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Abstract 
This paper develops a universal meta-format (SCISM) and methodology for 

representation and transcoding of arbitrary scalable content. The abstractions in the 
meta-format are generic enough to be applicable to any type of media with only a loose 
restriction on the encoding structure. Scalable bit-streams are naturally organized in a 
manner such that representation in compliance with the meta-format is straightforward. 
By interpreting the generic meta-format, a universal transcoder can transcode the 
content appropriately to suit the needs and preferences of recipients, without knowledge 
of the specifics of the content, its encoding and/or encryption. The transcoder just needs 
to be told what the structure of the particular content that goes through it is, and how this 
content is to be transcoded to achieve the desired transcoding operation. This is meta-
data information, which can either be part of the header of the media itself, or can be 
conveyed to a transcoder separately for an entire class of content. The media meta-data, 
along with a standardized specification of the capabilities and preferences conveyed by a 
media destination are all that a transcoder needs to adapt format compliant scalable 
content appropriately.  With universal transcoders, different transcoding infrastructures 
are no longer needed for different types of scalable media. 

1. Introduction   
Users access the Internet today using devices ranging from puny handhelds to 

powerful workstations, over connections ranging from 56 Kbps modems to high speed 
100 Mb/s Ethernet. Even though the available bandwidth, display and processing 
capabilities may continue to grow following Moore’s law, the heterogeneity and the 
spread of capabilities at any point in time is here to stay. On the other hand, as bandwidth 
and other factors grow, so will the richness of media that would need to be delivered to 
users. Under these circumstances, a rigid media representation format, producing content 
only at a fixed resolution and quality is clearly inappropriate. A delivery system based on 
such a compression scheme can only deliver content satisfactorily to a small subset of 
users interested in the content. The rest, either does not receive anything at all, or receives 
poor quality and/or resolution relative to the capabilities of their network connections and 
/or accessing devices. The inability to cater to this diversity has been a determining factor 
that stunted growth of new rich media, because static rich content would cater only to 
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power users comprising a small fraction of the whole. The bottom line is, without 
adequate focus on seamless content adaptation, accessibility and usability of media will 
always be severely limited. 

1.1. Multiple versions  
A practical approach to catering to heterogeneity is one where multiple versions of 

any piece of media, suiting a variety of capabilities and preferences, are maintained 
simultaneously. While this approach works well with delivery models where the recipient 
directly connects to a media originator, for any other multi-hop, multi-recipient delivery 
scenario, there is too much redundancy leading to wastage of bandwidth and storage. 
This is especially so, when the media creator wishes to provide a wide range of choices 
catering to a large consumer base, and therefore needs to maintain a large number of 
versions differing in a variety of ways. In other words, this approach does not scale well 
with the amount of flexibility a media creator would like to provide. 

It is important to realize however, that this case is actually a fully redundant special 
case of true scalability to be described next, and consequently the framework proposed in 
the paper still applies.  

1.2. Scalable Bit-streams 
In order to provide a more elegant solution, scalable compression formats have been 

proposed. In a scalable bit-stream, smaller subsets of the whole produce representations 
at lower resolution, quality, etc. Different subset bit-streams extracted from the full 
parent bit-stream, can readily accommodate a variety of users by automatically 
maximizing multimedia experience for a given user’s computing power, connection 
bandwidth, and so on. By adapting rich media content written for high-end machines to 
less powerful machines in various ways, the overheads involved in producing different 
versions for different scenarios can be virtually eliminated. Furthermore, content created 
today at the highest possible quality, remains ‘timeless’ when represented in a scalable 
format, and the experience it provides gradually increases, as the power of machines, 
connection speeds, etc. improve. 

There are various types of bit-stream scalability that can be designed, depending on 
the type of media. For example, SNR (quality) scalability refers to progressively 
increasing quality as more and more of the bit-stream is included, and applies to most 
types of media. Resolution scalability refers to fineness of spatial data sampling, and 
applies to visual media such as images, video, 3D etc. Temporal scalability refers to 
fineness of sampling in the time-domain, and applies to video and other image sequences. 
There are several types of scalability pertaining to audio, such as number of channels and 
frequency band. In the future, with the evolution of newer, richer and more interactive 
types of media, there will be newer types of scalability that we do not even know yet.  

In recent years, there has been a great deal of interest in the research community on 
scalable compression of various types of digital media. Here the challenge is to obtain a 
scalable representation without sacrificing compression efficiency. So far however, it is 
only in the area of still image compression that it has been possible to obtain efficient 
scalable coders that even improve compression performance (Ex. EBCOT [1], SPIHT 
[1]). EBCOT [1] led to the evolution of the new JPEG2000 [2] standard for contone 
images. The JBIG and JBIG-2 standards for binary images are also scalable. Besides 
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images, there has been considerable effort to obtain efficient and compact scalable 
representations of video, audio, and other types of media. In fact, most existing media 
encoding standards today, [3], [4], [5], [7], [8], [9] incorporate various scalability modes, 
although generally there is a loss in compression efficiency to use them. With evolution 
of new types of media, it is conceivable that there will be emphasis on scalable 
representations for them as well. 

A scalable bit-stream does not always have a single type of scalability. In fact, 
different types of scalability may co-exist in a multi-dimensional structure, so as to 
provide a wide range of adaptation choices. For example, while SPIHT [1], its 
predecessor EZW, and several of their derivatives only support SNR scalability, EBCOT 
[1] endeavors to combine quality scalability and resolution scalability in a common 
format, to enable distribution and viewing over a wider variety of connections and 
devices. 

Furthermore, in new rich media, different media elements are often clubbed together 
to provide a composite media experience. For example, an image with audio annotation 
and some animation provides a composite experience of a presentation using three 
elemental media elements (an image, an audio clip, some animation data). The composite 
rich media model leads to newer types of scalability specific to the media, because 
certain non-critical elements may be dropped to accommodate other more critical ones 
within the limited resources of a recipient. 

1.3. Scalable Content Adaptation and Delivery Infrastructures 
In order to unlock the full potential of a scalable bit-stream, the format alone is 

insufficient. It is necessary to develop and deploy complete infrastructures that support 
appropriate adaptation and delivery of such content, so that a diverse recipient base can 
experience it with a seamless ease of use.  

For example, even though the JPEG2000 format itself is very powerful, the lack of a 
complete infrastructure that supports appropriate transcoding of JPEG2000 content and 
delivery to a heterogeneous recipient base has severely restricted the usability of its 
scalable features. In recent years, a great deal of attention has been focused on delivering 
streaming video over the Internet or wireless [10], [11], [12]. In order to reach 
heterogeneous recipients in a dynamic transmission environment, video standards of 
MPEG-X (mostly MPEG-4) [3], [4], [5], [7] and H.26X [8], [9] families incorporate 
various forms of scalability. Although rudimentary in scope, functionality and efficiency, 
as compared to JPEG2000, they hold considerable promise for supporting diversity. 
Nevertheless, scalable video over the Internet has been limited to maintaining multiple 
versions for a few different types of connections, because complete infrastructures that 
support transcoding and transport of scalable video formats are non-existent.  

1.4. Need for Generic Infrastructures 
Any infrastructure, is expensive to deploy, and requires significant financial 

commitments from the patron companies or patron consortia. In order to guarantee 
constancy of the format it would also be desirable that the format the content is 
represented in be standardized.  On the other hand, standards take several years to come 
into effect, typically much longer than is commensurate with the normal pace of change 
in the multimedia industry. As new types of media beyond traditional images, video and 
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audio evolve; it would become more and more difficult to expect standards to support 
their representation.  

Furthermore, even if efficient scalable formats evolve for every new type of media, 
the inevitable difference in the structure of the content would necessitate use of different 
infrastructures for scalable delivery of different types of media. The expenses involved 
present a very formidable obstacle in adoption of such new media and supportability of 
its scalability features. 

The only way out is to develop infrastructures for content adaptation that are agnostic 
of the type of media being transcoded. Such universal transcoding infrastructures only 
need to be deployed once to support transcoding and delivery of all types of scalable 
media, as long as they conform to certain loose restrictions on the encoding structure. Use 
of universal infrastructures that support delivery and transcoding of a wide variety of 
media types in a convenient manner is the key to successful adoption of new scalable 
media. 

1.5. Motivation for this work 
In order to enable universal content adaptation infrastructures for scalable media, we 

introduce a new paradigm for scalable media representation that standardizes a common 
meta-format for all scalable media types rather than a single format for a specific media 
type (such as JPEG2000 for images). The meta-format is called SCISM (Structured 
Content Independent Scalable Meta-format). Media adaptation and delivery 
infrastructures based on interpretation of such meta-formats would be truly universal and 
cost-effective because they would support a wide variety of media types rather than a 
single type. Such universal transcoding infrastructures can support transcoding and 
delivery of all types of scalable media, as long as they conform to certain loose 
restrictions imposed by the meta-format. 

2. Media-Type-Independent Transcoding 
Noting that the eventual purpose of scalable representations is seamless, flexible 

delivery to a heterogeneous recipient base, it is not only enough to obtain a compact 
scalable representation. It is also necessary to develop transcoders in the network that 
convert content suitable for a higher set of capabilities and preferences to a lower one. 
Because it is impractical to create new transcoders for every type of media that currently 
exists and would evolve in the future, we need to dissociate the media-type from the 
transcoding operation. This is referred to as media-type agnostic transcoding. 

2.1. Universal Meta-format 
In order to enable media-type agnostic transcoding, it is necessary to develop a 

media-type agnostic meta-format that compressed scalable bit streams must conform to, 
and which must be understood by all intermediate transcoding nodes within a delivery 
architecture. This paper is essentially involved with developing such a universal meta-
format for all scalable media, called SCISM (Structured Content Independent Scalable 
Meta-format), and an associated methodology that allows network transcoders to 
generate content suitable for a variety of outbound bandwidths, display capabilities, user 
preferences and so on, from the incoming content. Because transcoders based on SCISM 
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are truly media-type- and content-independent, they can transcode different types of 
content, both that are currently available (images, video, audio) as well as those that 
would evolve in the future (different types of new 3D media, composite media etc.), as 
long as the content bit-stream conforms to the loose SCISM meta-format. Although the 
meta-format needs to be standardized, it operates at a more abstract level than traditional 
standards, and requires only format compliance in a loose manner. 

2.2. SCISM based Delivery Model 
Consider Figure 1, which shows a generic media delivery model, where media data 

created by the Originator is routed through an arbitrarily long chain of transcoders before 
reaching an eventual recipient. It is assumed that both the Originator of the media as well 
as the software or hardware system used to experience it at the Recipient end understand 
the actual media-encoding format. It is likely that either the same company created both 
the media content and the experiencing system; or the creator company opened up its 
technology for another company to create the experiencing system for, as part of a 
partnership; or the media format is a SCISM-compliant open standard known to all. 
Irrespective of the actual encoding however, the scalable media data at a higher level is 
conformant with SCISM, which all intermediate transcoders understand. Transcoders 
receive SCISM compliant scalable content, and deliver transcoded content over multiple 
outbound connections. All content after transcoding is also SCISM meta-format 
compliant so that it can be re-transcoded at a subsequent stage of delivery.  

It is also assumed that each transcoder has knowledge of the aggregated capabilities 
and preferences of all eventual recipients connected to each of its outbound connections. 
This information mostly originates from the recipients (shown in thin arrows in Figure 1), 
but parts may be sensed by transcoders themselves, as it is aggregated up the transcoding 
chain by the delivery infrastructure involved. For a particular transcoder at transcoding 
time, this information is referred to as its outbound constraints, which in general may 
change dynamically.  
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Figure 1. Media-Type-Independent Transcoding 
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Note that while the originator/creator of the media as well as the recipients/consumers 
of the media must have specific knowledge about the encoding in order to provide an 
experience for the end-user, the intermediate infrastructure does not need to know what 
the content is and how it has been encoded in order to transcode appropriately. The 
transcoding operation is based purely on an interpretation of the meta-format, and does 
not depend on the specifics of the actual content. Furthermore, the content itself can be 
encrypted, and transcoding can still proceed as before in the encrypted domain.  

While transcoders in Figure 1 are solely functional blocks, in reality they can be part 
of Media servers from where offline or online content originates; Midstream Routing 
servers through which scalable content is transcoded and routed; or Edge servers that 
connect directly to eventual recipients. Also the generic delivery model considered can 
collapse to as simple as a client-server delivery system where a client requests content 
from a media server with specified capabilities and preferences, and gets appropriately 
transcoded content directly from it. In this case, the functional transcoder would be part 
of the Media server itself.  

2.3. Isolated Transcoder Model 
From the generic model, we can isolate a single functional transcoder whose external 

model is shown in Figure 2, to understand the scope of the work. The transcoder receives 
a SCISM compliant piece of media, which it must transcode appropriately and forward in 
a SCISM compliant manner to an eventual consumer or another transcoder. It also 
receives another input, a specification of the capabilities and preferences of its output 
connection referred to as outbound constraints for the transcoder based on which it must 
adapt the content. The way the capabilities and preferences of an outbound connection, is 
conveyed to a transcoder, depends on the specifics of the delivery architecture. The 
transcoder may either be directly connected to a recipient who conveys its capabilities to 
it, or aggregated capabilities of all downstream clients may be conveyed to a transcoder 
by some network aggregation mechanism. Based on the information contained in the 
SCISM meta-format and the outbound constraints, a transcoder performs the transcoding 
operation on the input stream and delivers content to its outbound connections. 

The actual SCISM meta-format consists of two parts: the first part contains meta-data 
that describes the structure and properties of the content in a non-media-type specific 
manner, and the second part that contains the actual bit-stream for encoded scalable data. 
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Figure 2. Transcoder external model 
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The SCISM meta-data in the input media and the outbound constraint (Capabilities and 
Preferences) specifications together provide all the information a transcoder needs to 
decide how to transcode the content. For the most part, the transcoder only works with 
numbers to make its decision.  

In addition, the format is derived solely based on transcoding considerations and can 
be applied at various levels of granularity, based on design choices for transcoding. It can 
be interpreted as a file-format if transcoding is to be applied to a file as a whole, or as a 
packet-format if the unit of transcoding is a network packet.  

Formalizing, the internal model for the transcoder is shown in Figure 3. In particular, 
it consists of the following functional blocks: 1) A parser to parse the SCISM meta-data, 
2) a parser to parse the outbound constraint specifications, 3) An optimizer to decide on 
transcoding options, 4) a meta-data transcoder to scale the media meta-data to obtain the 
outbound media meta-data, 5) a bit-stream transcoder for the scalable bit-stream part. 

2.4. Relation to Network Packetization 
It is important to realize that while SCISM is about formats and meta-data describing 

how format-compliant scalable content is to be adapted, in an actual delivery scenario the 
content would probably need to be packetized and transmitted. While there may be 
various design choices for usage of the SCISM format, there are two cases that would be 
of particular interest, one based on using SCISM as a file-format, and another based on 
using it as a packet-format.  

In the file-format usage case, the scalable media content is actually much larger than 
a typical network packet. The transcoder either transcodes an entire SCISM file in one 
shot before network packetization and transmission, or the transcoding may happen 
down-stream possibly in multiple stages. In the latter case however, it is important to 
realize that it is not necessary that the entire SCISM compliant media file be available at 
the transcoder before the transcoding operation can commence. In fact, the media meta-
data and the outbound constraint specifications are all that are needed for a transcoder to 
decide how to transcode the media content. As long as the meta-data has been received in 
full, the scalable bit-stream parts in Figure 3 may come in stages in multiple network 
packets, and either forwarded or dropped by the transcoder as they arrive, based on the 
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transcoding decisions already made. Thus, the same transcoding model applies both to 
files transcoded in one shot as well as to a streamed file. 

In the packet-format case, the entire SCISM compliant content, including the meta-
data and the multi-tier scalable bit-stream, comprises one packet, which can be 
transcoded by a mid-stream transcoder and transmitted. Packet based scalable 
transcoding has been considered before in [10], [11]. 

In the rest of this paper, we will describe the specifics of the SCISM universal meta-
format: comprising the scalable bit-stream format, the meta-data that goes with the 
media, as well as how the capabilities and preferences are conveyed. We will also 
describe how the transcoding operation is conducted based on the meta-format, the meta-
data and capabilities. It is important to stress that this paper really attempts to understand 
and specify what information needs to be conveyed in media headers and in outbound 
constraints, to make media-type-agnostic transcoding possible. The design of the actual 
bit-stream and/or XML syntax, to describe media and the outbound constraints, has not 
been covered. Note that from interoperability and portability considerations, it may be 
found more convenient to use XML based languages for the SCISM meta-data and 
outbound capabilities and preferences specifications, but we do not discuss these issues in 
this paper. 

3. Scalable Bit-streams and SCISM Meta-Bit-Stream-Format 
A scalable bit-stream is one where smaller subsets of the whole produce 

representations at lower quality, resolution etc. Different types of scalability (e.g. SNR, 
Resolution, Temporal, Interactivity) apply to different types of media, and often more 
than one kind is combined. From an understanding of how a generic scalable bit-stream is 
naturally organized, we propose a common media-type-agnostic bit-stream-format for all 
scalable media, referred to as the SCISM meta-bit-stream-format. This corresponds to the 
scalable bit-stream part of SCISM in Figure 2.  

3.1. Nested Scalability Structure 
Any scalable bit-stream inherently contains nested tiers of scalability. The bit-stream 

is first divided into multiple layers of tier 1 scalability. Here tier 1 is an abstraction, and 
depending on the actual content it may mean any one of resolution, temporal, SNR and so 
on. Each data chunk in each tier 1 layer, is further divided into layers of tier 2 scalability, 
and so on. Again, tier 2 is an abstraction, and may mean different things based on the 
actual media content. And so on. As an example, consider a JPEG2000 bit-stream, which 
can be readily cast into this meta-bit-stream-format. In one of the scalability progression 
modes in JPEG2000 – RLCP – the highest tier is resolution scalability, and within the 
resolution scalable layers there are nested SNR scalable layers. In an alternative 
scalability progression mode – LRCP – the highest tier is SNR, and within SNR layers 
there are nested resolution layers. However, the multi-tier nested scalability structure is 
common in both.  

3.2. SCISM meta-bit-stream format 
The proposed SCISM meta-bit-stream-format is based on this inherent nature of 

scalable bit-streams, and comprises nested tiers of scalability indexed by Tables of 
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Contents (TOCs), as shown in either variant in Figure 4. The only difference between the 
two variants is in the organization of the Table of Contents (TOC), which we will 
describe soon. But the point to note first is that the essential data part in both is organized 
in multiple nested scalability layers. While the actual content may vary from media to 
media, the only requirement for transcoding is that the Header and the TOCs conform to 
the meta-format exactly. 

The above-described meta-bit-stream-format is analogous to that of a book, where 
there are nested layers for chapters, sections, sub-sections and so on. It is conceivable that 
the book-format be common across all books irrespective of content. Likewise, all 
scalable bit-stream representations can be cast into a common nested scalability structure 
that can be standardized into a bit-stream-format, irrespective of content. 

The purpose of the TOCs is to provide easy access to chunks of the bit-stream for 
dropping, or truncating during the transcoding operation. Depending on the way the 
Table of Contents (TOC) is specified there can be two formats, shown in Figure 4(a) and 
Figure 4(b) respectively. In the (a) Nested Relative Indexing case, there are multiple 
small one-dimensional TOCs, each specifying the offsets relative to itself for its 
constituent layers at the same tier. If the constituent layers have further nesting, at the 
offsets specified there would be the next tier TOCs to provide the relative offsets to find 
their constituent layers, and so on. In the (b) Absolute Indexing case, there is one big 
multi-dimensional TOC at the beginning, which provides the offsets relative to itself to 
each layer at the deepest nesting tier. 
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Layer 2 (Tier 3) Layer 1 (Tier 3) 

(b) Absolute Indexing 
Shaded parts in both conform to the meta-format. The rest is free of requirements. 

 
Figure 4. Meta-formats with nested scalability 
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Formalizing the notation for the bit-stream, if the data has L nested tiers of scalability, 
and the ith tier contains li layers, we can say that the data consists of an ordered 
concatenation of l0×l1×…×lL–1 data chunks B(j0, j1, …, jL-1), where j0=0,1,…, l0–1; 
j1=0,1,…, l1–1; …; ji=0,1,…, li–1;…; jL–1=0,1,…, lL–1–1. A way to visualize this data is to 
consider a L-dimensional data cube of size l0×l1×…×lL-1, the (j0, j1, …, jL–1)th element of 
which is the data chunk B(j0, j1, …, jL–1), called the atom. The full bit-stream is 
essentially a concatenation of these data chunks if the indices are scanned in order from 
jL-1 towards j0.  

Using an example of the first two tiers of JPEG2000 RLCP progression mode, we can 
visualize the data as organized in a 2-dim cube (L=2) as shown in Figure 5. The full bit-
stream apart from the header and the TOC can be visualized as being obtained by 
scanning the atoms in the data cube in row-by-row order, starting from the bottom and 
moving up. The same concept generalizes readily to more than two dimensions or nested 
tiers. An example of a three-dimensional data cube is shown in Figure 6. 

In the Absolute indexing case, it is also possible to change the order of the data atoms 
so that the bit-stream is obtained by scanning the data cube in any order other than row-
by-row, such as zigzag etc.  
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Figure 5. JPEG2000 example bit-stream 
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While the meta-bit-stream format and the data cube representation has been defined 
above for true scalable bit-streams where successive layers in each tier are handled 
incrementally by an eventual recipient, the same format and representation applies to the 
case when one or more tiers are handled exclusively. This is essentially equivalent to 
multi-version scalability, where multiple independent versions are maintained 
simultaneously in the layers of these tiers, but an eventual recipient would use only one 
of them. Generalizing, each tier in the meta-bit-stream format can be either incremental 
or exclusive in terms of scalability. The header contains a flag for each tier to denote 
whether the layer is multi-version or incremental. If all tiers are exclusive, the bit-stream 
is fully multi-version where each atom is an independent version. If all tiers are 
incremental, the bit-stream is truly scalable. In the most general case, tiers could be 
mixed between incremental and exclusive scalability. In all cases however, the same 
meta-bit-stream format and data cube representation applies. 

Also note that exclusive tiers may be regarded as a special case of incremental tiers, 
but the transcoding is no longer efficient unless this distinction is made apparent to a 
transcoder by header information. 

3.3. Transcoding 
The above meta-bit-stream-format allows multiple tiers of scalability to co-exist in a 

bit-stream, and allows simple transcoding tasks like truncation, bit-stream skips and 
rearrangement to produce bit-streams at different scales in a variety of ways, without 
knowledge of the actual content or encoding scheme. If all media routed through a 
transcoder abide by this meta-bit-stream-format packaged as part of SCISM, the 
transcoder can transcode content without needing to decompress or decrypt. Furthermore, 
since only the structure of the data is important, the same infrastructure can be used for 
all types of media, both present and future, as long as they comply with SCISM. 

Having understood the meta-bit-stream format and the data cube representation, we 
next define formally a generic transcoding operation on it.  

In particular, with a scalable bit-stream conformant with the above meta-bit-stream-
format, all transcoding is implemented as dropping layers, repacking the bit-stream and 
updating the TOCs appropriately, while preserving the same generic multi-tier structure 
so that it can be re-transcoded. For incremental tiers, layers can only be dropped from the 
outer end whereas for exclusive tiers, all but one layer is dropped.  

Using our previous notation, for the ith tier, either up to di layers are included if 
incremental, or only the di

th layer is included if exclusive. The transcoded subset bit 
stream would then be given by the concatenation of the atoms B(j0, j1,…, jL–1), where for 
tier i=0,1,…, L–1 either ji=0,1,…, di–1 for incremental tier, or ji=di–1 for exclusive tier. 
Note that if the transmitted data-stream has to be non-null, in all tiers at least one layer 
must be transmitted. In other words, all non-null transcoded bit-streams must contain at 
least the layer B(z0, z1,…, zL–1), where zi=0 for incremental tiers and zi= di for exclusive 
tiers. Using the data cube visualization, dropping layers from the end in an incremental 
tier is equivalent to chopping off the ends of the data cube in units of layers. Selecting a 
particular layer from an exclusive tier is equivalent to extracting a slice from the data 
cube. In general, a reduced cube from the original is transmitted after transcoding. A 
couple of examples for the 2 nested tiers case are shown in Figure 7. 
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3.4. Causality Requirement 
Because transcoding can be implemented as simple dropping of layers, a transcoder 

does not need to decode or decrypt content in order to transcode. However, an encoder or 
an encrypter must maintain causality in data atoms, so that a decoder or decrypter can 
still handle transcoded content. In general, it is necessary to ensure that there are no 
dependencies across layers in excusive tiers, and the dependency across layers in 
incremental tiers is limited to being causal. 

Specifically, the causality constraint for encoding ensures that for encoding data atom 
B(j0, j1, …, jL–1), the encoder only uses information from atoms B(k0, k1, …, kL–1), where 
for incremental tiers i, ki ≤ ji, and at least one ki ≠ ji; and for each exclusive tier i, ki=ji; 
within the usual limits 0 ≤ ji , ki ≤ li – 1. This ensures that for any usable transcoding, the 
decoder at the consumer end can decode the content unambiguously. 

The causality constraint for encryption is that the starting state of the encryption 
engine for atom B(j0, j1, …, jL–1), is derived from the ending states of the encrypter for 
adjacent causal atoms of incremental tiers B(k0, k1, …, kL–1), where for incremental tiers i, 
0 ≤ ji – ki ≤ 1 and at least one ki ≠ ji; and for exclusive tiers ki=ji; within the usual limits 0 
≤ ji , ki ≤ li – 1. Progressive encryption enabling transcoding without decryption has been 
considered in [10], [11]. 

Finally note that even if the structure of the encoded bit-stream format is exclusive in 
certain tiers, the type of encryption applied may modify the exclusivity. For example, a 
fully multi-version bit-stream with all tiers exclusive can actually be converted to a fully 

 Tier 1 
scalability (Inc) 

Tier 2 
scalability (Inc) B(0,3)B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(5,0)

B(4,0)

B(5,3)

B(4,3)

B(0,2) 

B(1,2) 

B(2,2) 

B(3,2) 

B(1,0) 

B(1,0) 

B(1,3)

B(2,3)

B(3,3)

B(0,1) 

B(1,1) 

B(2,1) 

B(3,1) 

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 incremental
scalability nested with 4 layers of
tier 2 incremental scalability.
Transcoding drops one tier 2 layer
and two tier 1 layers. The shaded
atoms comprise the transcoded
bit-stream. 

Atoms 
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B(1,1) 

B(2,1) 

B(3,1) 

B(5,1)

B(4,1)

Original bit-stream contained 6
layers of tier 1 exclusive
scalability nested with 4 layers of
tier 2 incremental scalability.
Transcoding drops one tier 2 layer
and selects the 4th tier 1 layer. The
shaded atoms comprise the
transcoded bit-stream. 

Atoms 

 
Figure 7. Visualization of layer drops for 2-tier examples. 
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incremental bit-stream for all practical purposes if the encryption applied uses 
information across boundaries of exclusive tiers. 

3.5. Mid-stream transcoding for combinations  
While so far, what we have considered is the generic model for transcoding that 

generates a single lower version that allows either decryption/decoding for eventual 
experience, or re-transcoding to other lower versions, there are other scenarios where 
different things may be done. This particularly applies to the case where a mid-stream 
transcoder must deliver a combination of several versions of a piece of media, to be 
eventually extracted by other downstream transcoders. In this situation, a mid-stream 
transcoder could send the bounding box containing the different versions, which though 
wasteful allows re-transcoding to unknown lower versions downstream. Exclusivity of 
tiers is not considered so as to provide the option for downstream transcoders  

Alternatively, if the versions needed are known exactly, it can save bandwidth by 
converting the unused atoms in the non-intersecting region into empty ones while 
preserving the same structure of the bit-stream corresponding to the bounding box. 
Atoms can be made empty by dropping the corresponding bit-stream component, while 
pointing the corresponding TOC entries to empty chunks.  

4. Attributes 

4.1. Definition 
Now that we have seen the structure of the meta-bit-stream-format, and what a 

transcoding operation involves, we next need to talk about ways a transcoder can decide 
which layers to drop, without knowing what the media is all about. A transcoder is 
expected to have knowledge of the capabilities and preferences of its outbound 
connection(s). At the same time, headers in the input scalable media contain descriptions 
pertaining to certain scalability properties based on which the content may be transcoded. 
The bridge between the two sides is provided by attributes. The capabilities and 
preferences as well as the media meta-data speak the same language through attributes, so 
that a transcoder can decide how to drop layers to match the two sides. If a transcoder 
finds that the capabilities of an outbound connection cannot support the full media data, 
then layers are dropped until they can. 

Attributes are nothing but certain quantifiable properties relevant to media 
experience. However, they have different interpretations for different entities in the 
delivery model. To the media creator/originator, they are quantifiable properties based on 
which a content may be transcoded. To a media consumer they are quantifiable properties 
to indicate its limitations and preferences. To a transcoder, they are simply numbers 
based on which it must decide how to drop layers and transcode an input bit-stream.  

In particular, the attributes and their quantified values are used to describe both the 
capabilities and preferences of a transcoder’s outbound connection, referred to as 
outbound constraints, as well as to describe a received media in terms of the minimum 
capabilities that a client should have to experience it, referred to as media description that 
occurs in the SCISM meta-data.  
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However, note that not all attributes are relevant to all types of media, and not all 
attributes may be specified for all media content. Likewise, not all attributes for an 
outbound connection may be known to a transcoder. The transcoder only transcodes 
content when attribute codes found in the media description are also involved in certain 
outbound constraints.  

Some examples of attributes are: size, display_resolution, processing_power, 
number_of_speakers etc. Note that while bandwidth is a more commonly used term than 
size, it is not strictly a property of the media, because it depends on the desired latency of 
transmission. Bandwidth however could be an attribute under a standardized assumption 
about the latency. 

4.2. Attribute types and code space 
 Attributes can be either reserved or custom. Reserved attributes, like the ones 

mentioned above (size, display_resolution, etc.), have the same standardized meaning 
across different media-types. Custom attributes are relevant only to one or a few specific 
types of media.  

In addition, each attribute is associated with a 4- or 8-byte code called the 
Attribute_code that uniquely identifies the attribute. Thus, size would have a code that is 
different from display_resolution, and so on. While codes for reserved attributes may be 
standardized, other media specific custom attributes can be defined later by allocation of 
the attribute code space to different companies creating media. Enough reserved and 
custom code space is left free to allow extensions to denote properties of new types of 
scalable media, as they evolve. If both the media creator and media experiencing systems 
are owned by the same company or are owned by different companies in a partnership or 
agreement, they can define their own attributes and what they mean in the way they want. 
The only requirement they need to follow is to use a pre-allocated range of attribute 
codes for their custom media.  

4.3. Attribute values 
The most important feature of all attributes is that they are expressed quantitatively in 

terms of non-negative numbers, referred to as attribute values. For reserved attributes, the 
quantification is also standardized along with the code. For example, size can be 
expressed in KBytes, display_resolution may be expressed as the diagonal width of the 
screen in number of pixels, processing_power may be denoted by CPU_speed × 
Number_of_processors, and so on. Whatever method is used to quantify the reserved 
attributes must be standardized so that uniformity across different types of media and 
how capabilities are conveyed is preserved.  However, the transcoder itself does not need 
to know what these attributes mean.   

For most known attributes, the value is either non-decreasing or non-increasing with 
layers. Thus, as more layers are added to a scalable media, the attribute values usually 
change monotonically. 

We will next describe the overall media format in detail and show how media 
descriptions are conveyed in the headers, so that the transcoder has all the information it 
needs to decide which layers to drop. 
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5. SCISM Format 

5.1. Parcels and Components 
The content passed around in each transmission instance is called a parcel, defined as 

the basic unit of transcoding. The size of a parcel is really a design choice, and may range 
from an entire scalable compressed file to a network transmission packet. Each parcel in 
the generic case may be comprised by multiple media components to provide a composite 
experience. For example, one component may be an image and a second component may 
be audio annotation that goes with it; both components are packaged together in a single 
parcel to provide an experience of image viewing with audio annotation; when parcels 
like that are transmitted at a high enough rate, we have video. Each media component in a 
parcel is a coded unit of data that may be represented in the scalable meta-bit-stream-
format of Figure 4, along with a header containing its description. The overall media 
description for a parcel consists of the descriptions for the individual components in its 
header, while the overall parcel data consists of (scalable) coded data for the individual 
components.  

The top-level parcel construct is roughly shown in Figure 8. The parcel consists of 
two parts: the parcel header and the parcel data. Without going into the details 
immediately, the parcel header part contains among other things the number of media 
components, as well as the individual headers for each constituent component. The parcel 
data part contains the encoded data for the individual components. 

We first describe the format of the component header containing the component 
description, and then show in greater detail how multiple components are combined in a 
single media parcel. 

5.2. Component header format 
The format for each media component header is shown in Figure 9. The header starts 

with a flag specifying whether the media component is a SCISM meta-format compliant 

 

1 Parcel Data 

Parcel Header Parcel Data 

Media Description 

M Component Desc. List Component Data List  … 

Number of  
Components 

… 

Comp 0  
Header 

Comp 1  
Header 

Comp M-1 
Header

Comp 0  
Data

Comp 1  
Data 

Comp M-1 
Data 

Figure 8. Top Level Parcel Format 
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scalable media or not. If not, no transcoding is done, and the entire media parcel is 
forwarded as is to the outbound connection(s). There is no component description in the 
header in this case. If however the flag indicates that the parcel is scalable and SCISM 
compliant, then the description follows in the header. 

The component description contains L, the number of nested scalability tiers, 
followed by li, a list containing the number of layers in each tier i. Next comes a list 
called the consistency list, consisting of a subset of tiers that are important for preserving 
consistency across parcels of the same type. We will explain this further in the section on 
consistency (Section 7). 

Following the consistency list is an L-bit field, called Incremental_Exclusive_Flags 
that describes by a single bit for each tier, whether the tier is in an incremental scalable 
format, or whether there are multiple independent exclusive layers packaged within the 
tier. Recall that the same bit-stream format and consequently the media component 
header can describe incremental, exclusive or mixed bit-streams. While exclusive tiers 
are really a special case of incremental tiers, these flags are needed so that a transcoder 
may increase the transcoding efficiency by knowing that some causal atoms will not be 
used (see section 3). 

 
Component Header 

FC Flag Comp. Description 

Format Compliance flag  
Flag = 1 for scalable meta-format compliant media, = 0 for non-compliant. If flag = 0, Component
Description is null. No transcoding is done, and the entire media bit-stream is forwarded as is. 

1 Comp. Description 

L (l0, l1, …, lL–1) N Attribute data list (AD0, AD1, …, ADN–1) 

Number 
of tiers 

Number of layers 
in each tier 

Number of 
Attributes 

AD0 

Attribute code Ref Attribute value Distribution over layers/tiers 

Empty fraction Dist0

Relevant data for 
each attribute 

AD1 ADk ADN–1 

ID Comb 

Consistency List

Mtype 

Monotone TypeCombination flag 

I 

Incremental/Exc
lusive flags 

Number of 
distributions 

P Tier-to-Dist Map Dist1 DistP–1 

 
Figure 9. Header format for Media Component 
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The next field is N, the number of attributes relevant to the media, followed by a list 
of required data for each of them. The data for each attribute first contains the unique 
Attribute_code code that identifies this attribute. The Atribute_code actually consists of 
two fields, Attribute_ID and Attribute_combination. The Attribute_ID is a unique 
identifier, and Attribute_combination is a field that describes how the attribute value 
changes when combined with another media component having the same attribute. 
Possible values are additive, maximum, minimum and so on. For example, size is always 
additive in combination, but display_resolution is the maximum of individual 
components after combination. That is, when two or more media components are 
combined, the size required is the sum of the sizes required for all of them. On the other 
hand, the display_resolution required is the maximum of all of them. The relevance of 
this field will become clearer when we describe combination of media components in the 
next paragraph. Overall, the unique Attribute_code not only identifies the attribute, but 
also defines its behavior when combined with another component. 

 The next field is the Attribute_Monotone_Type, which indicates how the attribute 
value changes with increase in layers. Possible types are monotonic non-decreasing, 
monotonic non-increasing, non-monotonic with the number of layers.  

The next field in attribute data is the Reference_Attribute_value. This is the numeric 
reference value of the attribute, which when multiplied with distribution values that 
follow later, yield the attribute value for various layer drop options.  

The Reference_Attribute_value field is followed by a specification of how the 
attribute value changes when layers are dropped. This specification is called the 
distribution because of its parallels with the cumulative distribution of a random vector. 
The specified distributions can either be exact or approximate.  

The distribution is similar to a multidimensional cumulative distribution. If there are 
L nested tiers with li layers in the ith tier, we need to transmit a L-dimensional matrix of 
size l0×l1×…×lL-1, whose (j0, j1, …, jL–1) th element denoted C(j0, j1, …, jL–1), for j0 = 
0,1,…, l0–1; j1 = 0,1,…, l1–1; …; ji = 0,1,…, li–1;…; jL–1 = 0,1,…, lL–1–1, is a number in 
[0,1] specifying a fraction of the reference attribute value, the component would have if 
only up to (j0, j1, …, jL–1) layers were transmitted, along with an optional empty multiplier 
Cφ in [0,1] specifying the fraction of the reference attribute value the component would 
have when the entire component is dropped, i.e. none of the layers are transmitted. The 
default empty multiplier is 0. The total number of fractions that need to be sent is 
therefore 1 + l0×l1×…×lL–1. Note that for a monotonic non-decreasing type attribute, the 
fraction C(j0, j1, …, jL–1) would be analogous to the cumulative distribution of a multi-
dimensional discrete random vector, if the Reference_Attribute_value were the attribute 
value corresponding to the full media with no layer drops. In any case, the 
Reference_Attribute_value multiplied by the last fraction C(l0–1, l1–1, …, lL–1–1) yields 
the full attribute value, or the value of the attribute the media would have if it were 
transmitted as is without any layer-drop transcoding.  

For JPEG2000 RLCP progression mode, the size and display_resolution attribute 
distribution specifications may look as in Figure 10. Both are non-decreasing monotonic. 
Here we have four spatial scalability layers nested with three SNR scalable layers each. 
Note that in Figure 10(b), the display resolution attribute does not change with SNR 
scalable layers. As a result of transcoding, if a SNR layer and two Spatial layers are 
dropped, the size attribute of the transcoded bit-stream shown shaded in Figure 10 would 
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be 0.18 times the reference size value, while the display_resolution attribute would be 
0.25 times the reference display_resolution value. 

Oftentimes, it is be more convenient and less expensive in terms of overheads to 
express the cumulative distributions only approximately using products of one or more 
individual lower-dimensional marginal distributions. In this case, the element C(j0, j1, …, 
jL–1) is obtained approximately as Ĉ(j0, j1, …, jL–1) using a product combination of 
marginal distributions. That is, the specification involves P lower dimensional cumulative 
distributions Ci(.) that cover L dimensions together: Ĉ(j0, j1, …, jL–1) = C0( )×C1( 
)×…×CP–1( ).  The empty fraction Cφ is transmitted separately.  

In order to cover all manners of distribution specifications, exact or approximate, the 
following specification methodology is used. The meta-data contains first the empty 
fraction Cφ, followed by the number P indicating the number of product distributions 
specified, followed by a list of L P-ary elements, one for each of L tiers, indicating which 
tier map to which distribution. Following this are the actual specifications of the P 
distributions in order. The actual fractions in the distribution may be quantized to save 
bits. One possibility is to divide the range [0,1] into 256 uniformly or logarithmically 
spaced levels and use an 8-bit representation for each fraction.  

For the JPEG2000 example of Figure 10, the approximate specifications using two 
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Figure 10. Exact Distribution Specification for JPEG2000 example 
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  19 

 

one-dimensional marginals and the eventual approximate distributions generated are 
shown in Figure 11. As seen in Figure 11(b), the display_ resolution has been represented 
exactly using the approximate approach, while the size is represented only approximately. 

5.3. Parcel header format 
Now, let us consider in detail how individual media components are combined in a 

parcel structure. The top-level parcel format is shown in Figure 12. Here again, the first 
Format Compliance (FC) flag denotes if the parcel is SCISM meta-format compliant or 
not. If not, the entire parcel contents is forwarded or transmitted without any kind of 
transcoding.  

If the flag indicates that the parcel conforms to SCISM then it can be one of three 
types, defined by the value of the Type field. Type = I (Integrated) indicates an integrated 
parcel with media descriptions and data, Type = D (Data only) indicates a parcel with no 
descriptions only data, and Type = H (Header only) indicates a parcel with only 
descriptions and no data. A signature field that uniquely identifies the parcel class (type) 
follows the type field. The transcoder stores for future reference in its internal memory, 
all the header information as well as the layer drop decisions made for a parcel, indexed 
by its signature. The signature may be derived in part from the network session id. Once a 
signature has been registered in the transcoder, Type D parcels can be sent, in which case, 
the media description (header information) corresponding to the signature in the parcel is 
looked up in the transcoder’s internal memory. The description and decision information 
stored for each signature is updated every time a new parcel with the same signature 
(class) is routed. For Type I and H parcels, the new media description in the current 
parcel replaces the transcoder’s internal stored description, while for Type I and D 
parcels, the transcoding decisions made for the current parcel replaces the transcoder’s 
internal stored decision for the class. The stored information enables use of Type D 
parcels, as well as allows maintaining consistency of transcoding, which will be covered 
in Section 0. 

For a Type I or H parcel with header data, the signature field in the parcel header is 
followed by a specification of the number of media components, followed by dependency 
data for the components referred to as Component Dependency, followed by a flag called 
the Consistency Flag, followed by the list of individual media component headers each in 
the format of Figure 9. For a Type I parcel, this parcel header is followed by the list of 
the actual coded scalable data for the components each in the meta-bit-stream-format of 
Figure 4. For a Type H parcel, the parcel ends at the end of the header. For a Type D 
parcel there are no headers, but it only contains the list of scalable data components each 
in the format of Figure 4. We next describe the Component Dependency specification for 
Type I and H parcels. 

When different media components are combined, it is necessary to include a 
specification for dependency between different components. Certain components in the 
media must be included after transcoding even if it is only the lowest scalability layer 
B(0,0,..), while certain others may be dropped entirely. Furthermore, depending on the 
media, if one component is included, certain other(s) must be included too. All this 
information at the component level is conveyed in terms of a Component Dependency 
specification.  
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If there are M components in a media parcel, the component dependency rules are 
specified in terms of an M×M matrix D, where each element dij holds a special meaning. 
The diagonal elements dii are binary and specify whether the ith component must be 
included, even though it is only the lowest layer after transcoding. dii = 1 indicates that 
the ith component must be included, while dii = 0 indicates that the ith component may be 
dropped if needed. The non-diagonal elements dij, i≠j, are 5-ary and specify whether the 
jth component must be included or excluded if the ith component is included or excluded. 
dij = 0 indicates that there are no dependencies between the ith component and the jth 
component; dij = 1 indicates that if the ith component is included the jth component must 
also be included; dij = 2 indicates that if the ith component is included the jth component 
must be excluded; dij = 3 indicates that if the ith component is excluded the jth 
component must be included; and dij = 4 indicates that if the ith component is excluded 
the jth component must also be excluded. With this simple specification methodology a 
wide variety of dependencies can be readily conveyed. 

 

Type  
Type = I for integrated media parcel with media descriptions as well as media data, = D for data only parcel with
signature referenced descriptions and media data, = H for header-only parcel with only descriptions and no data. 

Desc. TOC 

Signature H 

Comp. 0 Desc Comp. 1 Desc 

M Component Desc. List Component Data List  Signature I 

Data TOC Comp. 0 Data Comp. 1 Data 

Desc. TOC Comp. 0 Desc Comp. 1 Desc 

No packet data, only descriptions 

Component Data List Signature D 

M 

No descriptions, only packet data 

Component Desc. List

Data TOC Comp. 0 Data Comp. 1 Data 

Format Compliance fla g  
Flag = 1 for meta-format compliant media, = 0 for non-compliant. If flag = 0, Parcel Description is null. No
transcoding is done, and the entire media bit-stream is forwarded as is. 

1 Parcel Data 

Parcel Header Parcel Data 

FC Flag Media Description 

Media Description 

M Component Desc. List Component Data List  Signature Type 

Number of Components 

C. Dep. 

Component dependence matrix D

C.F.

Consistency Flag 

C. Dep. C.F.

C. Dep. C.F.

 
Figure 12. Overall Parcel format 
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There is one assumption that is used to resolve contention between different 
components for inclusion in the transcoded parcel. That is, a component whose 
description in the header, and data in the scalable bit stream part, occurs earlier than 
another component usually gets a higher priority for inclusion. In other words, 
components in a parcel occur in order of importance to the overall media experience. 

In addition to the dependency information, there is a flag called the Consistency flag 
that is also conveyed as part of the header. This flag indicates if the component inclusion 
should be maintained consistent with the decisions made for the previous parcel of the 
same type. We will defer description of this flag to the section on Consistency. 

5.4. Parcel attributes 
Given the attributes and their values for the individual components, the attribute 

values for the overall parcel are obtained as follows. The attribute list for the overall 
parcel contains the union of all the attributes specified for all its components together. 
Furthermore, when the same attribute occur in one or more components, the combination 
type defined in the Attribute_combination field of Attribute_code determines the overall 
value. For example, if Attribute_combination = additive, the overall attribute value is the 
sum of attribute values of individual components; if Attribute_combination = maximum, 
the overall attribute value is the maximum of the attribute values of individual 
components. The overall attribute values of the transcoded parcel are used in the 
transcoding operation to decide which layers from which components to drop in order to 
satisfy the imposed by the outbound constraints. 

6. Outbound Constraints  
Universal transcoders may reside mid-stream in a delivery network or at an edge 

server, or these may be integrated in media servers to which clients connect directly. 
While in the former case, the overall delivery architecture is responsible for conveying to 
a transcoder the aggregated capabilities and preferences of its outbound connection(s), in 
the latter case clients convey their capabilities and preferences directly to the server when 
they make a request. Certain reserved attributes, can be sensed by transcoders themselves 
(or other agents) from the outbound link. In general, the capabilities and preferences 
received by the transcoder from a variety of sources with regard to a single recipient yield 
a set of outbound constraints, expressed in terms of attributes and requirements on their 
values.  

Along with the SCISM meta-format, the specification of the capabilities and 
preferences of the receiving clients and links must also be standardized so that these can 
be conveyed to a transcoder unambiguously. The specifications are based on imposition 
of constraints on definable multivariate functions called measures of the attributes. 
Definable measures are essentially linear combinations of products of simple univariate 
functions of attribute values. The definition comprises: (i) the number of product terms N 
in the combination, (ii) the number of elements ni in each product term, (iii) the attribute 
codes for the attributes aij in each product term, (iv) the function codes for certain simple 
univariate functions fij(.) on the attribute values, and (v) multipliers λi for the linear 
combination, so that the overall measure is: 
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ijf (x) are simple univariate functions like x, x2, x-1, log(x), ex, etc., codes corresponding 
to which are to be included in the standard specification. 

The constraints to be imposed on the above-defined measures are of two types, as 
explained below: 

Limit Constraints: The outbound constraints most often consists of specific limiting 
values for attribute measures, known as limit constraints. These constraints are specified 
as maximum and/or minimum supportable values for outbound connections for the 
measure. When both the maximum and the minimum are specified for an attribute 
measure we have a range of supportable values for it. An example of a limit constraint is: 
size/latency < 300 KB/s. Here size is an attribute, but 1/latency is specified in outbound 
constraints as a multiplier. Overall this indicates a bandwidth restriction on received 
media. Another example is: display resolution<800 diagonal pixels. 

Optimization Constraints: It is also possible to specify the outbound constraints in 
terms of a requested minimization or maximization of an attribute measures. In this case, 
the description consists of whether minimization or maximization of the measure is 
desired. The most important example of such a constraint occurs in rate-distortion 
optimization, where a measure like mean_squared_error + λ.size is minimized. Here the 
size attribute corresponds to rate (R), while the mean_squared_error attribute 
corresponds to distortion (D). Encrypted domain transcoding based on minimizing D+λ.R 
has been covered in [10], [11]. 

Note that one outbound constraint specification may consist of several limit 
constraints but only one optimization constraint.  

A mid-stream transcoder may receive sets of several outbound constraint 
specifications from multiple recipients. In this case, it needs to make its decision based on 
each, and send a combined bit-stream containing the union of the atoms needed for each. 
Alternatively, it can receive a single specification, which is in some sense a union of the 
constraints for all downstream receivers. 

7. Consistency across parcels of same type 
Often it may happen that multiple parcels of the same type would need to be sent 

through the transcoder to the same recipient. This may happen for example, when each 
parcel is a network packet. In such circumstances, it is not practical to include the media 
descriptions in each parcel, and expect the transcoder to drop layers as appropriate. While 
it is wasteful of bandwidth and processing power, it may also lead to lack of consistency 
at the receiver. For example, if a consumer receives one presentation slide at a different 
resolution than the next, it would not be a very pleasant experience for him.  

The way to get around this problem is to use a common media description for a class 
of parcels, typically of the same type. The transcoder remembers the media description 
data as well as the transcoding decisions, for a class registered in it indexed by an 
identifying signature. When a transcoder receives a parcel containing description data 
(Type I or a Type H parcel) for a class for the first time, it creates an entry in its internal 
buffer corresponding to the given signature. If the given signature already exists in 
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memory, it is overwritten. Next, if a Type D parcel belonging to the same class is sent, 
with only the signature in lieu of the media descriptions, the transcoder looks up the 
descriptions from its own memory, makes the component and layer drop decisions, and 
stores the new decisions in memory for the class. If a Type H parcel is sent, the 
descriptions stored for the class are simply updated. If a Type I parcel is sent, first, the 
parcel description in memory corresponding to the given signature is updated; next, the 
layer drop decisions are made using the new descriptions; finally, the new decisions are 
stored in memory for the class. For Type D and Type I parcels of a class, the transcoder 
remembers its decision for future consistency.  

Consistency refers to a constraint as per which, the component drop profile for each 
parcel as well as the layer drop profile for each component is left unchanged from one 
parcel to the next for the list of tiers mentioned in the consistency list of the component’s 
header (see Figure 9). The consistency flag in the parcel header simply indicates if the 
component inclusion would have to be maintained the same as the component inclusion 
in the previous parcel of the same class or not. The consistency list in the component 
would typically contain a subset of all tiers; and for the consistent tiers of a component, 
the number of layers dropped would have to be the same as the decision made for the 
previous parcel, stored in memory for the class. These are additional constraints that the 
layer drop decision mechanism has to adhere to. In the decision making phase of 
transcoding, the component inclusions are either maintained the same as the pre-stored 
inclusions for the class or not, depending on the current consistency flag corresponding to 
a class. Additionally, the tiers in the current (stored) component consistency list for a 
class are maintained the same as the pre-stored decisions for the class. Thus, for a Type I 
parcel, based on the order of operation as mentioned in the previous paragraph, the new 
consistency flag and component consistency lists are used in the decision making phase 
instead of the old ones, because the description is updated before the decisions are made, 
even though the previous parcel’s decisions are still used as reference. 

The consistency mechanism ensures consistency in delivery of parcels belonging to 
the same class, while still allowing adaptation based on changing descriptions for same 
type parcels and changing outbound characteristics (such as bandwidth), by permitting 
change in layer drops for tiers not included in the consistency list.  

Each signature persists in memory of the transcoder until it is dropped as a result of 
not being used. A circular buffer in the transcoder maintains an ordered list of most 
recently used signatures. When a certain signature has not been used for while a new 
signature would replace it eventually.  

8. Constraint based Transcoding 
When a parcel compliant with the Parcel format of Figure 12, is received by a 

transcoder that knows its outbound constraints, it immediately gets all the information it 
needs to transcode the content automatically, irrespective of the type of media and 
content it represents.  

For each outbound measure specified with constraints, the transcoder first checks to 
see if all the attributes in the measure occur among the media components in the parcel. If 
one of the attributes does not occur in the descriptions of any of the media components, 
the outbound measure is simply discarded as invalid because no transcoding is possible.   
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For each valid outbound measure specified with limit constraints the transcoder 
checks if the full measure value of the overall parcel satisfies the limit constraints. The 
full measure value of a parcel is derived from relevant full attribute values for the parcel, 
which in turn are obtained by combining attributes for media components using the 
Attribute_combination type field of the Attribute_code. If none of the full measure values 
violate the outbound limit constraints no transcoding needs to be done to satisfy the 
limits. The parcel is forwarded or transmitted as is. If at least one of the measures is in 
violation of the constraints, layers need to be dropped from one or more media 
components.  

Given a list of measures that violate the outbound restrictions, determination of which 
layers to drop from which components can be implemented in a variety of ways, ranging 
from simplistic ones to ones involving complex optimizations. If the 
Attribute_Monotone_Type field included in the component headers indicates the attribute 
is monotonic (non-decreasing or non-increasing), it simplifies the task of finding the 
layer drops. The actual implementation of a decision rule is beyond the scope of this 
paper. But a requisite bias should be not to drop more than what we need to do. Every 
time layers are dropped, the attributes that already satisfy the constraints are further 
devalued, thereby degrading the overall experience of the media. It is also not necessary 
always to satisfy all the limit constraints. If it is found that too much may be lost in 
satisfying the constraints, then certain constraints can just be relaxed.  

The optimization request, if specified, is a lower priority than limit constraints. 
Among the choices that do not violate the limit constraints, the transcoder chooses the 
one that maximizes or minimizes the measure value of the optimization constraint. This 
mode will be particularly useful for selecting optimum layers based on a rate-distortion 
criterion (i.e. the traditional D + λR), or selecting optimum layers based on user’s relative 
preferences of one attribute over the other. 

In addition to satisfying the limit constraints, and optimizing based on the 
optimization constraint, the transcoder needs to maintain consistency with transcoding of 
the previous parcel with the same signature, as well as satisfy the component 
dependencies. Note however, that for a mid-stream transcoder, the dependency or 
consistency considerations may be ignored in the actual bit-stream, though not in the 
decision making process, since there are multiple recipients downstream. These are 
enforced only for terminal transcoders that connect directly to media consumers. 

Once the decision has been made which layers to drop from which components, the 
transcoder drops the atoms in the scalable bit-stream, repacks it, updates the appropriate 
TOCs, and truncates the distribution specifications in the meta-data, before sending out 
the transcoded parcel. If the transcoder is the last in the chain before it reaches the 
eventual recipient, then the transcoding operation may comprise extracting only the 
desired atoms, and discarding the rest. 

In general, a mid-stream transcoder may receive several sets of outbound constraint 
specifications from multiple recipients. It can then make the best decision for each 
specification, and transmit the bit-stream structure corresponding to the bounding box 
encompassing the decisions made for each of them. The unused atoms in a bounding box 
may be emptied if a mid-stream transcoder knows exactly the versions that would be 
needed downstream. Alternatively, a mid-stream transcoder may receive a single set of 
constraints, which is the union of individual limit constraints, from a downstream 
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transcoder. In this case, it just makes one decision, and transmits all atoms up to the 
transcoding point. The exact protocol used for upstream constraint communication 
between transcoders in a chain has not been covered in this paper, but is a straightforward 
derivative of the general principles covered here. 

9. Conclusion 
Use of scalable media for content-agnostic transcoding is well known in the literature. 

These transcoders do not need to decrypt or decode compressed content in order to 
transcode it into a form appropriate for lower bandwidth/resolution etc. The underlying 
assumption behind the transcoding operation is that a transcoder understands the format 
in which the data is represented in, even though it does not need to know what the data 
actually is. However, the requirement on the structure of the content is still rigid in these 
approaches, because different transcoders are still needed for different types of media 
content. That is, a transcoder for images compressed in a particular way, say JPEG2000, 
would still be different from a transcoder for a certain kind of interactive content encoded 
in an entirely different way.  

This paper advances the level of abstraction to develop a flexible methodology for 
universal transcoding of scalable content, where the transcoding operation is generic 
enough to be applicable to any type of media having any type of encoding. The 
transcoder just needs to be told what the structure of the particular content that goes 
through it is, and how this content is to be transcoded to achieve the desired transcoding 
operation. This meta-data information can either be part of the header of the media itself, 
or can be conveyed to a transcoder separately for an entire class of content. Different 
transcoding infrastructures are no longer needed for different types of scalable media. For 
media that is non-standard or for media that do not exist today but would evolve in the 
future, as long as they conform to the lose meta-format (SCISM) that the universal 
transcoder understands, it still becomes possible to transcode it appropriately. 
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