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Abstract

Utility grid environments o�er programmatic access to information technology (IT) resources for

applications. There is a substantial literature regarding admission control, resource reservation, and

scheduling in support of engineering and scienti�c jobs for grids. Typically each job is associated with a

duration and peak requirements for resources. In this paper we focus on techniques to support admission

control and advance resource reservation for applications with statistical demand characterizations. We

consider business applications which require resources continuously but that have resource demands that

change regularly based on factors such as time of day and day of week. We present an approach for

statistically characterizing the demand pro�les of business applications for utility grids. The pro�les

provide a grid with time varying expectations and bounds on application resource requirements. We

present a method that provides statistical assurances regarding the number of resources needed to satisfy

the combined requirements of many applications over time. We illustrate the feasibility of our approach

with a case study that uses resource utilization information from 48 data center servers. Simulation

experiments explore the sensitivity of the assurances to correlations between application resource demands

and the precision of the demand pro�les.

Keywords: Resource management, Grid computing, Utility computing, Business applications

1 Introduction

Grid environments o�er programmatic access to information technology (IT) resources for applications. These

environments have emerged to support the needs of the engineering and scienti�c communities. For example

grid environments [16] [7] may harness the unused compute capacity of engineering workstations within an

organization or provide access to specialized resources such as supercomputer clusters that are shared by
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many scienti�c researchers. These grid environments provide: languages to specify resources required by jobs

and services for brokering, resource discovery and resource management.

To date grid environments have focused on support for scienti�c and engineering jobs. There is a sub-

stantial literature regarding admission control, resource reservation, and scheduling for the support of these

kinds of jobs for grids. Jobs are typically given a start-time/end-time window and a maximum job duration

within the window. Peak requirements for resources such as cpus, memory, network bandwidth, and storage

capacity are identi�ed and reserved for the duration of the job. This has proven to be e�ective for the batch

job style typically associated with engineering and science workloads. However in the future grids are likely

to support a more diverse set of applications [10].

In this paper we present an approach for grid resource management systems to support business applica-

tions. Many of these applications are likely to rely on grids with tightly coupled resources that are realized as

data centers and o�er IT resources on demand. We refer to these as utility grids. We loosely de�ne business

applications as those requiring resources on a continuous basis but with resource requirements that vary

based on factors such as time of day and day of week. For these applications the peak and mean number of

resources required can di�er by a factor of 1.5 to 20 [19][2]. We expect such applications to exploit grid envi-

ronments by acquiring and releasing resources as needed based on their own current workload conditions. For

such applications workload patterns are often repeatable but future workload conditions, and corresponding

resource demands, are only known statistically. The approach we present is also appropriate for scienti�c

and engineering applications with processing, communication, and input-output stages that have signi�cantly

di�erent resource requirements.

Substantial di�erences between peak and mean resource requirements motivate the development of ad-

mission control mechanisms that exploit statistical multiplexing. In other words there is an opportunity to

overbook a utility grid's resources yet provide high statistical assurance, i.e., high probability, that resources

will be made available to applications when they need them.

Our contributions in this paper are as follows. We present an approach for statistically characterizing

the demand pro�les of business applications for the grid and a method that uses these pro�les to provide

statistical assurance regarding the number of resources needed to satisfy aggregate demand. We illustrate the

feasibility of our approach with a case study that uses resource utilization information from 48 data center

servers. Simulation experiments explore the sensitivity of the assurances to correlations between application

resource demands and the precision of the demand pro�les.

Our demand characterization approach is straightforward yet provides much of the information needed

to support admission control with advance resource reservation. Each customer application is characterized

with respect to its pattern of repeatable behaviour. As an example a week-day pro�le would be appropriate

for a business application if its demands are repeatable by time of day on weekdays. The pro�les are based

on historical observations and/or projections. We de�ne an application's statistical demand pro�le (SDP) as

a set of sequences of probability mass functions (pmfs) with one sequence per resource type (for example:
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server type, networking bandwidth, storage capacity). Each sequence has one pmf per time slot where time

slots correspond to reservation and measurement/monitoring periods that are expected to be on the order of

minutes to tens of minutes.

SDPs bound the expected resource demand of customers. We present a technique that uses the SDPs

along with the central limit theorem to estimate the number of resources needed to satisfy the aggregate

demand of applications. A correlation factor for application loads is introduced to augment the estimate.

Its magnitude is the remaining information we use to support admission control. We treat this factor as a

calibration parameter for our approach.

For our system under study we found that application demands were not highly correlated at the one

hour time scale and that there were clear gains possible from statistical multiplexing. Our simulation exper-

iments show the technique did a good job at estimating the maximum aggregate number of resources needed

by applications even with high (simulated) correlations in application demands. The technique was more

sensitive to an accurate characterization of demand pro�les.

The results presented in this paper are limited in the following ways. We consider only one resource type,

namely a shared pool of identically con�gured servers. Applications may only attempt to acquire or release

servers from the pool at the end of each time slot, i.e., measurement interval. All time slots have the same

duration. All pro�les have the same duration. Our focus is on whether suÆcient resources are available over

the duration of a pro�le; the allocation of speci�c resources is beyond the scope of this paper. We do not

consider long term, i.e., monthly or longer, trends (capacity planning) for increasing or decreasing resource

usage by applications. Also, we do not consider techniques for characterizing the time scales over which

application loads are repeatable.

Related work is discussed in Section 2. Section 3 formally de�nes statistical demand pro�les and presents

techniques for estimating the number of resources needed to support the aggregate demand of many appli-

cations. Section 4 illustrates the feasibility of the techniques by applying them to a subset of servers from a

data center. We explore the robustness of the technique using a sensitivity analysis. Section 5 gives summary

and concluding remarks.

2 Related work

The grid community provides infrastructure for the support of scienti�c batch jobs in utility environments [16].

Jobs are typically described by their peak resource requirements, maximum job duration, start-time, and end-

time. A job description is submitted to a resource manager. The resource manager uses resource availability

information to decide whether it has suÆcient resources to support the job. Current grid technologies rely

on resource management systems such as LSF [25][17][18].

Advance reservation is appropriate for jobs that require access to large numbers of resources or access to

popular resources that are hard to obtain. With advance reservation time is partitioned into slots. The slots
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form a calendar. Reservations are typically made in the �rst available slot where all required resources are

available. Hollingsworth et al. [13] describe a method named \Imprecise Calendars" for scheduling resources

on computational grids. They consider reservation calendars that operate over multiple time scales to bet-

ter organize batch schedules without committing speci�c resources too early. They demonstrate increased

e�ectiveness in utilizing resources with respect to previous batch approaches. Some systems make use of the

concept of back�lling to reorganize schedules to make more e�ective use of resources. Smith et al. [21] present

a study showing the impact of job stop/restart capabilities, back�lling, and accurate runtime predictions for

jobs on the e�ective use of resources and job wait times for jobs in a supercomputing center. Berman et al. [4]

present a framework to orchestrate a job's phases of execution in grid environments. At each phase the job's

resource requirements may change. Their system could orchestrate a corresponding sequence of sub-jobs and

their interactions with resource management systems. Their work is at the application level.

We note that the above systems do not attempt to exploit the resource savings o�ered by statistical

multiplexing while providing statistical assurances regarding resource availability. Statistical multiplexing is

important for business applications because of their continuous operation and potential for large peak-to-

mean ratios in resource demands. Assurances are essential; business applications must have con�dence they

will have access to resources when needed.

Hechmann et al. [11] consider several methods for deciding a bandwidth allocation schedule for wide

area network access. The methods include deterministic substitution (mixed integer programming), chance

constrained stochastic optimization methods based on scenarios expressing historical demands, and recourse

(penalty based) strategies. In general the techniques �nd a reservation schedule that minimizes overall costs

by deciding times for resource re-allocation. The fewer the number of re-allocations the lower the re-allocation

overhead costs but the lower the 
exibility for exploiting multiplexing. Their scenario based approach could

o�er a similar characterization as our pmfs. However to provide statistical assurance their techniques require

as constraints an enumeration of all possible scenarios for application resource requirements. Furthermore

scenario modelling would have to take into account correlation. The scenario based techniques do not appear

to scale for large systems.

There are resource management systems that aim to support business applications. We refer to these

as utility computing environments. Broadly they fall into two categories. The �rst is a shared server utility

model where server resources are exploited by multiple customer applications at the same time. The second

is a more recent approach we de�ne as a full server utility model where applications programmatically acquire

and release entire servers as needed. We note that a shared server utility can act as an application to a full

server utility in that it can operate as a service to its customers and acquire and release servers as needed

from the full server utility data center. In general shared server utilities rely on scheduling mechanisms

that operate over times scales of seconds to tens of seconds { the time needed to recon�gure server inter-

connections. Full server utilities operate on times scales of minutes to tens of minutes { the time needed to

migrate (boot/con�gure) servers. Inevitably both rely on network fabrics and possibly storage systems that
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are shared by multiple applications.

An example of a shared utility environment is MUSE [6] in which hosted Web sites are treated as services.

All services run concurrently on all servers in a cluster. A pricing/optimization model is used to determine

the fraction of cpu resources allocated to each service on each server. A special dispatcher, a level 4 load

balancer, routes Web page requests for all services only to those servers where the service has a cpu allocation.

The optimization model shifts load to use as few servers as possible while satisfying application level Service

Level Agreements (SLA) for the services. A major goal of the work is to maximize the number of unused

servers so that they can be powered down to reduce energy consumption. The over-subscription of resources

is dealt with via the pricing/optimization model. When resources are scarce costs increase thereby limiting

demand. Commercial implementations of such goal driven technology are emerging [22][9].

In a sense our SDP approach is also goal driven. However we use historical and/or anticipated load

information to specify an application's expected resource requirements. This enables support for statistical

multiplexing and corresponding statistical assurances regarding resource availability. This separates concerns.

Each application is solely responsible for delivering an appropriate quality of service to its customers. It must

translate a quality of service to a quantity of resources required to achieve that level of service [23]. The

utility is responsible for providing resources on demand with a particular level of assurance to its applications.

We believe this separation of concerns is practical for many kinds of business applications. We note that if an

application exceeds its expected requirements then other goal and policy mechanisms may be appropriate.

A full server utility named the Adaptive Internet Data Center is described in reference [20]. Its infras-

tructure concepts have been realized as a product [12]. It exploits the use of virtual LANs and SANs for

partitioning resources into secure domains called virtual application environments. These environments sup-

port multi-tier as well as single-tier applications and can also contain systems that internally implement a

shared server utility model. A second example of a full server utility approach is Oceano [1], an architecture

for an e-business utility.

Ranjan et al. [19] consider QoS driven server migration within full server utility environments. They

provide application level workload characterizations and explore the e�ectiveness of an online algorithm,

Quality of Infrastructure on Demand (QuID), that decides when Web based applications should acquire

and release resources from a full server utility. It is an example of an approach that could by used by an

application to navigate within its SDP, i.e., to decide how many resources it needs in its next time slot.

There is a rich literature on statistical multiplexing with regard to Network Quality of Service [24] [15] [5].

Statistical multiplexing provides the potential for supporting more work with the same number of resources.

The techniques provide a statistical assurance, i.e., a probability, that routers will be able to support large

numbers of independent 
ows subject to delay and/or loss constraints. In general the techniques rely on

either the central limit theorem or large deviation theory for estimating the number of 
ows that can be

supported by a router with a given number resources and scheduling policy. The results of large deviation

theory appear to provide better estimates for cases with smaller numbers of 
ows but o�er the same results
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as the central limit theorem as the number of 
ows becomes asymptotically large [5], i.e., the shape of the

aggregate traÆc approaches that of the Normal distribution.

Our use of the central limit theorem is similar to the above. However our application resource demands

are not expected to be independent. We explore the impact of correlations among application demands on

the accuracy of our statistical assurance. Note that our approach for admission control with advance resource

reservation applies to both styles of utility computing though over the time scales of minutes. For shared

server models we can treat fractions of resources in the way we treat servers in server pools.

3 Statistical Demand Pro�les and Assurances

This section presents notation for SDPs along with the statistical framework for estimating the number of

resources needed to satisfy joint application resource demands.

3.1 Statistical Demand Pro�les

SDPs represent historical and/or anticipated resource requirements for applications. Suppose there is a

particular type of resource used by an application. We model its corresponding required number of resources

as a sequence of random variables, fXt; t = 1; :::; Tg. Here each t indicates a particular time slot, and T is

the total number of slots used in this pro�le. For example, if each t corresponds to a 60-minute time slot,

and T = 24, then this pro�le represents resource requirements by hour of day.

Our assumption here is that, for each �xed t, the behaviour of Xt is predictable statistically given a

suÆciently large number of observations from historical data. This means we can use statistical inference

to predict how frequently a particular number of resources may be needed. We use a probability mass

function (pmf) to represent this information. Suppose Xt can take a value from f1; : : : ;mg, where m is

the observed maximum of the required number of resources of a particular type, then the pmf consists of

a set of probabilities, fpk; k = 1; : : : ;mg, where pk = Pr[Xt = k]. Note that although m and pk don't

have a subscript t for simplicity of the notation, they are de�ned within each time slot. A demand pro�le is

composed of sequences of pmfs, each characterizing the resource requirement Xt for a particular time slot t

and resource type.

Figure 1(a) shows the construction of a pmf for the 9-10 am time slot for an SDP of an application. The

application required between 1 and 5 servers overW weeks of observation. Since there are 5 observations per

week there are a total of 5W observations contributing to each application pmf. Figure 1(b) illustrates how

the pmfs of many applications contribute to a pmf for the utility as a whole. As with applications, the SDP

for the utility has one sequence of pmfs per resource type.

The advantages of the pmf approach are mainly two fold. First, it does not rely on any apriori knowledge

of the underlying distribution forXt. It can be directly estimated using a sample of independent observations,
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Figure 1: Pmfs of Application and Utility Pro�les

which can be obtained from historical measurement of the application demand. Second, compared to a mean-

variance characterization alone, it o�ers more 
exability in terms of how it can be used. If the mean and

variance of the demand are needed, they can be easily computed from the pmf. Furthermore the observed

minimum and peak demands are also provided. Moreover, we will see later in the paper how the pmfs of

individual applications can be used to bound the potential correlations between applications.

The pmfs in the SDP are estimated in the following way. Suppose fpk; k = 1; : : : ;mg is the \true" pmf

for Xt, which is unknown to us. What we have is a sample of N observations for Xt. Let Zk denote the

number of observations that have a value k, and let p̂k = Zk

N
. Then p̂k gives us an estimate of the true

probability pk.

Inherent uncertainty exists in these estimated probabilities, especially when the sample size N is relatively

small. This uncertainty can be bounded by computing con�dence intervals for each estimated probability

p̂k. Assume that the N observations for Xt are independent. Then each Zk has a binomial distribution with

parameters N and pk [8]. Because pk is unknown, we approximate its distribution using p̂k as the substitute

for pk. For a given level of con�dence 1� Æ, where Æ 2 (0; 1), suppose the con�dence interval for pk is [pl; pu].

Then pl and pu can be found by estimating the corresponding lower and upper percentiles for Zk, nl and nu,

respectively.

nl = max
n

fn : B(N; p̂k; n) � Æ=2g; nu = min
n
fn : B(N; p̂k; n) � 1� Æ=2g;

where B(N; p; n) = Pr[Zk � n]. Now let pl =
nl
N
, and pu =

nu
N
. Then we have

Pr[pl � pk � pu] � 1� Æ:

Con�dence intervals for the probabilities can help a utility assess the quality of the pro�le. Such infor-
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mation could be used to a�ect an admission control decision. For a given con�dence level, tighter con�dence

intervals are achieved by increasing the number of observations N .

3.2 Statistical Assurance

The previous subsection introduced statistical demand pro�les for applications. This subsection considers

the number of resources needed by a utility to support many applications with a speci�c statistical assurance.

The utility has shared pools of resources that support its applications. The required size of a shared pool

for a particular resource type is modeled as a sequence of random variables, denoted as fYt; t = 1; : : : ; Tg.

Similar to the application demand pro�le, the utility pro�le consists of sequences of pmfs, with one sequence

per resource type, that describe the statistical behaviour of its aggregate resource requirements for each time

slot t. The construction of a pmf for a utility pro�le is illustrated in Figure 1(b).

Let A = f1; 2; : : : ; jAjg denote the set of indicies for applications that require resources of the same

type from the utility, where jAj is the cardinality of the set A. Then at any particular time, the number

of resources needed by the utility is the total number of resources needed by all the applications in A.

Let Xa
t be the random variable for the number of resources needed by application a in time slot t. Then

Yt =
PjAj

a=1X
a
t ; t = 1; : : : ; T . Based on this relationship, there are two ways to compute the utility pro�le

using the demand pro�les for individual applications.

The pmf Approach:

If the demand of each application in each time slot, Xa
t , is independent of the demands of other applica-

tions, we can compute the pmf of the aggregate demand Yt in the following way.

For each a 2 A and each time slot t, let fpak; k = 1; : : : ;ma
t g be the pmf for Xa

t , i.e., p
a
k = Pr[Xa

t = k],

where ma
t is the observed maximum of the number of resources needed by application a in time slot t. We

de�ne the joint pmf for the resource requirements by all the applications as:

pA(k1;k2;:::;kjAj) = Pr[X1
t = k1; X

2
t = k2; : : : ;X

jAj
t = kjAj]:

Assuming application demands are independent, we have:

pA(k1;k2;:::;kjAj) = p1k1 � p2k2 � : : :� p
jAj
kjAj

:

Denote Mt =
PjAj

a=1m
a
t as the peak demand for Yt. Then the pmf for the utility is, for k = 1; : : : ;Mt,

pk = Pr[Yt = k] =
X

k1+k2+:::+kjAj=k

pA(k1;k2;:::;kjAj)

=
X

k1+k2+:::+kjAj=k

�
p1k1 � p2k2 � : : :� p

jAj
kjAj

�
:

Unfortunately this approach does not o�er a convenient method to determine the impact of correlations

in application demands on aggregate demand. This motivates our second approach.
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The Central Limit Theorem (CLT) Approach:

The second approach is based on the central limit theorem (CLT) which states that the sum of many

independent random variables with �nite variances tends to have a Normal distribution. Therefore, when

the number of applications is large and their individual demands are independent, we can characterize the

aggregate demand Yt for each time slot t by its mean and variance, �t and �2t . They are estimated in the

following way.

Suppose the demand of application a for time slot t, Xa
t , has a mean �at and a variance (�at )

2, which can

be derived from its pmf. Then the mean and the variance of the aggregate demand for time slot t, Yt, can

be computed as:

�t =
X
a

�at ; �2t =
X
a

(�at )
2: (1)

Hence, the distribution of Yt is approximated by the continuous distribution Pr[Yt � k] =
R k
�1 pt(x); where

pt(x) =
1p
2��2t

e
�

(x��t)
2

2�2
t : (2)

When the demands of individual applications are correlated we can still approximate the aggregate demand

by a Normal distribution, but the quality of the approximation may be poorer due to the deviation of the

real distribution from the Normal distribution. In addition, the variance of Yt needs to be revised as follows:

�2t =
X
a

(�at )
2 + 2

X
a6=b

Cov(Xa
t ;X

b
t) =

X
a

(�at )
2 + 2

X
a6=b

�abt �at �
b
t ; (3)

where Cov(Xa
t ;X

b
t) is the covariance between the demand of application a, X

a
t , and the demand of application

b, Xb
t , in time slot t, and �abt is the corresponding correlation coeÆcient. For any given pair of applications,

�abt cannot be computed solely from the pmfs in the SDPs. Instead, its evaluation requires access to the raw

observations forXa
t andX

b
t , which typically will not be available to a utility grid resource management system

when an admission control decision must be made. We propose the following two schemes for bounding and

estimating correlations between applications.

Worst-case Bound:

Based on the observation from Equation (3) that the variance of the aggregate demand Yt increases when

the correlation between each pair of applications increases, a technique called correlation bounding is designed

to �nd the highest possible positive correlation between two discrete random variables with known marginal

distributions. The idea is to solve a linear programming problem on the joint pmf using the marginal pmfs

as the constraints and the maximization of the covariance as the objective. Using this technique, we can

compute the exact upper bound on �abt , �̂abt , for any pair of Xa
t and Xb

t in each time slot t. Then an upper

bound on �t, �̂t, can be computed as:

�̂t
2 =

X
a

(�at )
2 + 2

X
a 6=b

�̂abt �at �
b
t : (4)
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This calculation provides an estimate of the variability of the aggregate demand in the worst case.

Measurement Approach:

In practice the probability that every pair of applications are correlated to the maximum extent possible

ought to be fairly low, so decisions based on the above estimate tend to be pessimistic. An alternative

in an online environment is to use an approach which monitors the pairwise application correlations, and

computes a single parameter, �t, that captures the impact of correlations on �t. �t can be computed using

raw observations of application demands as follows:

�t =

P
a6=b Cov(X

a
t ;X

b
t)P

a6=b �
a
t �

b
t

: (5)

Note that �t expresses the magnitude of the aggregate correlation as it impacts the aggregate demand. To

reduce the number of parameters that characterize application correlation, by substitution, we can rewrite

Equation (3) with all pairs of applications have correlation coeÆcient �t:

�2t =
X
a

(�at )
2 + 2�t

X
a6=b

�at �
b
t : (6)

Let � be the maximum of �t over all time slots t. Then the parameter � can be used as a calibration factor

for the impact of correlations on the aggregate demand.

For admission control tests for utility grids in operation we expect to use a combination of the above two

approaches. When an application is �rst submitted to the utility, correlations between the new application and

applications already within the utility can be estimated using the pessimistic correlation bounding approach.

As the new application executes, its correlation with other applications can be observed and gradually used

to replace the pessimistic bound. We expect to explore this issue and whether � can be considered as a utility

grid invariant for speci�c kinds of workloads in our future research.

The characterization of the utility pro�le enables the utility to provide statistical assurances to hosted

applications so that they have a high probability of receiving a server when it is needed. In any time slot t,

suppose the number of resources in a particular resource pool is �t. We de�ne � to be the expected probability

that a server is available to an application that needs it as:

�(�t) = E[min(
�t

Ŷt

; 1)];

where Ŷt = min(Yt;Mt), and Mt is the peak demand of Yt computed as the sum of peak demands of

individual applications. Our motivation is as follows. Recall that Yt represents the aggregate demand on a

resource by all the applications. If Yt > �t, among the Yt resources that are needed, only �t of them can

be served by the utility. So the satisfaction rate is �t
Yt

. If, on the other hand, Yt � �t, then the satisfaction

rate is 100%. Note that Yt is cut o� at Mt because the aggregate demand should not exceed Mt based on

the pmfs in the application SDPs.
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Using the CLT approach, for any given value of �t, � can be computed as

�(�t) =

Z �t

�1

pt(x)dx +

Z Mt

�t

�t
x
pt(x)dx +

�t
Mt

Z 1

Mt

pt(x)dx; (7)

where pt(x) is de�ned in Equation (2).

Conversely, given any desired value for �, we can determine the corresponding required number of resources

�t for each time slot t. Let � = maxt �t. Then � is the required size of the resource pool in the utility so

that the targeted assurance level � can be achieved at all times.

4 Case Study

This section presents a case study involving cpu utilization from 48 servers in a data center. The purpose of

the study is to demonstrate our techniques.

4.1 Measurement Data

For the purpose of our study we were able to obtain cpu utilization information for a collection of 48 servers.

The servers have between 2 and 8 cpus each, with the majority having either 4 or 6 cpus. The data was

collected between September 2, 2001 and October 24, 2001. For each server, the average cpu utilization

across all processors in the server was reported for each �ve minute measurement interval. This information

was collected using MeasureWare (Openview Performance) Agent 1.

We interpret the load of each server as an application for a full server utility grid environment. Whereas

the groups' servers have multiple cpus in our study we assume the utility has many servers with one cpu each.

If a server only required one cpu in an interval then its corresponding application requires one server in the

utility. If the actual server required four cpus in an interval then its corresponding application requires four

servers in the utility. We exploit the fact that changes in server utilization re
ect real changes in required

activity for its applications. Our applications have the same changing behaviour. However since our purpose

is simply to validate our techniques we are not concerned with whether it is feasible for the loads on the

multi-cpu servers to be hosted on many single cpu servers. Similarly we do not scale the loads with respect

to processor speed and/or memory capacity.

We de�ne the number of cpus required by a server based on a per-cpu target utilization û. We consider

a target û = 0:5 as it is likely to be appropriate for interactive work. A target of û = 0:8 may be acceptable

for latency insensitive loads.

The required number of cpus k of a server for a measurement interval is computed as follows:

k = max(d
U k̂

û
e; 1);

1http://www.openview.hp.com/products/performance/
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where U is the average utilization of the server's k̂ cpus. We assume that at least one cpu must be available

at all times. For the corresponding application, k is therefore the number of single cpu servers required for

the interval.

4.2 Statistical Demand Pro�les

For this case study we chose to characterize the application SDPs by weekday and by hour of day. We

consider all weekdays to be equivalent, and we omit data from weekends. As a result, our pro�le consists of

24 one hour time slots. Since we have utilization data for 35 days, there are 35 data points that contribute

to each pmf in each application's SDP.

The original measurement data was gathered at 5 minute intervals. When constructing pmfs for time

slots with duration greater than 5 minutes we require one extra processing step. Consider an interval of

duration b with 5 minute sub-intervals a1 � � � aj , where j is an integer such that j = b
a
. The number of servers

required for b is chosen as the maximum of the number of servers required over sub-intervals a1 � � �aj . The

number of servers required for b is used to construct the pmf for its corresponding time slot. For the purpose

of our study we consider time slots that are one hour in duration. They are constructed from measurement

intervals of duration b = 60 minutes.

Table 1 lists three consecutive pmfs for a randomly selected application. In time slot t, the probability of

requiring one server is 0.14; in time slot t + 1 the probability of requiring one server is 0.11. For each time

slot, the sum of probabilities adds to one.

Time Slot 1 server (p̂1) 2 servers (p̂2) 3 servers (p̂3) 4 servers (p̂4)

t 0.14 0 0.66 0.20

t + 1 0.11 0.03 0.75 0.11

t + 2 0.14 0 0.83 0.03

Table 1: Subsequence of pmfs for a Randomly Selected Application, û = 0:5, with 60 minute time slots

Con�dence intervals for the estimated probabilities of pmfs describe uncertainty with respect to the

unknown true values for the probabilities. To illustrate the use of con�dence intervals, consider Table 1 time

slot t. A 90% con�dence level (Æ = 0:1) for p̂3 = 0:66 yields a con�dence interval of [0:51; 0:80]. The same

con�dence level for p̂1 = 0:14 produces a narrower con�dence interval of [0:03; 0:23]. Improving these requires

more observations of each resource requirement. For instance, a sample size of 100 that leads to the same

values for estimated probabilities would tighten the con�dence interval for p̂1 = 0:14 to [0:08; 0:20], but would

require 13 more weeks of data.
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4.3 Utility Pro�le

In this section we verify that the aggregate number of resources required per time slot t appears to be

Normally distributed. Once veri�ed we are able to take the SDPs of applications and use the CLT approach

to compute the numbers of servers needed (�) to provide resources at speci�c levels of assurance (�).

First we consider whether the aggregate load for each interval t appears to be Normally distributed. The

Bera-Jarque test [14] [3] evaluates the null hypothesis that a given series of data, in our case Y, has a Normal

distribution with unspeci�ed mean and variance against the alternative that Y does not have a Normal

distribution. We found that the aggregate numbers of servers required per interval does indeed appear to

behave in a similar manner as randomly chosen data from the Normal distribution. These results are not

shown in this paper.

Next, we estimate the parameters of the Normal distribution (�t and �t) for each time slot t. Figure 2(a)

uses raw data from the system under study to illustrate the mean and standard deviation for the utility

pro�le. The top curve in Figure 2(a) represents the mean (�t) of the total demand over time, and the bottom

two curves are the standard deviation (�t) with and without the covariance term in the computation. The

middle curve represents �̂t, the maximum value for the standard deviation computed using the correlation

bounding method. Figure 2(b) shows the value for �t obtained directly from the raw data. In this case �,

the maximum of �t over all time slots, is 0:07, which happens at t = 1. This indicates a relatively low level

of correlation between applications. Accordingly, the increase in �t after adding the covariance is not large

relative to the value of the mean. Figure 2(a) also shows that assuming the worst case for correlation (std

with max cov) can be very pessimistic.
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Figure 2: Parameters for the utility pro�le

The above parameters are used with Equation (7) to compute � for several values of �. The results are

summarized in Table 2. The �rst column lists the di�erent values for �, and the rest of the columns show

the corresponding values for �, the number of servers required by the utility to provide a service assurance

13



of level �. The second column uses the standard deviation �t without considering correlations, while the

third column is similar but �t incorporates the covariance term computed using raw data. The results of

these two columns are similar, showing that the amount of correlation between applications and its impact

on the aggregate demand for the utility is small for the system under study. We do note that correlation has

a greater impact on the higher levels of assurance �.

To better assess the advantages of statistical multiplexing for the system under study we choose to add

a migration overhead to the demand pro�les of applications and evaluate its impact on the utility pro�le.

Given that applications acquire and release server resources, the original traces of server requirements from

the raw data are augmented in the following way. If an additional server is required in a time slot t, then the

request is made for the server in time slot t�1. This provides time to migrate the server into the application.

Similarly if a server is no longer needed in time slot t, it does not become available to other applications

until time slot t + 1. This provides time to migrate the server from the application. We note that with 60

minute time slots this is very pessimistic. However this is still optimal from the application's point of view

and as such represents a best case scenario for statistical multiplexing. The augmented traces contribute to

the pmfs in the SDPs, which in turn contribute to the utility pro�le that is used to compute �.

The numbers in the last column of Table 2 take into account both application correlations and the

migration overhead. The comparison between the last two columns show that the extra number of servers

required due to overhead is roughly 15-20%. For a more fair comparison with the static allocation of resources,

the statistical demand pro�les used in the next subsection include the migration overhead unless stated

otherwise.

� � (no correlation) � (with correlation) � (with correlation and overhead)

0.80 101 101 117

0.90 113 113 133

0.95 120 120 143

0.98 127 129 152

0.99 131 134 158

0.999 141 147 172

Table 2: Comparison of computations of �

4.4 Sensitivity Analysis

This section considers the sensitivity of aggregate demand to correlations in application demands. It then

uses a simulation environment to validate the analytic approach and explore the accuracy of the statistical

assurance to correlations in application demands and the precision of the pmfs in SDPs. A summary of the

results is given.
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4.4.1 Sensitivity of � to correlations between application demands

In this subsection we use our analytic technique to investigate the relationship between statistical assurance

�, correlations between application demands �, and the required number of resources per time slot �t.

Figure 3 shows the expected value for �t for � = 0:99 and � = 0:999. The top curve corresponds to the

scenario where each application is always allocated its maximum required number of servers. This is the only

case where the migration overhead is not included because it represents the static allocation of resources. In

this case the number of servers needed by the utility is 309 servers. The second curve (dashed line) illustrates

the scenario where the peak number of resources ma
t are allocated to each application a for each time slot t.

For this scenario the utility as a whole needs 275 servers to satisfy its aggregate demand for all the time slots.

This demonstrates that for this system under study the potential savings due to time sharing but without

statistical multiplexing is about 10% compared to a static resource allocation.

The remaining curves correspond to the scenario where each application acquires only its required num-

ber of servers. For these cases statistical multiplexing comes into play. Its bene�t varies with the degree

of correlation between applications demands. Using the correlation coeÆcient � de�ned in Section 3, we

computed the values for �t as the level of correlation decreases from 0:75 down to 0. For this data, � = 0:75

corresponds to the case where the correlation between each pair of applications is at its highest level for our

system under study. In this case, the number of servers required by the utility to provide an assurance level

of � is 201 and 239 for � = 0:99 and � = 0:999, respectively. We note that even in this worst-case scenario

for correlations, statistical multiplexing o�ers advantages over peak allocation (27% and 13%, respectively)

and static allocation schemes (35% and 23%, respectively) for the system under study. As the degree of

correlation goes down, the aggregate resource requirement for the utility decreases accordingly. The bottom

curve represents the case when demands of all applications are mutually independent, where the bene�t of

statistical multiplexing is the greatest. From Figure 2(b), we see that � = 0:07. For this value the advantages

of statistical multiplexing are clear for the system under study.

4.4.2 Validation by simulation

Now we describe our simulation environment. For each application, the simulator generates traces of requests

for required numbers of servers in successive time slots. For each time slot the simulator draws a uniform

pseudo-random number to index into the application's corresponding pmf. Correlation among the load of

applications is introduced by correlating the uniform random number streams that index the application

pmfs. Once the traces are prepared they are traversed on a slot by slot basis.

We use the simulated traces to validate our analytic results. The chosen values for � and � as illustrated

in Figure 3 are used with Equation (7) to give values for � for the simulations. When processing the traces,

for each slot, we measure the fraction of total server requests that are satis�ed. This gives the achieved value

for � for each experiment. For example, if applications require a total of 100 servers in an instance of a time
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Figure 3: �t, Aggregate Resource Requirements for Two Levels of Assurance with Several Correlation Levels

slot but only 99 are available then 0.99 contributes to the value achieved for � as averaged over all simulated

instances of that time slot.

We consider two scenarios for validation. In the �rst case application demands are independent { � = 0.

The uniform random numbers that index di�erent application pmfs are mutually independent. In the second

case they are maximally correlated, which corresponds to � = 0:75. The same sequence of uniform random

numbers is used to index all application pmfs. For each scenario we consider � as 0.99 or 0.999. Based on

our analysis, for � = 0:99, � = 154 and 201 for � = 0 and � = 0:75, respectively; for � = 0:999, � = 166 and

239 for � = 0 and � = 0:75, respectively. These numbers were used for the simulation.

For the simulation we generated 1000 weekdays worth of observations. The results are shown in Figure 4.

When application demands are independent, the estimated value for � is nearly always suÆcient to provide

the assurance level �, with the exception of the violation for � = 0:99 at t = 16. However, when application

demands are very highly correlated the results become poorer; this is the case despite that we take into

account the correlations when estimating � by augmenting the variance of the aggregate demand. This is

mainly due to the deviation of the aggregate distribution from the Normal distribution in the high correlation

case. Nevertheless, when we specify an assurance level of � = 0:99 we actually provide an assurance level

of 0.98, when we specify an assurance level of � = 0:999 we provide an assurance level of 0.996. This is

encouraging as it is the worst case for correlation for our system under study.

4.4.3 Sensitivity to precision of SDPs (by simulation)

Finally we consider the sensitivity of our approach to the precision of the pmfs in the application SDPs. To

illustrate we pick � = 166 which corresponds to � = 0 and � = 0:999. From Section 3 we know that we

can approximate each probability in a pmf using a binomial distribution with parameters N and p̂k, where

p̂k is the estimated probability and N is the number of observations used in the estimation. The value of
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Figure 4: Simulated Level of Assurance

N determines the con�dence level of the probabilities; the larger the value of N the tighter the con�dence

intervals. To simulate the variability of the \true" probabilities, we generated the probabilities for each pmf

randomly using the binomial distribution subject to the constraint that all the probabilities in each pmf sum

to one. Each perturbed pmf was then used to draw 100 samples for the number of required servers. This

represents 100 days worth of data. This was repeated one hundred times, each o�ering a test case with

di�erent perturbed pmfs so that a total of 10000 days were simulated. The achieved value of � was computed

in the same way as in our validation study.

The mean and 5-percentile values for � achieved for the 100 test cases are displayed by circles in Fig-

ure 5(a) and 5(b), respectively. The achieved values for � are lower than the desired level due to the inherent

uncertainty in the estimated pmfs. The mean of the achieved values for � are always greater than 0.9975.

Ninety-�ve percent of the achieved values for � were greater than 0.993. However this is nearly an order of

magnitude worse than the desired value. The lowest value achieved was 0.989. We note that the perturbed

pmfs are based on the original data where N = 35.

To emulate an increase in con�dence levels for the probabilities of the pmfs we repeat the experiments

with N = 100, i.e., we assume nearly three times as much data was used to create the original pmfs. This

provides for perturbed pmfs that are closer to the original pmfs than when N = 35. For comparison, the

results are plotted in the same �gures using stars. Ninety-�ve percent of the achieved values for � were

greater than 0.995. Increasing the number of observations that contribute to pmfs increases our con�dence

in the SDPs. In our simulation environment this leads to an increase in the statistical assurance level that is

achieved. Experiments with other parameter values of � and � lead to similar �ndings.
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4.5 Summary

To summarize, we �nd that for the system under study the CLT approach is robust with respect to correlation

between application demands. The correlation term in Equation (6) is essential and appears to adequately

re
ect the impact of correlation on the aggregate demand. However high values of correlation can distort

the distribution of aggregate demand so that it is no longer Normal, this can lead to an achieved statistical

assurance � that is lower than the desired value. The technique is less robust with respect to inaccuracies

in the demand pro�les. However, increasing the accuracy of the pro�les has a clear and positive impact on

the 5-percentile of achieved values for �. These factors must be taken into account when assuring a level of

service.
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Figure 5: Simulated Level of Assurance with Perturbed pmf Probabilities

5 Summary and Conclusions

In this paper we focus on techniques to support admission control and advance resource reservation for ap-

plications with statistical demand characterizations for utility grid environments. We present an approach

for statistically characterizing the demand pro�les of business applications. The pro�les provide the resource

management system of a utility grid with time varying expectations and bounds on application resource

requirements. We exploit the central limit theorem to estimate the number of resources needed to pro-

vide statistical assurance for access to resources while exploiting the advantages of statistical multiplexing.

Statistical multiplexing permits a more eÆcient use of utility grid resources.

Statistical demand pro�les may also be appropriate for some scienti�c and engineering loads that are

e�ectively described using task graphs or whose resource requirements are best characterized statistically.

The pro�les are appropriate when an application/job has signi�cant variation in its resource requirements

over its lifetime.
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We illustrated the feasibility of our approach with a case study that uses resource utilization information

from 48 data center servers. Simulation experiments explore the sensitivity of the assurances to correlations

between application resource demands and the precision of the demand pro�les.

Based on our sensitivity analysis, we �nd that for the system under study there are clear gains to be

made via statistical multiplexing with respect to simple time sharing based on peak demands. The technique

we present appears to be robust with respect to correlations between application demands. However high

values of correlation can distort the distribution of aggregate demand so that it is no longer Normal; this can

lead to an optimistic esimate for the assurance that application requests for resources will be satis�ed. The

technique is less robust with respect to inaccuracies in the demand pro�les. However, increasing the accuracy

of the pro�les had a clear and positive impact on the accuracy of the statistical assurance. A Quality of

Service framework is needed to deal with the situations where resources are over-committed.

Future work includes applying the techniques to additional utility grid scenarios, positioning the methods

within a Quality of Service management framework, exploring the impact of correlation on sharing, and

providing integrated support for the management of multiple resource types.
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