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Abstract 
 
 This paper presents a digital audio sampling rate conversion library that converts between 
arbitrary sampling frequencies.  The library is implemented as a time-varying fractional delay 
filter with coefficients stored in a lookup table.  It is designed for use by real-time applications 
and optimized for execution on Intel’s StrongARM microprocessor. 
 
 

1. Introduction 
 

Many different sampling rates are used in today’s digital signal processing applications.  
Telephone systems sample speech at 8 kHz, 11.025 kHz is used for AM-radio quality audio, and 
44.1 kHz is the standard for CD quality digital music.  The problem of converting between 
different sampling rates has been discussed in numerous papers and books, and different methods 
have been proposed in [1]-[5]. 

The proposed sampling rate conversion library is targeted for processing blocks of audio 
data in real-time applications. It is implemented with a time-varying fractional delay filter that is 
controlled using a lookup table to convert between arbitrary rates.  The library optimization has 
been performed with the energy profiling tools presented in [6] for Intel’s StrongARM SA-110 
microprocessor.  
 The motivation for this project is discussed in Section 2; the theory description is given in 
Section 3; the design and implementation of the library is described in Section 4; test results are 
in Section 5; optimization is discussed in Section 6. The library API is given in the Appendix. 
 

2. Motivation 
 

The motivation for implementing a sampling rate conversion library came from working 
with the audio on the SmartBadge IV [7].  The SmartBadge IV is the next-generation context-
aware device from Hewlett-Packard Laboratories.  It is controlled by Intel’s StrongARM SA-
1110 processor and a StrongARM SA-1111 companion chip.  In addition to the processors, the 
Badge has on chip memory (FLASH and RAM), Philips UDA-1341 audio codec and various on-
board sensors. 

                                                 
*Chung-Tse Mar and Ronald W. Schafer are with the Center for Signal & Image Processing, Georgia Institute of 
Technology, Atlanta, Georgia. Mat C. Hans, Mark T. Smith, and Tajana Simunic are with the Appliance Platforms 
Department, Hewlett-Packard Laboratories, Palo Alto, CA. 
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One challenge with digital audio on this research platform prototype is the rate at which 
the UDA-1341 codec samples the audio at both playback and recording.  The codec on the 
SmartBadge IV does not have a dedicated clock; instead it uses the clock signal from the 
StrongARM.  This will produce slight deviations from the standard sampling rates illustrated in 
Table 1. 
 

Table 1 Differences in Sampling Rates on the SmartBadge IV 

Ideal 
Sampling 

Frequency 
8.0 kHz 11.025 kHz 16.00 kHz 22.05 kHz 32.0 kHz 44.1 kHz 

Actual 
Sampling 

Frequency 
8.0 kHz 11.01 kHz 16.05 kHz 22.46 kHz 31.2 kHz 43.2 kHz 

 
 Real-time sampling rate conversion must be done on both the audio input and output to 
record and playout high quality audio, avoiding distortion and possible over or under-flow in 
real-time communication application.  Different methods for sampling rate conversion are 
discussed in Section 3. 

Energy consumption and power dissipation are critical to portable systems like the 
SmartBadge IV.  System’s energy consumption dictates its battery life. While microprocessors 
have become smaller and more powerful, the same advances have not been made by batteries.  
As a result, engineers need to exp licitly design both hardware and software of portable systems 
for low energy consumption.  The sampling rate conversion library proposed in this paper is 
optimized for execution on the StrongARM processor used by the SmartBadge IV.  The 
optimization is summarized in Section 6. 
 

3. Theory of Operation 
 

Sampling rate conversion is a problem of interpolating a signal at non-integer multiples 
of the original sampling period.  This may also be viewed as delaying the signal by a time-
varying fractional amount as demonstrated in Figure 1, for a rate conversion of a signal with 
sampling period, inT , to a new period, outT . 

 
Figure 1 Delaying the signal by a time-varying fractional amount 
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To calculate each samples of the output, ][ny , the input, ][nx , must be delayed by 

fractional amounts, id , of the original sampling period.  Delaying a signal by id  corresponds to 

a multiplication by the complex exponential, idje ω− , in the frequency domain.  This may be 
achieved by a system with the frequency response:  
 

             idjj
i eeH ωω −=)( , for all ω                        (1) 

 
which corresponds to an all-pass filter.  For use in sampling rate conversion, a bandlimiting 
factor must be added to prevent aliasing if the input rate, inF , is higher than the output rate, outF .  
Specifically, the conversion requires a set of filters, known as fractional delay filters: 
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The corresponding impulse response of these filters, ][nhi , may be calculated to be: 
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where γ  is a bandlimiting factor computed as: 
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The impulse response is a delayed sinc function of infinite length.  Different methods exist for 
approximating this unrealizable system with a causal filter of finite length.  A detailed analysis 
may be found in [8]. 

Several different rate conversion methods were considered for use in this library.  They 
differ in the method used to design the fractional delay filters.  The method proposed in [3] uses 
B-spline functions.  [5] uses the Farrow polynomial approximation proposed in [9].  In both 
cases, the filter coefficients are low-order polynomial functions of the delay: 
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where N is the order of the polynomial used to approximate each filter coefficient.  The 
coefficients may be easily updated for an arbitrary delay at run-time as the input is being filtered.  
This is efficient only if the filter length is kept very short.  For processing of high quality audio, 
the input signal must first be upsampled by some factor in order for the short variable-delay filter 
to generate accurate outputs.  This method is feasible for a fixed conversion factor, inout FF , but 
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it may get complex if the conversion factor is to be made flexible because the coefficients, ][kcn , 
in (5) must be recomputed to approximate a filter response with a different cutoff frequency. 

The method proposed in [4] does not required upsampling of the input.  It uses the 
window method for filter design [10], where the filter coefficients are computed as: 
 

       )](sinc[)(][ iii dndnwnh −−= γ  for Nn ...1= ,                                (6) 
 
where )(nw  is the window function, γ  is the bandlimiting factor computed in (4), and N is the 
length of the filter. Commonly used window functions include the Kaiser window and the 
Dolph-Chebyshev window.  Since calculating sinc and window functions for arbitrary delays at 
run-time is too computationally expensive, a lookup table may be used.  Interestingly, for a given 
factor of conversion, inout FF , the total number of different delays, id , is finite.  The delays also 
vary periodically during the conversion.  Suppose that this factor may be reduced to the an 
integral fraction, inout RR .  The delays, id , may be computed as: 
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where i = 0,1,… )1( −outR , and  x denotes the largest integer less than or equal to x.  Observe 
that 10 <≤ id .  A table of filters corresponding to the set of outR  delays for a particular factor of 
conversion may be pre-computed.  The number of elements in the filter table is equal to 

NRout × , where N is the filter length.  For example, when converting 44.1 kHz to 48 kHz, we 
may use 147=inR  and 160=outR , there are 160 output samples for 147 input samples, and a 
total of 160 different delays to be calculated.  If a filter length of 65 is used with 16-bit resolution 
for each coefficient, the lookup table would require 20 Kbytes of memory.  An important point to 
note is that the filter must be operated at the output sampling rate.  This can be achieved by 
shifting the input samples by a time-varying number of samples, is , into the filter’s delay line: 
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The output is calculated using: 
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where the variable i  indexes the particular filter coefficients and shift values to use.  It is 
periodic and is equal to outRn mod . 

The lookup table method is highly efficient since the coefficients are only computed 
once.  On the other hand, different tables are needed for different rates, and for some factors of 
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conversion, in which outR  is a large number, the table may take up more than 100 Kbytes of 
memory. 

A more flexible method is proposed in [2].  A low-pass filter with an arbitrary delay may 
be computed by linearly interpolating an over-sampled and windowed sinc function.  To 
illustrate how this may be done, suppose the windowed sinc function with zero delay is 
represented as ][nh , this is oversampled by a factor, L, to produce: 

 

                                             ][][
L
n

hnh doversample =                                                            (10) 

 
This oversampled function can be computed beforehand and stored into a header file to be 
compiled with the library code.  To calculate ][nhi for the delay id : 
 
                                        ][][][ LdnLhdnhnh i

doversample
ii −=−=                                             (11) 

 
As in (7), 10 <≤ id , and Ld i  usually will not be an integer.  But if L is large enough, linear 
interpolating between the oversampled coefficients will produce accurate estimates for ][ idnh − . 
Details on how this is done with fixed point numbers and an analysis on the size requirement of 
L may be found in [2].  This is the method employed in this library.  The filter coefficients may 
either be computed at run-time with minimum overhead (one multiplication and one addition for 
each coefficient), or they may be computed and stored in a lookup table.  This library offers the 
user both options, but the lookup table should be used if possible because of the significant 
reduction in computational complexity (see Section 5). 

 
4. Library Design and Implementation 

 
The sampling rate conversion is implemented as a time-varying FIR filter in our library.  

The filter coefficients may be either pre-computed and stored in a lookup table, or computed at 
run-time by linearly interpolating an oversampled filter response.   

The design of the library is similar to the block FIR filtering functions in Intel’s 
Integrated Performance Primitives Library [11].  The library can be used both to process large 
chunks of data as a whole and small blocks of data with repeated library calls; such is the case 
when streaming audio over the Internet in real-time.  To avoid transient filter response between 
contiguous blocks of data, the internal state of the system should be maintained.  This includes 
the index of the particular filter coefficients to use and some input samples at the end of a block.  
If the system is initialized at the start of each new block to the state that was reached at the end 
of the previous block, then a steady-state filter response is maintained.   

A diagram of the sampling rate conversion system as implemented in the library is shown 
in Figure 2. 
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Figure 2 Block diagram of sampling rate conversion system. 

 
A block of interleaved stereo data is first separated into two buffers internal to the library.  

The delay control element is implemented as a table containing the possible shift values as 
calculated in (8).  It controls how many input samples should be shifted into the filter and which 
set of coefficients is to be used.  The output is calculated following (9).  The resulting effect is a 
time-varying filter operating at the output sampling frequency. 

To avoid transient response at the end of a block, some input samples are saved in the 
internal buffers until the next library call.  A flush routine is provided in the library for transient 
response calculation. 

 
5. Tests Results 

 
 The library was tested using both natural audio signals and computer generated sine 
waves.  The conversion from 44.1 kHz to 48 kHz and 22.05 kHz will be illustrated here as 
examples.  The test input signal used is a sum of two sinusoids with the frequencies 4 kHz and 
16 kHz; it was generated using 16-bits of resolution.  Its spectrum is plotted in Figure 3. 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Spectrum of input signal sampled at 44.1 kHz. 
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The input was resampled to 48 kHz using the sampling rate conversion library, and the output 
spectrum is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Most distortions generated by the conversion are 80 dB below the signal level.  The conversion 
was repeated for an output rate of 22.05 kHz, and the result is shown in Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As expected, the frequency component above 11 kHz has been eliminated by the bandlimiting 
factor in the interpolation filters.  The distortions are still mostly 80 dB below the signal level. 
 

Figure 4. Spectrum of output signal resampled to 48 kHz. 

Figure 5. Spectrum of output signal resampled to 22.05 kHz. 
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6. Optimization 
  

The fixed-point sampling rate conversion implementation code [12] for the method 
proposed in [2] was used as a starting point for the library implementation.  It was modified to fit 
the library specifications and optimized for execution on the Hewlett-Packard Laboratories 
SmartBadge portable device. Optimization was done manually in the ARM Software 
Development Toolkit (SDT) [13] with the guidance of the cycle-accurate energy profiler 
proposed in [6] and the application notes published by ARM [14]. 

At the implementation level, many “tricks” from [14] were used to optimize the code.  
They included, among others, conditional execution, function inlining, and efficient register 
allocation.  Two other major modifications are discussed below. 

Stereo audio is usually stored as interleaved 16-bit integers, but for sampling rate 
conversion, each channel must be processed separately.  In the original code, the separation was 
done by the user application, and two library calls must be made, one for each channel.  This 
introduces redundancies.  To process stereo data more efficiently, the channel separation was 
moved inside of the library, such that a single library call is used for conversion. 

Additionally, a lookup table for the filter coefficients was added to the original code to  
eliminate the calculation of the coefficient at run-time.  On the other hand, it requires an 
initialization function to compile the filter table. 

The result of the optimization is summarized in Table 2. 
 
Table 2 Performance and Energy for Sampling Rate Conversion Implementations, 44.1 kHz to 48 kHz 

 Performance  Energy (mWhr) 

Code Revision Total Cycles (%Reduction) Processor Memory Total Battery  (%Reduction) 

Original [12] 111760942 (0%) 1.10E-02 6.79E-03 3.23E-02 (0%) 

Optimized 67752335 (39%) 1.02E-02 5.97E-03 2.91E-02 (10%) 

Optimized with Lookup Table 39863181 (64%) 6.89E-03 4.04E-03 2.02E-02 (37%) 

 
The above data were collected from the energy profiler, which was configured for the 
StrongARM-110 processor using 1 MB of Flash memory and 2 MB of SRAM.  The StrongARM 
SA-1110 processor on the SmartBadge IV is not yet supported by the ARM SDT, so the SA-110 
is used instead for the simulation.  To generate the data, the library was used to convert five 
seconds of stereo audio recorded at 44.1 kHz to 48 kHz in blocks of 1024 samples using a 13-tap 
filter.  Similar reductions may be found in the down-sampling conversion from 44.1 kHz to 8 
kHz shown in Table 3. 
 

Table 3 Performance and Energy for Sampling Rate Conversion Implementations, 44.1 kHz to 8 kHz 

  Performance  Energy (mWhr) 

Code Revision Total Cycles (%Reduction)  Processor Memory Total Battery (%Reduction) 

Original [12] 87634853 (0%) 8.00E-03 4.83E-03 2.32E-02 (0%) 

Optimized 54581156 (38%) 6.31E-03 3.64E-03 1.78E-02 (23%) 

Optimized with Lookup Table 33830392 (61%) 5.94E-03 3.50E-03 1.74E-02 (25%) 
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These results are overall lower than those in Table 2 because the down-sampling output data 
length is much shorter.  The reductions may be even more dramatic if the filter length was 
increased to 65 as in Table 4. 
 

Table 4 Performance and Energy for Sampling Rate Conversion Implementations, 44.1 kHz to 8 kHz 

  Performance  Energy (mWhr) 

Code Revision Total Cycles (%Reduction)  Processor Memory Total Battery (%Reduction) 

Original [12] 2139419586 (0%) 7.39E-01 4.63E-01 2.21E+00 (0%) 

Optimized 1206338682 (44%) 3.82E-01 2.46E-01 1.15E+00 (48%) 

Optimized with Lookup Table 212445210 (90%) 5.06E-02 2.96E-02 1.48E-01 (93%) 

 
The increased savings are mainly due to the large overhead in calculating 65 coefficients at run-
time that is avoided by using a lookup table. 
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Appendix 
 

1. Library API 
 
 This library supports sample rate conversion of contiguous data blocks using repeated 
calls without loss of internal filter state.  Transient filter responses are avoided at block 
boundaries by providing a state initialization mechanism for the function.  If the filter is 
initialized at the start of each new block to the state that was reached at the end of the previous 
block, then a steady-state filter response is maintained when filtering a long data record on a 
block-by-block basis.  Application code making use of the resample function should adhere to 
the following usage model: 
 

a. Initialization 
Prior to calling resample for the first time, invoke resampleINIT() with the 
appropriate parameters to initialize the internal variables used by the library. 
b. Resampling 
If samples from a long sequence are processed in blocks using repeated calls to the 
library, the application should not modify the RESAMPLE_STATE variable in 
between successive calls.  This implementation will produce around (TAP*factor) 
samples of start-up transient output when it is called for the first time. 
c. Exiting 
When there are no more inputs, the application should first call resampleBLOCK() 
with inLength set to zero. This should resample what's left in the internal buffer.  If 
transient response is desired at the end, resampleFLUSH() should then be called.  
Once conversion has been completed, call resampleEXIT() to free up the memory 
used by the internal variables (lookup tables and internal buffer).  

 
Block size management :  Block processing in sample rate conversion presents a unique problem 
because the input block size is different from the output. In this library, the user should request 
(int)(inLength*factor) samples of output per inLength input samples.  Requesting too many or 
too few outputs may result in resampleBLOCK returning an abnormal exit condition. 
 
Processing interleaved stereo audio: Two channel (stereo) audio data is often stored with the 
channels interleaved. This library provides functions for resampling interleaved data so the 
application won't have to separate the channels. 



 11 

2. Example code  

 
This is a simple example code that uses the library to convert a two-channel, raw PCM 

audio file recorded at 44.1 kHz to 32 kHz. Conversion is done in blocks of 100 ms. 
 

#include <stdio.h> 
#include <stdlib.h> 
#include "resample_Smith_Gossett.h" 
 
void example(void) 
{ 
 RESAMPLE_STATE state; 
 int quality, stereo, use_table; 
 int Fin, Fout; 
 int Nin; /* number of input samples per block */ 
 int Nout; /* number of output samples per block */ 
 int inBytes; /* bytes per input block */ 
 int outBytes; /* bytes per output block*/ 
  
 int *inBuffer, *outBuffer;  
 double factor; 
 
 FILE *inFp, *outFp;  
  
 Fin = 44100; 
 Fout = 32000; 
 factor = (double)Fout/(double)Fin; 
  
 /* the audio is processed in blocks of 0.1 second */ 
 Nin = 4410; 
 Nout = (int)( (double)Nin*factor ); 
 
 /* Allocate memory for in/out blocks */ 
 inBytes = Nin*sizeof(int); 
 outBytes = Nout*sizeof(int); 
 inBuffer = (int *)malloc(inBytes); 
 outBuffer = (int *)malloc(outBytes); 
  
 /* Open up the files we need */ 
 inFp = fopen("in.pcm", "rb"); 
 outFp = fopen("out.pcm", "wb"); 
  
 quality = 0; /* normal quality */ 
 stereo = 1;  /* stereo audio */ 
 use_table = 1; /* use lookup table */ 
 resampleINIT(&state, factor, quality, stereo, use_table);  /* initialize internal variables */ 
 
 /* resample Nin input samples at a time until the end of the input file */ 
 while (fread(inBuffer, sizeof(int), Nin, inFp)==Nin) { 
  resampleBLOCK_Stereo(inBuffer, outBuffer, Nin, &Nout, &state); 
  fwrite(outBuffer, sizeof(int), Nout, outFp); 
 } 
  
 /* flush out what's left in the internal buffer */ 
 resampleBLOCK_Stereo(in Buffer, outBuffer, 0, &Nout, &state); 
 fwrite(outBuffer, sizeof(int), Nout, outFp); 
 Nout = resampleFLUSH_Stereo(outBuffer, &state); 
 fwrite(outBuffer, sizeof(int), Nout, outFp); 
  
 resampleEXIT(&state); /* free up memory used by internal variables */ 
  
 fclose(inFp); 
 fclose(outFp); 
 free(outBuffer); 
 free(inBuffer); 
} 


