginal distributions. That is, the specification involves P lower dimensional cumulative
distributions Ci(.) that cover L dimensions together: Ĉ(j0, j1, …, jL–1) = C0()×C1(
)×…×CP–1(). The empty fraction Cφ is transmitted separately.

In order to cover all manners of distribution specifications, exact or approximate, the
following specification methodology is used. The meta-data contains first the empty
fraction Cφ, followed by the number P indicating the number of product distributions
specified, followed by a list of L P-ary elements, one for each of L tiers, indicating which
tier map to which distribution. Following this are the actual specifications of the P
distributions in order. The actual fractions in the distribution may be quantized to save
bits. One possibility is to divide the range [0,1] into 256 uniformly or logarithmically
spaced levels and use an 8-bit representation for each fraction.

For the JPEG2000 example of Figure 10, the approximate specifications using two

0.02 0.06 0.12

SNR Scalability

Spatial Scalability

0.06 0.18 0.35

0.12

0.20

0.34

0.54

0.63

1.00

(a) Attribute: Size

0.125 0.125 0.125

SNR Scalability

Spatial Scalability

0.25 0.25 0.25

0.50

1.00

0.50

1.00

0.50

1.00

(b) Attribute: Display_Resolution

C(j0, j1) C(j0, j1)

Figure 10. Exact Distribution Specification for JPEG2000 example

(a) Attribute: Size

0.125 0.125 0.125
SNR

Scalability

Spatial Scalability

0.25 0.25 0.25

0.50

1.00

0.50

1.00

0.50

1.00

(b) Attribute: Display_Resolution

0.125

0.25

0.50

1.00

1.0 1.0 1.0 C0(j0)

C1(j1)

0.02 0.05 0.10
SNR

Scalability

Spatial Scalability

0.06 0.15 0.30

0.12

0.20

0.30

0.50

0.60

1.00

0.10

0.30

0.60

1.00

0.20 0.50 1.00 C0(j0)

C1(j1) C(j0, j1) C(j0, j1)

Figure 11. Approximate Distribution Specification for JPEG2000 example

 19

one-dimensional marginals and the eventual approximate distributions generated are
shown in Figure 11. As seen in Figure 11(b), the display_ resolution has been represented
exactly using the approximate approach, while the size is represented only approximately.

5.3. Parcel header format
Now, let us consider in detail how individual media components are combined in a

parcel structure. The top-level parcel format is shown in Figure 12. Here again, the first
Format Compliance (FC) flag denotes if the parcel is SCISM meta-format compliant or
not. If not, the entire parcel contents is forwarded or transmitted without any kind of
transcoding.

If the flag indicates that the parcel conforms to SCISM then it can be one of three
types, defined by the value of the Type field. Type = I (Integrated) indicates an integrated
parcel with media descriptions and data, Type = D (Data only) indicates a parcel with no
descriptions only data, and Type = H (Header only) indicates a parcel with only
descriptions and no data. A signature field that uniquely identifies the parcel class (type)
follows the type field. The transcoder stores for future reference in its internal memory,
all the header information as well as the layer drop decisions made for a parcel, indexed
by its signature. The signature may be derived in part from the network session id. Once a
signature has been registered in the transcoder, Type D parcels can be sent, in which case,
the media description (header information) corresponding to the signature in the parcel is
looked up in the transcoder’s internal memory. The description and decision information
stored for each signature is updated every time a new parcel with the same signature
(class) is routed. For Type I and H parcels, the new media description in the current
parcel replaces the transcoder’s internal stored description, while for Type I and D
parcels, the transcoding decisions made for the current parcel replaces the transcoder’s
internal stored decision for the class. The stored information enables use of Type D
parcels, as well as allows maintaining consistency of transcoding, which will be covered
in Section 0.

For a Type I or H parcel with header data, the signature field in the parcel header is
followed by a specification of the number of media components, followed by dependency
data for the components referred to as Component Dependency, followed by a flag called
the Consistency Flag, followed by the list of individual media component headers each in
the format of Figure 9. For a Type I parcel, this parcel header is followed by the list of
the actual coded scalable data for the components each in the meta-bit-stream-format of
Figure 4. For a Type H parcel, the parcel ends at the end of the header. For a Type D
parcel there are no headers, but it only contains the list of scalable data components each
in the format of Figure 4. We next describe the Component Dependency specification for
Type I and H parcels.

When different media components are combined, it is necessary to include a
specification for dependency between different components. Certain components in the
media must be included after transcoding even if it is only the lowest scalability layer
B(0,0,..), while certain others may be dropped entirely. Furthermore, depending on the
media, if one component is included, certain other(s) must be included too. All this
information at the component level is conveyed in terms of a Component Dependency
specification.

 20

If there are M components in a media parcel, the component dependency rules are
specified in terms of an M×M matrix D, where each element dij holds a special meaning.
The diagonal elements dii are binary and specify whether the ith component must be
included, even though it is only the lowest layer after transcoding. dii = 1 indicates that
the ith component must be included, while dii = 0 indicates that the ith component may be
dropped if needed. The non-diagonal elements dij, i≠j, are 5-ary and specify whether the
jth component must be included or excluded if the ith component is included or excluded.
dij = 0 indicates that there are no dependencies between the ith component and the jth
component; dij = 1 indicates that if the ith component is included the jth component must
also be included; dij = 2 indicates that if the ith component is included the jth component
must be excluded; dij = 3 indicates that if the ith component is excluded the jth
component must be included; and dij = 4 indicates that if the ith component is excluded
the jth component must also be excluded. With this simple specification methodology a
wide variety of dependencies can be readily conveyed.

Type
Type = I for integrated media parcel with media descriptions as well as media data, = D for data only parcel with
signature referenced descriptions and media data, = H for header-only parcel with only descriptions and no data.

Desc. TOC

Signature H

Comp. 0 Desc Comp. 1 Desc

M Component Desc. List Component Data List Signature I

Data TOC Comp. 0 Data Comp. 1 Data

Desc. TOC Comp. 0 Desc Comp. 1 Desc

No packet data, only descriptions

Component Data List Signature D

M

No descriptions, only packet data

Component Desc. List

Data TOC Comp. 0 Data Comp. 1 Data

Format Compliance fla g
Flag = 1 for meta-format compliant media, = 0 for non-compliant. If flag = 0, Parcel Description is null. No
transcoding is done, and the entire media bit-stream is forwarded as is.

1 Parcel Data

Parcel Header Parcel Data

FC Flag Media Description

Media Description

M Component Desc. List Component Data List Signature Type

Number of Components

C. Dep.

Component dependence matrix D

C.F.

Consistency Flag

C. Dep. C.F.

C. Dep. C.F.

Figure 12. Overall Parcel format

 21

There is one assumption that is used to resolve contention between different
components for inclusion in the transcoded parcel. That is, a component whose
description in the header, and data in the scalable bit stream part, occurs earlier than
another component usually gets a higher priority for inclusion. In other words,
components in a parcel occur in order of importance to the overall media experience.

In addition to the dependency information, there is a flag called the Consistency flag
that is also conveyed as part of the header. This flag indicates if the component inclusion
should be maintained consistent with the decisions made for the previous parcel of the
same type. We will defer description of this flag to the section on Consistency.

5.4. Parcel attributes
Given the attributes and their values for the individual components, the attribute

values for the overall parcel are obtained as follows. The attribute list for the overall
parcel contains the union of all the attributes specified for all its components together.
Furthermore, when the same attribute occur in one or more components, the combination
type defined in the Attribute_combination field of Attribute_code determines the overall
value. For example, if Attribute_combination = additive, the overall attribute value is the
sum of attribute values of individual components; if Attribute_combination = maximum,
the overall attribute value is the maximum of the attribute values of individual
components. The overall attribute values of the transcoded parcel are used in the
transcoding operation to decide which layers from which components to drop in order to
satisfy the imposed by the outbound constraints.

6. Outbound Constraints
Universal transcoders may reside mid-stream in a delivery network or at an edge

server, or these may be integrated in media servers to which clients connect directly.
While in the former case, the overall delivery architecture is responsible for conveying to
a transcoder the aggregated capabilities and preferences of its outbound connection(s), in
the latter case clients convey their capabilities and preferences directly to the server when
they make a request. Certain reserved attributes, can be sensed by transcoders themselves
(or other agents) from the outbound link. In general, the capabilities and preferences
received by the transcoder from a variety of sources with regard to a single recipient yield
a set of outbound constraints, expressed in terms of attributes and requirements on their
values.

Along with the SCISM meta-format, the specification of the capabilities and
preferences of the receiving clients and links must also be standardized so that these can
be conveyed to a transcoder unambiguously. The specifications are based on imposition
of constraints on definable multivariate functions called measures of the attributes.
Definable measures are essentially linear combinations of products of simple univariate
functions of attribute values. The definition comprises: (i) the number of product terms N
in the combination, (ii) the number of elements ni in each product term, (iii) the attribute
codes for the attributes aij in each product term, (iv) the function codes for certain simple
univariate functions fij(.) on the attribute values, and (v) multipliers λi for the linear
combination, so that the overall measure is:

 22

∑ ∏
= =

N

i

n

j
ijiji

i

af
1 1

)(λ

ijf (x) are simple univariate functions like x, x2, x-1, log(x), ex, etc., codes corresponding
to which are to be included in the standard specification.

The constraints to be imposed on the above-defined measures are of two types, as
explained below:

Limit Constraints: The outbound constraints most often consists of specific limiting
values for attribute measures, known as limit constraints. These constraints are specified
as maximum and/or minimum supportable values for outbound connections for the
measure. When both the maximum and the minimum are specified for an attribute
measure we have a range of supportable values for it. An example of a limit constraint is:
size/latency < 300 KB/s. Here size is an attribute, but 1/latency is specified in outbound
constraints as a multiplier. Overall this indicates a bandwidth restriction on received
media. Another example is: display resolution<800 diagonal pixels.

Optimization Constraints: It is also possible to specify the outbound constraints in
terms of a requested minimization or maximization of an attribute measures. In this case,
the description consists of whether minimization or maximization of the measure is
desired. The most important example of such a constraint occurs in rate-distortion
optimization, where a measure like mean_squared_error + λ.size is minimized. Here the
size attribute corresponds to rate (R), while the mean_squared_error attribute
corresponds to distortion (D). Encrypted domain transcoding based on minimizing D+λ.R
has been covered in [10], [11].

Note that one outbound constraint specification may consist of several limit
constraints but only one optimization constraint.

A mid-stream transcoder may receive sets of several outbound constraint
specifications from multiple recipients. In this case, it needs to make its decision based on
each, and send a combined bit-stream containing the union of the atoms needed for each.
Alternatively, it can receive a single specification, which is in some sense a union of the
constraints for all downstream receivers.

7. Consistency across parcels of same type
Often it may happen that multiple parcels of the same type would need to be sent

through the transcoder to the same recipient. This may happen for example, when each
parcel is a network packet. In such circumstances, it is not practical to include the media
descriptions in each parcel, and expect the transcoder to drop layers as appropriate. While
it is wasteful of bandwidth and processing power, it may also lead to lack of consistency
at the receiver. For example, if a consumer receives one presentation slide at a different
resolution than the next, it would not be a very pleasant experience for him.

The way to get around this problem is to use a common media description for a class
of parcels, typically of the same type. The transcoder remembers the media description
data as well as the transcoding decisions, for a class registered in it indexed by an
identifying signature. When a transcoder receives a parcel containing description data
(Type I or a Type H parcel) for a class for the first time, it creates an entry in its internal
buffer corresponding to the given signature. If the given signature already exists in

 23

memory, it is overwritten. Next, if a Type D parcel belonging to the same class is sent,
with only the signature in lieu of the media descriptions, the transcoder looks up the
descriptions from its own memory, makes the component and layer drop decisions, and
stores the new decisions in memory for the class. If a Type H parcel is sent, the
descriptions stored for the class are simply updated. If a Type I parcel is sent, first, the
parcel description in memory corresponding to the given signature is updated; next, the
layer drop decisions are made using the new descriptions; finally, the new decisions are
stored in memory for the class. For Type D and Type I parcels of a class, the transcoder
remembers its decision for future consistency.

Consistency refers to a constraint as per which, the component drop profile for each
parcel as well as the layer drop profile for each component is left unchanged from one
parcel to the next for the list of tiers mentioned in the consistency list of the component’s
header (see Figure 9). The consistency flag in the parcel header simply indicates if the
component inclusion would have to be maintained the same as the component inclusion
in the previous parcel of the same class or not. The consistency list in the component
would typically contain a subset of all tiers; and for the consistent tiers of a component,
the number of layers dropped would have to be the same as the decision made for the
previous parcel, stored in memory for the class. These are additional constraints that the
layer drop decision mechanism has to adhere to. In the decision making phase of
transcoding, the component inclusions are either maintained the same as the pre-stored
inclusions for the class or not, depending on the current consistency flag corresponding to
a class. Additionally, the tiers in the current (stored) component consistency list for a
class are maintained the same as the pre-stored decisions for the class. Thus, for a Type I
parcel, based on the order of operation as mentioned in the previous paragraph, the new
consistency flag and component consistency lists are used in the decision making phase
instead of the old ones, because the description is updated before the decisions are made,
even though the previous parcel’s decisions are still used as reference.

The consistency mechanism ensures consistency in delivery of parcels belonging to
the same class, while still allowing adaptation based on changing descriptions for same
type parcels and changing outbound characteristics (such as bandwidth), by permitting
change in layer drops for tiers not included in the consistency list.

Each signature persists in memory of the transcoder until it is dropped as a result of
not being used. A circular buffer in the transcoder maintains an ordered list of most
recently used signatures. When a certain signature has not been used for while a new
signature would replace it eventually.

8. Constraint based Transcoding
When a parcel compliant with the Parcel format of Figure 12, is received by a

transcoder that knows its outbound constraints, it immediately gets all the information it
needs to transcode the content automatically, irrespective of the type of media and
content it represents.

For each outbound measure specified with constraints, the transcoder first checks to
see if all the attributes in the measure occur among the media components in the parcel. If
one of the attributes does not occur in the descriptions of any of the media components,
the outbound measure is simply discarded as invalid because no transcoding is possible.

 24

For each valid outbound measure specified with limit constraints the transcoder
checks if the full measure value of the overall parcel satisfies the limit constraints. The
full measure value of a parcel is derived from relevant full attribute values for the parcel,
which in turn are obtained by combining attributes for media components using the
Attribute_combination type field of the Attribute_code. If none of the full measure values
violate the outbound limit constraints no transcoding needs to be done to satisfy the
limits. The parcel is forwarded or transmitted as is. If at least one of the measures is in
violation of the constraints, layers need to be dropped from one or more media
components.

Given a list of measures that violate the outbound restrictions, determination of which
layers to drop from which components can be implemented in a variety of ways, ranging
from simplistic ones to ones involving complex optimizations. If the
Attribute_Monotone_Type field included in the component headers indicates the attribute
is monotonic (non-decreasing or non-increasing), it simplifies the task of finding the
layer drops. The actual implementation of a decision rule is beyond the scope of this
paper. But a requisite bias should be not to drop more than what we need to do. Every
time layers are dropped, the attributes that already satisfy the constraints are further
devalued, thereby degrading the overall experience of the media. It is also not necessary
always to satisfy all the limit constraints. If it is found that too much may be lost in
satisfying the constraints, then certain constraints can just be relaxed.

The optimization request, if specified, is a lower priority than limit constraints.
Among the choices that do not violate the limit constraints, the transcoder chooses the
one that maximizes or minimizes the measure value of the optimization constraint. This
mode will be particularly useful for selecting optimum layers based on a rate-distortion
criterion (i.e. the traditional D + λR), or selecting optimum layers based on user’s relative
preferences of one attribute over the other.

In addition to satisfying the limit constraints, and optimizing based on the
optimization constraint, the transcoder needs to maintain consistency with transcoding of
the previous parcel with the same signature, as well as satisfy the component
dependencies. Note however, that for a mid-stream transcoder, the dependency or
consistency considerations may be ignored in the actual bit-stream, though not in the
decision making process, since there are multiple recipients downstream. These are
enforced only for terminal transcoders that connect directly to media consumers.

Once the decision has been made which layers to drop from which components, the
transcoder drops the atoms in the scalable bit-stream, repacks it, updates the appropriate
TOCs, and truncates the distribution specifications in the meta-data, before sending out
the transcoded parcel. If the transcoder is the last in the chain before it reaches the
eventual recipient, then the transcoding operation may comprise extracting only the
desired atoms, and discarding the rest.

In general, a mid-stream transcoder may receive several sets of outbound constraint
specifications from multiple recipients. It can then make the best decision for each
specification, and transmit the bit-stream structure corresponding to the bounding box
encompassing the decisions made for each of them. The unused atoms in a bounding box
may be emptied if a mid-stream transcoder knows exactly the versions that would be
needed downstream. Alternatively, a mid-stream transcoder may receive a single set of
constraints, which is the union of individual limit constraints, from a downstream

 25

transcoder. In this case, it just makes one decision, and transmits all atoms up to the
transcoding point. The exact protocol used for upstream constraint communication
between transcoders in a chain has not been covered in this paper, but is a straightforward
derivative of the general principles covered here.

9. Conclusion
Use of scalable media for content-agnostic transcoding is well known in the literature.

These transcoders do not need to decrypt or decode compressed content in order to
transcode it into a form appropriate for lower bandwidth/resolution etc. The underlying
assumption behind the transcoding operation is that a transcoder understands the format
in which the data is represented in, even though it does not need to know what the data
actually is. However, the requirement on the structure of the content is still rigid in these
approaches, because different transcoders are still needed for different types of media
content. That is, a transcoder for images compressed in a particular way, say JPEG2000,
would still be different from a transcoder for a certain kind of interactive content encoded
in an entirely different way.

This paper advances the level of abstraction to develop a flexible methodology for
universal transcoding of scalable content, where the transcoding operation is generic
enough to be applicable to any type of media having any type of encoding. The
transcoder just needs to be told what the structure of the particular content that goes
through it is, and how this content is to be transcoded to achieve the desired transcoding
operation. This meta-data information can either be part of the header of the media itself,
or can be conveyed to a transcoder separately for an entire class of content. Different
transcoding infrastructures are no longer needed for different types of scalable media. For
media that is non-standard or for media that do not exist today but would evolve in the
future, as long as they conform to the lose meta-format (SCISM) that the universal
transcoder understands, it still becomes possible to transcode it appropriately.

10. References
[1] David Taubman, “High Performance scalable image compression with EBCOT,”

IEEE Transactions on Image Processing, vol. 9, no. 7, July 2000, pp. 1158-70.

[2] Amir Said and William A. Pearlman, “A New Fast and Efficient Image Codec
Based on Set Partitioning in Hierarchical Trees”, IEEE Transactions on Circuits and
Systems for Video Technology, vol. 6, pp. 243-250, June 1996.

[3] David S. Taubman and M. W. Marcellin, “JPEG2000: Image Compression
Fundamentals, Standards and Practice,” Kluwer Academic Publishers, 2002.

[4] B. G. Haskell, A. Puri, A. N. Netravali, “Digital Video: An Introduction to MPEG-
2,” New York: Chapman & Hall, Sept 1996.

[5] Weiping Li, “Overview of Fine Granularity Scalability in MPEG-4 Video
Standard,” IEEE Trans. Circuits and Systems for Video Technology, March 2001,
vol. 11, No. 3, pp. 301-317.

[6] (MPEG-4) Information technology – Coding of audio-visual objects – Part 2:

 26

Visual, ISO/IEC 14496-2-2001.

[7] (MPEG-4) Information technology – Coding of audio-visual objects – Part 3: Audio,
ISO/IEC 14496-3-2001.

[8] Video Coding for Low Bitrate Communication, ITU-T Recommendation H.263,
Nov. 1995.

[9] Video Coding for Low Bitrate Communication, ITU-T SG16/Q.15 H.26L Project,
Feb. 2000.

[10] S. J. Wee and J. G. Apostolopoulos, “Secure scalable streaming enabling transcoding
without decryption,” Proc. IEEE Int. Conference on Image Processing,
Thessaloniki, Greece, October 2001, vol. 1, pp. 437-40.

[11] S. J. Wee and J. G. Apostolopoulos, “Secure scalable video streaming for wireless
networks,” Proc. IEEE Int. Conference on Acoustics, Speech and Signal Processing,
Salt Lake City, Utah, May 2001.

[12] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, J. M. Peha, “Streaming Media over the
Internet: Approaches and Directions,” IEEE Trans. Circuits and Systems for Video
Technology, March 2001, vol. 11, No. 3, pp. 282-300.

	Structured Content Independent Scalable Meta-formats (SCISM) for Media Type Agnostic Transcoding
	
	Debargha Mukherjee and Amir Said

	Abstract

	Introduction
	
	Multiple versions
	Scalable Bit-streams
	Scalable Content Adaptation and Delivery Infrastructures
	Need for Generic Infrastructures
	Motivation for this work

	Media-Type-Independent Transcoding
	
	Universal Meta-format
	SCISM based Delivery Model
	Isolated Transcoder Model
	Relation to Network Packetization

	Scalable Bit-streams and SCISM Meta-Bit-Stream-Format
	
	Nested Scalability Structure
	SCISM meta-bit-stream format
	Transcoding
	Causality Requirement
	Mid-stream transcoding for combinations

	Attributes
	
	Definition
	Attribute types and code space
	Attribute values

	SCISM Format
	
	Parcels and Components
	Component header format
	Parcel header format
	Parcel attributes

	Outbound Constraints
	Consistency across parcels of same type
	Constraint based Transcoding
	Conclusion
	References

