
                                                                       
Fast Graph Generation for 
Synchronous Processes 
 
Chris Tofts 
Information Infrastructure Laboratory  
HP Laboratories Bristol 
HPL-2002-16 
January 29th, 2002* 
 
E-mail: chris_tofts@hp.com 
 
 
 The automated analysis of concurrent systems requires that 

they are translated from a syntactic presentation into some 
semantic space. One common space of interpretation is 
transition systems (Milner, 1980; Milner, 1990). In particular 
situations it is possible to produce these transformations 
piecewise, but in general we need to produce the complete 
system graph in order to analyse it. Performing this task 
efficiently is clearly important for the practicality of automated 
systems analysis. We present some techniques that greatly 
reduce the cost of generating graphs from synchronous 
presentations of concurrent systems. These methods have been 
implemented within an analysis tool the probabilistic 
workbench (PRWB) (Tofts, 1995). 

 

* Internal Accession Date Only    Approved for External Publication  
 Copyright Hewlett-Packard Company 2002 



Fast Graph Generation for Synchronous Processes

C. Tofts
HP Research Laboratories Bristol,

Filton Road, Stoke Gifford,
Bristol, BS34 8QZ,
chris tofts@hp.com

January 29, 2002

Abstract

The automated analysis of concurrent systems requires that they are translated from a syn-
tactic presentation into some semantic space. One common space of interpretation is transition
systems[2, 4]. In particular situations it is possible to produce these transformations piecewise,
but in general we need to produce the complete system graph in order to analyse it. Performing
this task efficiently is clearly important for the practicality of automated systems analysis. We
present some techniques that greatly reduce the cost of generating graphs from synchronous
presentations of concurrent systems. These methods have been implemented within an analysis
tool the probabilistic workbench (PRWB)[7].

1 Introduction

The automation of the analysis of concurrent systems is an important activity. Whilst we have
many well founded presentations of these systems, they all inherently lead to a large number of
states, which limit the scope of unassisted human analysis. Equally, the scale of these systems
leaves hand analysis very prone to error. At the core of such tools [1] is the problem of graph
building. In the main the systems are understood as transition graphs, and these are derived from
the concurrent system presentation. Given a system with N components each of which can engage
in potentially K behaviours at some point then we shall have to consider KN potential choices if
we allow the changes to occur synchronously1. Further we still have the problem that the state
space is also exponential in the number of parallel components. Clearly if we are to construct the
graph representations of large systems we need to pay some attention to the manner in which we
compute over our formal systems.

We present a prototypical synchronous process calculus, in this instance with priority and
probability extension, but our approach would work for any synchronous system. We then present
several approaches to reduce the computational cost of graph generation.

2 WSCCS

The language WSCCS [5, 6] is an extension of Milner’s SCCS [3] a language for describing syn-
chronous concurrent systems. Here we provide an introduction to the syntactic constructs that

1This makes the comparison of synchronous and asynchronous approaches difficult. An asynchronous system has
NK choices but each one results in only one (or sometimes two) state changes. Here we have more choices, but the
change in state is greater

1



underlie WSCCS but omit the formal semantics and algebraic properties as they have a full de-
scription elsewhere [6]. For asynchronous probabilistic calculi one may use the methods of [3, 4]
to reduce the problem to a synchronous one and our results would then be applicable. The only
restriction is that in the later development of this work priority is necessary to model progress.
Since WSCCS has all of the requisite descriptive power [6] it is appropriate as a base description
language for this problem class.

To define the language we presuppose a free abelian group Act over a set of atomic action
symbols with identity

√
and the inverse of a being a. As in SCCS, the complementary actions

a (conventionally input) and a (output) form the basis of communication. Within our group we
define that a = a−1. For clarity when the action names may not be easily separated we shall denote
the multiplication in the free group by the symbol #.

2.1 Expressions

We define a set of expressions.

Definition 2.1 A relative frequency expression (RFE) is formed from the following syntax, with
x ranging over a set of variable names V RF , and c ranging over a fixed field (such as N or R):

e ::= x|c|e+ e|e ∗ e

Further we assume that the following equations hold for relative frequency expressions:

e+ f = f + e
(e+ f) + g = e+ (f + g)
e ∗ f = f ∗ e
(e ∗ f) ∗ g = e ∗ (f ∗ g)
e ∗ (f + g) = e ∗ f + e ∗ g

Alternatively, we have commutative and associative addition and multiplication, with multiplication
distributing over addition. We shall assume that two expressions are equivalent if they can be shown
so by the above equations.

In the sequel we shall omit the ∗ in expressions, denoting expression multiplication by juxtapo-
sition. It should be noted that unlike other calculi with expressions [4] the value of our expressions
can have no effect on the structure of the transition graph of our system. Hence we should not
expect that adding this extra structure to our probabilistic process algebra will cause any new
technical difficulties.

2.2 Weights

We also take a set of weights W, denoted by wi, which are of the form2 eωk with e from the
relative frequency expressions and the ωk (with k ≥ 0) a set of infinite objects, with the following
multiplication and addition rules (assuming k ≥ k′), we consider the objects e used as weights to
be abbreviations for eω0:

eωk + fωk′
= eωk = fωk′

+ eωk eωk + fωk = (e+ f)ωk = fωk + eωk

eωk ∗ fωk′
= (ef)ωk+k′

= fωk′ ∗ eωk

2Here e is the relative frequency with which this choice should be taken and k is the priority level of this choice.
The choice of notation is based in [Tof90] arising from the observation that priority is similar to infinite weight.

2



2.3 The Calculus

The collection of WSCCS expressions ranged over by E is defined by the following BNF expression,
where a ∈ Act, X ∈ V ar, wi ∈ W , S ranging over renaming functions, those S : Act −→ Act such
that S(

√
) =
√

and S(a) = S(a), action sets A ⊆ Act, with
√
∈ A, and arbitrary finite indexing

sets I:

E ::= X | a.E |
∑
{wiEi|i ∈ I} | E × E | EdA | Θ(E) | E[S] | µix̃Ẽ.

We let Pr denote the set of closed expressions; and add 0 which is defined by 0
def
=

∑
{wiEi|i ∈ ∅}

to our syntax.
The informal interpretation of our operators is as follows:

• 0 a process which cannot proceed;

• X the process bound to the variable X;

• a : E a process which can perform the action a whereby becoming the process described by
E;

•
∑
{wi.Ei|i ∈ I} the weighted choice between the processes Ei, the weight of the outcome Ei

being determined by wi. We think in terms of repeated experiments on this process and we
expect to see over a large number of experiments the process Ei being chosen with a relative
frequency of wi

Σi∈Iwi
.

• E×F the synchronous parallel composition of the two processes E and F . At each step each
process must perform an action, the composition performing the composition (in Act) of the
individual actions;

• EdA represents a process where we only permit actions in the set A. This operator is used
to enforce communication and bound the scope of actions;

• Θ(E) represents taking the prioritised parts of the process E only;

• E[S] represents the process E relabelled by the function S;

• µix̃Ẽ represents the solution xi taken from solutions to the mutually recursive equations
x̃ = Ẽ.

Often we shall use a binary plus instead of the two (or more) element indexed sum, thus writing∑
{11.a : P, 22.b : Q|i ∈ {1, 2}} as 1.a : P + 2.b : Q. We allow ourselves to specify processes

definitionally, by providing recursive definitions of processes. For example, we write A
def
= a.A

rather than µx.ax. The weight n is an abbreviation for the weight nω0, and the weight wk is an
abbreviation for the weight 1ωk.

For a full description of the operational semantics equivalences and the algebra of WSCCS see
[5, 6].

3 Graph Generation

The graph generation problem for a WSCCS system can best be thought of in the following normal
form3:

3Strictly we have two forms with and without the priority operator, but this has no effect on the following
presentation.

3



Θ(P1 × P2 × . . .× Pn)d{P}

with each of the Pi of the form
∑j=ki

j=1 w(i,j).a(i,j) : P ′(i,j). The graph generation problem is then
that of studying the products:

Θ(w(1,a1)w(2,a2) . . . w(n,an).a(1,a1)a(2,a2) . . . a(n,an) : (P ′(1,a1) × P
′
(2,a2) × . . .× P

′
(n,an))d{P}

with a1 ∈ [1, k1], a2 ∈ [1, k2], ldots an ∈ [1, kn]. The obvious naive algorithm for computing this
product would be to code up4 the loops as follows (replacing subscripts by array references):

for i[1]=1 to k[1]
for i[2]=1 to k[2]
...
for i[n]=1 to k[n]
weight=W1[i[1]]*W2[i[2]]*...*Wn[i[n]]
action=A1[i[1]]*A2[i[2]]*...*An[i[n]]
process=P1[i[1]]*P2[i[2]]*...*Pn[i[n]]

obviously the appropraite multiplication operators are used in each of the products above.

3.1 Unique ID

We assign a unique identifier to each sequential state within the process. Consequently we can
order parallel products by using any order on these identifiers. This allows us to resolve syntactic
equivalence at the level of associativity and commutativity on the parallel processes.

3.2 Partial Multiplication

In the naive presentation it should be noted that in the final multiplication

...
for i[n]=1 to k[n]
weight=W1[i[1]]*W2[i[2]]*...*Wn[i[n]];
action=A1[i[1]]*A2[i[2]]*...*An[i[n]];
process=P1[i[1]]*P2[i[2]]*...*Pn[i[n]];

the sections W1[i[1]]*W2[i[2]]*...*Wn[i[n-1]], A1[i[1]]*A2[i[2]]*...*An[i[n-1]] and
P1[i[1]]*P2[i[2]]*...*Pn[i[n-1]] are all fixed for the duration of the loop and therefore should
only be evaluated once. Leading to the following implementation:

for i[1]=1 to k[1]
{PW[1]=W1[i[1]];
PA[1]=A1[i[1]];
PP[1]=P1[i[1]];
for i[2]=1 to k[2]
{ PW[2]=W2[i[2]]*PW[1];
PA[2]=A2[i[2]]*PA[1];
PP[1]=P2[i[2]]*PP[1];
...

4As the number of iterates and their ranges change this presentation is not how the program will actually work
but serves to illustrate the alogrithms.

4



for i[n]=1 to k[n]
{weight=Wn[i[n]]*PW[n-1];
action=An[i[n]]*PA[n-1];
process=Pn[i[n]]*PP[n-1];

}
}

}

In this version the partial multiplications are kept during the computation and consequently we
need only perform one multiplication for each new state rather than n− 1. Whilst this may seem
obvious in this presentation when the ranges of the loops are implicitly coded and the number of
loops required are variable, as is the case within an actual implementation, then this calculation
method is far from trivial.

3.3 Fan Out Order

The above assumes that the cost of multiplication within the free group on actions is symmetric.
It is not. Multiplication on a free group is essentially an insertion problem, and it is much cheaper
to insert a short word into a complicated one. Consequently we wish to maximise the number of
short insertions. Since the actions on individual processes tend to be simple this can be achieved
be handling the processes in inverse fan out order. That is to say if we have processes that have
choice numbers 4,2,1,5,3,3 then we exploit the associativity and commutativity of processes to oder
the muliplication as 1,2,3,3,4,5. This minimizes the number of complex free group multiplications
that our algorithm has to undertake, for the cost of a sort of size n at the start of the main loop
described above.

3.4 Repetition

The usual application of automated analysis tools is to largely heterogeneous systems and con-
sequently graph builders do not take advantage of repetition. In our case we are interested in
performance and probability. Consequently we often have repetition in our systems and this can
be exploited in two ways. Our use of unique identifiers allows us to detect when we have a ’run’ of
identical processes within a parallel product.

Since processes obey associativity and commutativity then we can exploit the fast positive
integer power algorithm for numbers:

an =

{
(ab

n
2
c)2 n mod 2 = 0

(ab
n
2
c)2 ∗ a n mod 2 = 1

this makes the cost of evaluating repetitions logarithmic rather than linear in the power.
Further, in this instance we know that there will be points of commonality in the next states

of the system. Consider the trivial coin tossing problem:

Coin
def
= 1.head : Coin+ 1.tail : Coin

Sys
def
= Coin× Coin

In its full expansion Sys is the following process:

Sys = 1.head2 : Sys+ 1.head#tail : Sys+ 1.tail#head : Sys+ 1.tail2 : Sys

but the free product on actions admits associativity and commutativity so the above is equal to

5



Sys = 1.head2 : Sys+ 2.head#tail : Sys+ 1.tail2 : Sys

We can identify this situation by exploiting the unique identifiers, but the cost of the absorbtion
requires us to sort the various action and destination state pairs. Performing this operation on all
expansions is wasteful as it is unlikely to reduce the number of choices. However, when we have
repeated processes it is clear that choices can be reduced by performing absorbtion as above. The
reduction of choices is very important in the wider state multiplication algorithm above as it is the
dominant cost. For instance for n coins with no absorbtion we have 2n choices, but actually there
are n+ 1 distinct choices.

4 Conclusions

By exploiting the normal form of processes we can greatly reduce the cost of graph building. In
particular in the generation of synchronous actions, where the multitipliation costs within a free
group will be high, care needs to be taken with the core generation of the expansion of the processes.

Furthermore in settings where we have repetition, common in performance problems, then we
can exploit that repetition to greatly reduce the cost of our expansion. All of the above strategies
have been used to improve the core graph generation within the PRWB[7], but have not been
documented beyond the source code previously.

References

[1] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems. ACM Transactions on Programming Lan-
guages and Systems, 15(1), 1993.

[2] R. Milner, Calculus of Communicating System, LNCS92, 1980.

[3] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science 25(3), pp
267-310, 1983.

[4] R. Milner, Communication and Concurrency, Prentice Hall, 1990.

[5] C. Tofts, A Synchronous Calculus of Relative Frequency, CONCUR ’90, Springer Verlag, LNCS
458.

[6] C. Tofts, Processes with Probabilities, Priorities and Time, FACS 6(5): 536-564, 1994.

[7] C. Tofts, Analytic and locally approximate solutions to properties of probabilistic processes,
Proceedings TACAS ’95, LNCS 1019, 1995.

6


