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StrongARM Microprocessor
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Abstract

This paper presents adigital audio sampling rate conversion library that converts between
arbitrary sampling frequencies. The library is implemented as a time-varying fractional delay
filter with coefficients stored in a lookup table. It is designed for use by real-time applications
and optimized for execution on Intel’s StrongARM microprocessor.

1. Introduction

Many different sampling rates are used in today’s digital signal processing applications.
Telephone systems sample speech at 8 kHz, 11.025 kHz is used for AM-radio quality audio, and
44.1 kHz is the standard for CD quality digital music. The problem of converting between
different sampling rates has been discussed in numerous papers and books, and different methods
have been proposed in [1]-[5].

The proposed sampling rate conversion library is targeted for processing blocks of audio
data in real-time applications. It is implemented with a time-varying fractional delay filter that is
controlled using a lookup table to convert between arbitrary rates. The library optimization has
been performed with the energy profiling tools presented in [6] for Intel’s StrongARM SA-110
Mi Croprocessor.

The motivation for this project is discussed in Section 2; the theory description is given in
Section 3; the design and implementation of the library is described in Section 4; test results are
in Section 5; optimization is discussed in Section 6. The library APl is given in the Appendix.

2. Motivation

The motivation for implementing a sampling rate conversion library came from working
with the audio on the SmartBadge IV [7]. The SmartBadge IV is the next-generation context-
aware device from Hewlett-Packard Laboratories. It is controlled by Intel’s StrongARM SA-
1110 processor and a StrongARM SA-1111 companion chip. In addition to the processors, the
Badge has on chip memory (FLASH and RAM), Philips UDA-1341 audio codec and various on
board sensors.
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One challenge with digital audio on this research platform prototype is the rate at which
the UDA-1341 codec samples the audio at both playback and recording. The codec on the
SmartBadge IV does not have a dedicated clock; instead it uses the clock signal from the
StrongARM. This will produce dight deviations from the standard sampling rates illustrated in
Table 1.

Table 1 Differencesin Sampling Rates on the SmartBadge 1V

Ideal
Sampling 8.0 kHz 11.025 kHz 16.00 kHz 22.05 kHz 32.0kHz 44.1 kHz
Frequency

Actual
Sampling 8.0 kHz 11.01 kHz 16.05 kHz 22.46 kHz 31.2kHz 43.2 kHz
Frequency

Real-time sampling rate conversion must be done on both the audio input and output to
record and playout high quality audio, avoiding distortion and possible over or under-flow in
real-time communication application Different methods for sampling rate conversion are
discussed in Section 3.

Energy consumption and power dissipation are critical to portable systems like the
SmartBadge IV. System’s energy consumption dictates its battery life. While microprocessors
have become smaller and more powerful, the same advances have not been made by batteries.
As a result, engineers need to explicitly design both hardware and software of portable systems
for low energy consumption. The sampling rate conversion library proposed in this paper is
optimized for execution on the StrongARM processor used by the SmartBadge IV. The
optimization is summarized in Section 6.

3. Theory of Operation
Sampling rate conversion is a problem of interpolating a signal at norrinteger multiples

of the original sampling period. This may also be viewed as delaying the signa by a time-
varying fractional amount as denonstrated in Figure 1, for a rate conversion of a signal with

sampling period, T, to anew period, T,,.
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Figure 1 Delaying the signal by atime-varying fractional amount
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To caculate each samples of the output, y[n], the input, x[n], must be delayed by
fractional amounts, d,, of the original sampling period. Delaying asignal by d, corresponds to

a multiplication by the complex exponential, e ™ | in the frequency domain. This may be
achieved by a system with the frequency response:

H, (e'")=e ™ foral w (1)

which corresponds to an all-pass filter. For use in sampling rate conversion, a bandlimiting
factor must be added to prevent diasing if the input rate, F,,, is higher than the output rate, F_, .
Specifically, the conversion requires a set of filters, known as fractional delay filters:

Hi(eJW):e'JWdi,forO£W£m'n(p,p|;—°m) @)

n

The corresponding impulse response of these filters, h.[n], may be calculated to be:

_sng(n- d)]

h
[Nl o(n-d)

,for dl n, )

where g isabandlimiting factor computed as:

g = min(1,7%4) @

n

The impulse response is a delayed sinc function of infinite length. Different methods exist for
approximating this unrealizable system with a causa filter of finite length. A detailed analysis
may be found in [8].

Several different rate conversion methods were considered for use in this library. They
differ in the method used to design the fractional delay filters. The method proposed in [3] uses
B-spline functions. [5] uses the Farrow polynomia approximation proposed in [9]. In both
cases, the filter coefficients are low-order polynomial functions of the delay:

h[n] = & c,[Kld* ®

k=0

where N is the order of the polynomia used to approximate each filter coefficient. The
coefficients may be easily updated for an arbitrary delay at run-time as the input is being filtered.
This is efficient only if the filter length is kept very short. For processing of high quality audio,
the input signal must first be upsampled by some factor in order for the short variable-delay filter
to generate accurate outputs. This method is feasible for a fixed conversion factor, F,,/F,, , but
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it may get complex if the conversion factor is to be made flexible because the coefficients, ¢ [k],

in (5) must be recomputed to approximate a filter response with a different cutoff frequency.
The method proposed in [4] does not required upsampling of the input. It uses the
window method for filter design [10], where the filter coefficients are computed as:

h[n] =w(n- d,)snc[g(n- d,)] for n=1..N, (6)

where w(n) is the window function, g is the bandlimiting factor computed in (4), and N is the

length of the filter. Commonly used window functions include the Kaiser window and the
Dolph Chebyshev window. Since calculating sinc and window functions for arbitrary delays at
run-time is too computationally expensive, a lookup table may be used. Interestingly, for a given

factor of conversion, F,,/F,, , thetota number of different delays, d,, isfinite. The delays aso

vary periodically during the conversion. Suppose that this factor may be reduced to the an
integral fraction, R /R, . Thedelays, d,, may be computed as:

g =i B § R
Rout eRoutU

()

wherei =0,1,... (R, -1, and gx{jdenotes the largest integer less than or equal to x. Observe
that O£ d, <1. A table of filters corresponding to the set of R, delaysfor a particular factor of

converson may be pre-computed. The number of elements in the filter table is equa to
R,.~ N, where N isthe filter length. For example, when converting 44.1 kHz to 48 kHz, we

may use R, =147 and R, =160, there are 160 output samples for 147 input samples, and a
total of 160 different delaysto be calculated. If afilter length of 65 is used with 16-bit resolution
for each coefficient, the lookup table would require 20 Kbytes of memory. An important point to
note is that the filter must be operated at the output sampling rate. This can be achieved by
shifting the input samples by a time-varying number of samples, s, into the filter's delay line:

é u é U
§ =gy di- Do ®)
e I%)ut u é ut U
The output is calculated using:
l\cl,-l
yinl=a h(k)x(n+s - k) 9)
k=0

where the variable i indexes the particular filter coefficients and shift values to use. It is
periodic and isequal to nmod R, .

The lookup table method is highly efficient since the coefficients are only computed
once. On the other hand, different tables are needed for different rates, and for some factors of



conversion, nwhich R,, is a large number, the table may take up more than 100 Kbytes of
memory.

A more flexible method is proposed in [2]. A low-pass filter with an arbitrary delay may
be computed by linearly interpolating an over-sampled and windowed sinc function. To
illustrate how this may be done, suppose the windowed sinc function with zero delay is
represented as h[n], thisis oversampled by a factor, L, to produce:

hoversampled [n] - h[E] (10)

This oversampled function can be computed beforehand and stored into a header file to be
compiled with the library code. To calculate h.[n] for thedelay d.:

h[n]=h[n- d,]=ho"=™<n - d L] (12)

Asin (7),0£d <1,and d,L usudly will not be an integer. But if L is large enough, linear
interpolating between the oversampled coefficients will produce accurate estimates for h[n- d.].

Details on how this is done with fixed point numbers and an analysis on the size requirement of
L may be found in [2]. This is the method employed in this library. The filter coefficients may
either be computed at run-time with minimum overhead (one multiplication and one addition for
each coefficient), or they may be computed and stored in a lookup table. This library offers the
user both options, but the lookup table should be used if possible because of the significant
reduction in computational complexity (see Section 5).

4. Library Design and Implementation

The sampling rate conversion is implemented as a time-varying FIR filter in our library.
The filter coefficients may be either pre-computed and stored in a lookup table, or computed at
run-time by linearly interpolating an oversampled filter response.

The design of the library is smilar to the block FIR filtering functions in Intel’s
Integrated Performance Primitives Library [11]. The library can be used both to process large
chunks of data as a whole and small blocks of data with repeated library calls; such is the case
when streaming audio over the Internet in real-time. To avoid transient filter response between
contiguous blocks of data, the interna state of the system should be maintained. This includes
the index of the particular filter coefficients to use and some input samples at the end of a block.
If the system isinitialized at the start of each new block to the state that was reached at the end
of the previous block, then a steady-state filter response is maintained.

A diagram of the sampling rate conversion system as implemented in the library is shown
in Figure 2.



Figure 2 Block diagram of sampling rate conversion system.
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A block of interleaved stereo datais first separated into two buffers internal to the library.
The delay control element isimplemented as a table containing the possible shift values as
calculated in (8). It controls how many input samples should be shifted into the filter and which
set of coefficientsisto be used. The output is calculated following (9). The resulting effect isa
time-varying filter operating at the output sampling frequency.

To avoid transient response at the end of a block, some input samples are saved in the
internal buffers until the next library call. A flush routine is provided in the library for transient
response calculation.

5. TestsResults

The library was tested using both natural audio signals and computer generated sine
waves. The conversion from 44.1 kHz to 48 kHz and 22.05 kHz will be illustrated here as
examples. The test input signal used is a sum of two sinusoids with the frequencies 4 kHz and
16 kHz; it was generated using 16-bits of resolution. Its spectrum is plotted in Figure 3.

Spectrum of Input Sampled at 44.1 kHz
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Figure 3. Spectrum of input signal sampled at 44.1 kHz. 6



The input was resampled to 48 kHz using the sampling rate conversion library, and the output
spectrum is shown in Figure 4.

Spectrum of Output Resampled to 48 kHz
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Figure 4. Spectrum of output signal resampled to 48 kHz.

Mogt distortions generated by the conversion are 80 dB below the signal level. The conversion
was repeated for an output rate of 22.05 kHz, and the result is shown in Figure 5.

Spectrum of Output Resampled to 22.05 kHz
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Figure 5. Spectrum of output signal resampled to 22.05 kKHz.

As expected, the frequency component above 11 kHz has been eliminated by the bandlimiting
factor in the interpolation filters. The distortions are still mostly 80 dB below the signal level.



6. Optimization

The fixed-point sampling rate conversion implementation code [12] for the method
proposed in [2] was used as a garting point for the library implementation. It was modified to fit
the library specifications and optimized for execution on the Hewlett-Packard Laboratories
SmartBadge portable device. Optimization was done manualy in the ARM Software
Deveopment Toolkit (SDT) [13] with the guidance of the cycle-accurate energy profiler
proposed in [6] and the application notes published by ARM [14].

At the implementation level, many “tricks’ from [14] were used to optimize the code.
They included, among others, corditional execution, function inlining, and efficient register
allocation. Two other major modifications are discussed below.

Stereo audio is usualy stored as interleaved 16-bit integers, but for sampling rate
conversion, each channel must be processed separately. In the original code, the separation was
done by the user application, and two library cals must be made, one for each channel. This
introduces redundancies. To process stereo data more efficiently, the channel separation was
moved inside of the library, such that a single library call is used for conversion.

Additionally, a lookup table for the filter coefficients was added to the origina code to
eliminate the calculation of the coefficient at runtime. On the other hand, it requires an
initialization function to compile the filter table.

The result of the optimization is summarized in Table 2.

Table 2 Performance and Energy for Sampling Rate Conversion |mplementations, 44.1 kHz to 48 kHz

Performance Energy (mWhr)
Code Revision Total Cycles (%Reduction) Processor [ Memory | Total Battery (%Reduction)
Original [12] 111760942 (0%) 1.10E-02 | 6.79E-03 3.23E-02 (0%)
Optimized 67752335 (39%) 1.02E-02 | 5.97E-03 2.91E-02 (10%)
Optimized with Lookup Table 39863181 (64%) 6.89E-03 | 4.04E-03 2.02E-02 (37%)

The above data were collected from the energy profiler, which was configured for the
StrongARM-110 processor using 1 MB of Flash memory and 2 MB of SRAM. The StrongARM
SA-1110 processor on the SmartBadge 1V is not yet supported by the ARM SDT, so the SA-110
is used instead for the simulation. To generate the data, the library was used to convert five
seconds of stereo audio recorded at 44.1 kHz to 48 kHz in blocks of 1024 samples using a 13-tap
filter. Similar reductions may be found in the down-sampling conversion from 44.1 kHz to 8
kHz shown in Table 3.

Table 3 Performance and Energy for Sampling Rate Conversion Implementations, 44.1 kHz to 8 kHz

Performance Energy (mWhr)
Code Revision Total Cycles (%Reduction) | Processor Memory Total Battery (Y%oReduction)
Original [12] 87634853 (0%) 8.00E-03 | 4.83E-03 2.32E-02 (0%)
Optimized 54581156 (38%) 6.31E-03 3.64E-03 1.78E-02 (23%)
Optimized with Lookup Table 33830392 (61%) 5.94E-03 | 3.50E-03 1.74E-02 (25%)




These results are overal lower than those in Table 2 because the down-sampling output data

length is much shorter. The reductions may be even more dramatic if the filter length was
increased to 65 asin Table 4.

Table 4 Performance and Energy for Sampling Rate Conversion Implementations, 44.1 kHz to 8 kHz

Performance Energy (mWhr)
Code Revision Total Cycles (%Reduction) | Processor Memory Total Battery (%Reduction)
Original [12] 2139419586 (0%) 7.39E-01 | 4.63E-01 2.21E+00 (0%)
Optimized 1206338682 (44%) 3.82E-01 | 2.46E-01 1.15E+00 (48%)
Optimized with Lookup Table 212445210 (90%) 5.06E-02 2.96E-02 1.48E-01 (93%)

The increased savings are mainly due to the large overhead in calculating 65 coefficients at run-
time that is avoided by using alookup table.
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Appendix
1. Library API

This library supports sample rate conversion of contiguous data blocks using repeated
cals without loss of interna filter state. Transient filter responses are avoided at block
boundaries by providing a state initialization mechanism for the function. If the filter is
initialized at the start of each new block to the state that was reached at the end of the previous
block, then a steady-state filter response is maintained when filtering a long data record on a
block-by-block basis. Application code making use of the resample function should adhere to
the following usage moddl:

a. Initiaization

Prior to caling resample for the first time, invoke resamplelNIT() with the
appropriate parameters to initialize the internal variables used by the library.

b. Resampling

If samples from a long sequence are processed in blocks using repeated calls to the
library, the application should not modify the RESAMPLE_STATE variable in
between successive calls. This implementation will produce around (TAP*factor)
samples of start- up transient output when it is called for the first time.

c. Exiting

When there are no more inputs, the application should first call resampleBLOCK()
with inLength set to zero. This should resample what's left in the internal buffer. |If
transient response is desired at the end, resampleFLUSH() should then be called.

Once conversion has been completed, @l resampleEXIT() to free up the memory
used by the internal variables (lookup tables and internal buffer).

Block size management: Block processing in sample rate conversion presents a unique problem
because the input block size is different from the output. In this library, the user should request
(int)(inLength*factor) samples of output per inLength input samples. Requesting too many or
too few outputs may result in resampleBLOCK returning an abnormal exit condition.

Processing interleaved stereo audio: Two channel (stereo) audio data is often stored with the
channels interleaved. This library provides functions for resampling interleaved data so the
application won't have to separate the channels.
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2. Example code

This is a simple example code that uses the library to convert a two-channel, rav PCM
audio file recorded at 44.1 kHz to 32 kHz. Conversion is done in blocks of 100 ms.

#include <stdio.h>
#include <stdlib.h>
#include "resample_Smith_Gossett.h"

void example(void)

RESAMPLE_STATE dtate;

int quality, stereo, use_table;

int Fin, Fout;

int Nin;  /* number of input samples per block */
int Nout; /* number of output samples per block */
int inBytes; * bytes per input block */

int outBytes; /* bytes per output block*/

int *inBuffer, * outBuffer;
double factor;

FILE *inFp, * outFp;

Fin = 44100;
Fout = 32000;
factor = (double)Fout/(double)Fin;

/* theaudio is processed in blocks of 0.1 second */
Nin = 4410;
Nout = (int)( (double)Nin*factor );

/* Allocate memory for in/out blodks */
inBytes = Nin*sizeof (int);

outBytes = Nout* sizeof(int);

inBuffer = (int *)malloc(inBytes);
outBuffer = (int *)malloc(outBytes);

/* Open up thefileswe need */
inFp = fopen("in.pcm", "rb");
outFp = fopen("out.pcm”, "wb");

quality =0; /* normal quality */
stereo = 1; /* stereo audio */
use_table=1,; /* uselookup table */

resamplel NI T(& state, factor, quality, stereo, use _table); /* initialize internal variables*/

/* resample Nin input samples at atime until the end of theinput file*/

while (fread(inBuffer, sizeof(int), Nin, inFp)==Nin) {
resampleBLOCK _Stereo(inBuffer, outBuffer, Nin, & Nout, & state);
fwrite(outBuffer, sizeof(int), Nout, outFp);

}

/* flush out what's left in the internal buffer */

resampleBLOCK _Stereo(in Buffer, outBuffer, 0, & Nout, & state);
fwrite(outBuffer, sizeof(int), Nout, outFp);

Nout = resampleFLUSH_Stereo(outBuffer, & state);
fwrite(outBuffer, sizeof(int), Nout, outFp);

resampleEXIT(& state); /* free up memory used by internal variables*/

fclose(inFp);
fclose(outFp);
free(outBuffer);
free(inBuffer);
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