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Plurality voting is widely used in pattern recognition. However, 
there is little theoretical analysis of plurality voting. In this paper, 
we attempt to explore the rationale behind plurality voting. The 
recognition/error/rejection rates of plurality voting are compared 
with those of majority voting under different conditions. It is 
demonstrated that plurality voting is more efficient in achieving the 
tradeoff between rejection rate and error rate. We also discuss some 
practical problems when applying plurality voting to real-world 
applications. 
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1. Introduction 

 

Originating from the social sciences (Grofman et al., 1983), voting has become a 

popular system combination technique in various engineering disciplines, especially in 

pattern recognition (Xu et al., 1992; Ho et al., 1994; Lam and Suen, 1997). The appeal of 

voting arises from its generality, simplicity, and effectiveness. For most problems with 

several solutions, voting can be used to improve the system’s reliability or accuracy. In 

the most naive form, voting treats individual systems as black boxes and needs no 

additional internal information for the implementation. More importantly, in many real-

world applications, there is only marginal, if any, performance difference between voting 

and more advanced combination schemes, which usually require more detailed 

information from individual systems, greater development efforts, and customization to a 

specific domain (Lee et al., 1993). Voting is especially advantageous for the combination 

of some commercial-of-the-shelf (COTS) classifiers, from which we cannot get 

information beyond the top candidates.  

On the other hand, most work is experimental in nature and does not answer why 

voting is effective and what the theoretical limit of a voting system is. In this respect, 

Lam and Suen (1997) conducted an in-depth research on the behavior of majority voting, 

which requires the agreement of more than half of the participants to reach a decision. In 

reality, another common variant of voting is plurality voting, which selects the candidate 

with the most votes. Many people do not distinguish between plurality voting and 

majority voting, and are more accustomed to the term of “majority voting” even if the 

underlying criterion is plurality voting. This paper analyzes the performance of classifier 
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combination by plurality voting in terms of recognition/error/rejection rates, and 

emphasizes the relationship as well as the difference between majority voting and 

plurality voting.   

This paper is organized as follows. In Section 2, the rationale of plurality voting is 

investigated theoretically. Section 3 introduces the analysis methodology based on 

stochastic simulation. Section 4 analyzes how the combination system’s recognition rate 

is affected by various parameters such as the number of classifiers, the number of classes, 

and the recognition rates of individual classifiers. Section 5 discusses how to control the 

reliability in plurality voting and shows the advantage of plurality voting over majority 

voting. In Section 6, some practical considerations are addressed to fill the gap between 

theory and reality.  Section 7 gives a summary and suggests future research directions.  

2. Rationale behind plurality voting 

 

Plurality voting means that the candidate with the most votes is chosen. But what is 

the theoretic foundation for this claim? To answer this question, we first model the 

problem in terms of pattern recognition: 

N classifiers },...,,{ 21 NEEE are available for a M-class pattern recognition task, in 

which input object X is classified into one of the M classes },...,,{ 21 MCCC . Classifier iE  

keeps a constant recognition rate ip  for any input object X, that is: 

ii pXCXEP == ))()((        (1) 

where )(XC is the true class that X belongs to, and )(XEi  is the class selected by iE .  
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In addition, all other classes have the same probability to be chosen in case of 

incorrect recognition: 

iiji eMpCXEP =−−== )1/()1())((      (2) 

where j=1,2,...,M and )(XCC j ≠ . 

We also assume that each classifier makes its decision independently: 

∏
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i
jijN CXCXEPCXCXEXEXEP
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where j=1,2,...,M. 

With the above formulation, the problem can be analyzed: In order to minimize the 

error rate of the combination system, the class jC with the largest a posteriori probability 

should be selected according to the Bayes’ rule: 
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))(),...,(),(|)(( 21 XEXEXECXCP Nj=  
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Since Y(X) is the same for every class, the effective decision function is only the 

second part, whose logarithmic form is: 

)()/ln())((ln)(
1

XepCXCPXD ijii

N

i
jj δ∑

=

+==     (7) 

The class jC that maximizes )(XD j  is selected. If each class has the same a priori 

probability and every classifier has the same recognition rate p, the decision function 

becomes: 

)()]1/()1ln[()/1ln()(
1

XppMMXD ij

N

i
j δ∑

=

−−+=     (8) 

By removing the class-independent part, we can reduce it to: 

)()(
1

' XXD ij

N

i
j δ∑

=

=         (9) 

Eq. (9) is the commonly cited plurality voting rule and Eq. (7) reflects a more generic 

form: Each classifier can have a different weight and each class has a constant 

representing its a priori probability. From the above analysis, we know that plurality 

voting as in Eq. (9) is equivalent to the Bayesian criterion under the following conditions: 

1) The classifiers are independent of each other as defined in Eq. (3). 

2) The misclassifications are evenly distributed among the M-1 residual classes. 

3) All of the classifiers have the same recognition rate. 

4) The input objects are evenly distributed among all of the classes.  
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If the last two conditions are not satisfied, the weighted version of Eq. (7) can be 

used. 

In case of a tie using Eq. (7) or (9), we can arbitrarily select one of the classes with 

the maximum support (we will propose other alternatives in Section 4). Besides, when 

the recognition rate p is below 1/M, )]1/()1ln[( ppM −−  is negative in Eq. (8) and thus 

the “reverse plurality” rule should be used in Eq. (9): The class with the least votes 

should be selected. This seemingly weird judgment is not difficult to understand. When p 

is less than 1/M, it means that X is more likely to belong to any other class rather than the 

class chosen by the classifier. Fortunately, this rarely happens in reality because well-

developed classifiers can easily pass that threshold.  

The independence assumption is not easy to meet in practical pattern recognition 

applications. More commonly, all of the classifiers are prone to make mistakes 

simultaneously on some very difficult samples. Taking this factor into account, we 

propose the modified model, which is composed of both the independent and dependent 

situations: 

a) The N classifiers will simultaneously misrecognize a sample with a probability of 

α; 

b) Otherwise (with a probability is 1-α), the N classifiers will perform independently 

according to Eq. (2) and Eq. (3).  

Under this model, the overall recognition rate of Classifier iE  is (1-α) ip .  

In the dependent situation, all combination schemes, including using Eq. (7), will 

achieve the same recognition rate of zero because none of the classifiers selects the 

correct class. On the other hand, the optimal decision function is still Eq. (7) in the 
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independent situation. In conclusion, Eq. (7) is the overall optimal decision function even 

under this mixed model. For simplicity, we will concentrate on the independent situation 

in the following analysis. 

3. Stochastic simulation 

 
Unlike majority voting (Lam and Suen, 1997), it is difficult to derive a closed formula 

applicable to different M’s and N’s for calculating the plurality voting system’s accuracy, 

because plurality can be obtained through many different patterns. So a stochastic 

simulation is used to quantitatively analyze the performance.  

A real-world pattern classification system consists of two major steps: feature 

extraction and classification. In the simulation, we treat each classifier jE  as a black box 

with a single parameter: the recognition rate jp , according to the model introduced in 

Section 2. Fig. 1 shows how the individual classifiers are simulated. For example, to 

simulate the event “Correctly recognize the input with a probability of 0.8”, the computer 

generates a random float number f in the range of [0,1], and if 8.0≤f  the input is 

considered correctly recognized and otherwise it is misrecognized. 

Fig. 2 shows how the experiments are conducted. In each test, a large number of 

samples (for example, MAXCOUNT=10,000,000) are randomly generated and fed into 

the individual classifiers. Plurality voting is then executed on their outputs. With a large 

amount of samples, the simulation results are expected to be very close to those strictly 

calculated from probability theory. In this way, we can conveniently study how different 

parameters influence the voting performance without an explicit formula. Besides, this 
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kind of simulation can also be applied to other combination strategies such as majority 

voting and strict plurality voting, which will be introduced in Section 5. 

Table 1 displays 18 examples obtained from the simulation. The three classifiers have 

recognition rates of 0.8, 0.9, and 0.8 respectively. The three classes are ‘a’, ‘b’, and ‘c’. 

As shown in the table, the three classifiers make 3, 2, and 4 errors respectively. The 

plurality voting makes one error. 

4. Recognition rate of plurality voting 

 

This section focuses on the recognition rate of plurality voting, especially in contrast 

to majority voting. Table 2, Table 3, and Table 4 show the simulation results for M=50, 

3, and 2 respectively. In the shaded areas, “reverse plurality” voting is adopted due to 

each individual classifier’s poor recognition rate.  

First, three observations can be made under the condition that all of the classifiers 

have the same recognition rate p: 

1) The voting system’s recognition rate keeps rising or at least stays the same with more 

classifiers.  

If Mp /1≠ , the plurality voting system’s recognition rate will approach 1 with 

sufficiently large N. Of course, the “reverse plurality” rule is used when Mp /1< . 

When Mp /1= , the classifier completely randomly selects a class without providing 

any information. Otherwise, with more classifiers, more information about the input 

object is obtained and the recognition rate )(NPC  increases. When M is larger than 2, 

)(NPC is monotonically increasing with N. When M is 2, )(NPC  follows an 
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interesting stepwise pattern: )22()12()2( +=+< NPNPNP CCC . In contrast, the 

zigzag-shaped recognition rate curve is characteristic of majority voting: 

)2()12()12( NPNPNP CCC >−>+ , which means that adding an extra classifier to a 

pool of odd number of classifiers actually decreases the recognition rate (Lam and 

Suen, 1997). The zigzag pattern in majority voting is caused by more rejections with 

an even number of classifiers. Fig. 3 compares the different patterns.  

2) When individual classifiers perform decently (p>1/M) and with the same p and N, the 

recognition rate increases with increasing M (see the curves for the simple plurality 

voting in Fig. 5).  

With more classes, errors will be more scattered among the M-1 incorrect classes, and 

consequently the chance for the correct class to stand out in plurality voting will be 

greater. This characteristic does not apply to majority voting, in which the number of 

classes is irrelevant to the recognition rate. Majority voting accepts the results if and 

only if one class receives more than half of the total votes. Once the threshold is 

exceeded, any other class will receive fewer votes no matter how the remaining votes 

are distributed. 

3) Combining three comparable classifiers provides a good start. If all of the classifiers 

have the same recognition rate, we can see the largest gain in recognition rate by 

using three classifiers compared with using only one classifier. The improvement 

becomes more gradual with more classifiers. So it is wise to start with combining 

three classifiers and to incorporate more classifiers only if the three-classifier system 

cannot achieve the required recognition rate. 
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Second, if the classifiers have different recognition rates, the situation can be more 

complicated because the classifiers should be weighted based on Eq. (7). In the extreme, 

if the best classifier is much more accurate than the others and thus has a weight larger 

than the sum of the other classifiers’ weights, the optimal decision can be dominated by 

only the best classifier — the addition of other classifiers does not improve the accuracy. 

Let us look at the following example. Three classifiers with 9.0 ,8.0,99.0 321 === ppp  

,respectively, are used. There are five classes with an equal a priori probability of 0.2. 

The optimal weights for the three classifiers are 4.595, 1.386 and 2.303 respectively. The 

simulation shows that using Eq. (9) results in a recognition rate of about 0.983, which is 

lower than 0.99 achieved by the best individual classifier.  

5. Reliability of plurality voting 

 

The above analysis is concentrated on the absolute recognition rate of plurality voting 

without any rejections. In case of a tie using Eq. (7) or (9), we arbitrarily make the 

selection. However, it is often desirable to measure the system’s reliability — the 

probability of the decision to be correct on a given input object. A direct use of the 

reliability metric is to reduce the error rate by rejecting suspicious results. In theory, Eq. 

(6) is the optimal measurement of reliability in defining the a posteriori probability of the 

winning class given the results of N classifiers. Because the sum of the a posteriori 

probabilities of all of the M classes is 1, it can be given as:  
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If all of the classes have the same a priori probabilities and all of the classifiers have 

the same recognition rate p, we can get: 
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It can be seen that the classification reliability is decided by the vote difference 

between the winning class and the other classes. If the result is accepted only when the 

winning class receives at least r more votes than the closest competitor, the reliability is 

then bounded by: 

))(),...,(),(|)(( 21 XEXEXECXCP Nj=  

])/)(1(1/[1 repM −−+≥         (12) 

So the desired reliability can be achieved through enforcing different r. In contrast, 

such kind of flexibility is not available in majority voting. We call plurality voting with 

r=0 “simple plurality” voting and that with r>0 “strict plurality” voting.  

A significant advantage of plurality voting over majority voting is its higher rejection 

efficiency, that is, making fewer rejections when reducing the error rate to the same level. 

Table 7 gives several examples under the condition that p=0.85/0.90/0.95, N=7, and 

M=12. When r is 2, plurality voting has a lower or the same rejection rate (defined as the 

percentage of samples rejected by the combination system), but still achieves a lower 

error rate than majority voting. The experimental results in handwriting recognition also 

support this conclusion (Xu et al., 1992). 
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In Section 2, we have examined how different N and M affect the performance of 

simple plurality voting. Now a similar study is furnished for strict plurality voting with 

r=1 in Table 6 and Table 7 for M=3 and 50 respectively. When M=2 and r=1, plurality 

voting is equivalent to majority voting and the results can be directly obtained from the 

paper by Lam and Suen (1997). Several characteristics of strict plurality voting can be 

noticed from the Fig. 4 and Fig. 5: 

1) When M is large (for example, 50), )(NPC is monotonically increasing with N.  

2) When M is 2, it follows the zigzag pattern.  

3) When M is in the middle of the spectrum, there is no fixed relationship between 

)2( NPC  and )12( −NPC . For example, when M=3, )3()4( CC PP =  but 

)5()6( CC PP > .  

4) When other conditions hold the same, the recognition rate of strict plurality voting is 

lower than that of the simple plurality voting because of the introduction of rejections. 

On the other hand, it is higher than (when M>2) or the same as (when M=2) that of 

majority voting.  

5) With the same p and N, the recognition rate of strict plurality voting is monotonically 

increasing with M when N>3. When N=3, the recognition rate is independent of M.  

 

6. Reality check 

 

In this section, we examine plurality voting in the context of several typical 

applications such as Optical Character Recognition (OCR), Part-of-speech (POS) 

tagging, Automatic Speech Recognition (ASR), and Handwriting Recognition. The first 
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two applications come from our previous research, and the last two are based on the work 

by other researchers. Table 8 compares the actual results (cited from the literature) 

against the theoretical limits (calculated with the simulation described above). The gap 

between theory and practice is attributed to the fact that some assumptions made in 

Section 2 do not completely reflect the reality:  

First, in the foregoing analysis, it is assumed that a classifier randomly selects a 

wrong class among the M-1 residual classes in case of an error. In practice, for a given 

object, the classifiers usually concentrate the decision within a few choices, instead of all 

of the classes. For example, in OCR, if the input character is “3” and the classifier 

recognizes it incorrectly, the wrong choice is often within the scope of the subset {“5”, 

“s” “S”} rather than the set of 80-100 possible characters. Halteren et al. (2001) also 

noticed that in Part-of-speech (POS) tagging there are many confusing POS tag pairs. In 

consequence, a modified M should be used in place of the number of all possible classes. 

That is why small M’s are chosen in Table 8. As mentioned earlier, a smaller M means a 

lower recognition rate in combination (see Fig. 5). Thus, the actual error rate reduction 

will be less than the ideal situation in which the errors are evenly distributed among all 

residual classes. The confusion matrices of the classifiers can be used to estimate the 

effective M. 

Second, for most pattern recognition tasks, it is a challenge to design independent 

classifiers each with excellent accuracy. The classifiers available are usually statistically 

correlated even though they are developed by different researchers, extract different 

features, and follow different classification schemes. The direct outcome is a far less 

spectacular error rate reduction than that achievable with independent classifiers. At the 
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end of Section 2, we discussed a mixed model. Under that model, the lowest error rate of 

the combination system will be α instead of zero. In practice, we define the following 

Independence Factor (IF) to evaluate how independent the classifiers are: 

iNitheory

iNicomb

PP

PP
IF

≤≤

≤≤

−

−
=

1

1

max

max
         

where combP  is the voting system’s actual recognition rate, theoryP  is the theoretical limit on 

the recognition rate under the independence model, and iNi
P

≤≤1
max  represents the best 

recognition rate of individual classifiers.  

The Independence Factor captures how close the real improvement is to the 

theoretical limit. Table 8 shows that it varies for different domains and is always less than 

1, which means that the individual classifiers are not really independent. Here we see the 

reason behind the popular wisdom in the pattern recognition community: “Design 

classifiers that are as independent as possible, and then combine them.” Another 

requirement is that the individual classifiers should have comparable accuracies, as 

otherwise some classifiers will play a limited or even no role in the combination (see Eq. 

(7)). The two requirements together pose a great challenge for researchers. In many 

applications only one strategy proves effective and individual methods are just variants 

along the same general direction. For example, most successful speech recognition 

systems are along the line of Hidden Markov Models (HMM) and only differ in technical 

details, and accordingly the Independence Factor is very low. Furthermore, as a domain 

becomes mature, each participating classifier “borrows” successful techniques from 

others or simply integrates more information internally. Although the individual 

classifiers achieve higher accuracy in this way, they are more correlated and drive the 
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Independence Factor lower. This trend has been observed in various areas such as OCR 

and ASR. For example, it can be seen from Table 8 that the actual recognition rate 

achieved by the plurality voting of three high-performance commercial OCR engines is 

0.998, which is far less than the theoretical limit of 0.99988 by one order of magnitude. 

Similarly, the Independence Factor is only 0.20 for the speech recognition application 

cited in Table 8.  

Third, some classifiers do not actually recognize input objects separately. In the 

above discussion, we assume that each input object is sent into individual classifiers and 

recognized. For some real-world problems, however, we can only send a whole collection 

of objects into each classifier. For example, a whole page image containing many 

characters is passed to each OCR engine and the speech signal of at least a whole 

sentence is input to each ASR engine. The benefit of doing so is that the recognition rate 

can be improved by utilizing the context information in neighboring objects, which is 

extremely critical for tasks like POS tagging and ASR. The downside is that significant 

effort is needed on object alignment even before reaching the stage of combining the 

results of individual objects (Lin, 2002a). In addition, the model introduced in Section 2 

does not consider such contextual relationship among neighboring objects.  

7. Conclusions 

 

This paper addresses the performance analysis of classifier combination using 

plurality voting. We have achieved the following goals: 

1) Theoretically justify the plurality voting decision criteria and explain the implicit 

assumptions. 
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2) Analyze how different parameters can affect the asymptotic behavior of plurality 

voting. 

3) Offer an insight into the reliability control issue for plurality voting and establish the 

strict plurality voting as a more effective way to reduce error rate than majority 

voting. 

4) Define the Independence Factor to measure differences between practice and theory, 

and address practical issues in plurality voting. 

In most cases, the analysis is conducted with majority voting as a reference. Table 9 

illustrates the relationship and difference between them. 

In this paper, we have demonstrated that the combination of independent classifiers 

can result in dramatic accuracy improvement. In theory, however, independent classifiers 

may not be the best choice. Kuncheva and Duin (2000) pointed out that the combination 

of “negatively dependent” classifiers could deliver an even better recognition rate than 

that of independent classifiers. The “negatively dependent” classifiers are intelligently 

complementary to each other. When a classifier has difficulty recognizing an object, the 

other classifiers are more likely to recognize it correctly. Negatively dependent classifiers 

actually perform sub-clustering by dividing the overall domain into several regions, one 

for each classifier to excel in. That is an interesting area for future work.  
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Table 1 
Examples of stochastic simulation (Incorrect results are in bold font) 

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Ground Truth a b a a b c a c c a b b c a b b c a 

)8.0( 11 =pE  a b a a b c a c c b b b c a b b b b 
)9.0( 22 =pE  a b a a b c a c a a b b b a b b c a 
)8.0( 33 =pE  a b a a b b a a c a b c c a b b c b 

Voting a b a a b c a c c a b b c a b b c b 
 
Table 2 
Recognition rates of a simple plurality voting system with different p’s and N’s (M=50) 

p N 
 2 3 4 5 6 7 8 9 10 

0.3 0.30114 0.35862 0.4428 0.52841 0.60387 0.66585 0.71789 0.76138 0.79693 
0.6 0.60218 0.73979 0.85286 0.91931 0.95532 0.97636 0.98634 0.99185 0.99553 
0.7 0.70314 0.84647 0.93112 0.97075 0.98691 0.99383 0.99717 0.99862 0.9994 
0.8 0.80101 0.92933 0.97684 0.99253 0.99764 0.99928 0.99981 0.99988 0.99996 
0.9 0.90138 0.98117 0.99666 0.99936 0.99981 0.99997 1 1 1 
0.95 0.94976 0.99502 0.99949 0.99995 0.99999 1 1 1 1 

 
Table 3 
Recognition rates of a simple plurality voting system with different p’s and N’s (M=3) 

p N 
 2 3 4 5 6 7 8 9 10 

0.3 0.36769 0.37346 0.37953 0.387 0.39277 0.3974 0.40265 0.40713 0.41045 
0.6 0.60042 0.69609 0.73449 0.76892 0.80298 0.83144 0.85027 0.87176 0.8888 
0.7 0.69984 0.81497 0.84992 0.88677 0.91334 0.93516 0.94795 0.96071 0.96938 
0.8 0.79994 0.91222 0.93374 0.96145 0.97468 0.98481 0.9898 0.99355 0.99581 
0.9 0.90007 0.9763 0.98423 0.99454 0.99715 0.99891 0.99937 0.99974 0.99988 
0.95 0.95008 0.99389 0.99615 0.99928 0.99968 0.99991 0.99997 0.99999 1 

 
Table 4 
Recognition rates of a simple plurality voting system with different p’s and N’s (M=2) 

p N 
 2 3 4 5 6 7 8 9 10 

0.3 0.70216 0.78255 0.78397 0.83567 0.83596 0.87296 0.87314 0.90017 0.90251 
0.6 0.59957 0.64833 0.6485 0.6826 0.68306 0.71065 0.71158 0.73251 0.7345 
0.7 0.69817 0.78448 0.78386 0.83771 0.836 0.87404 0.87328 0.9009 0.90233 
0.8 0.80113 0.89708 0.89734 0.94247 0.94226 0.9671 0.96743 0.9804 0.98085 
0.9 0.89947 0.97193 0.97127 0.99191 0.99149 0.99714 0.99741 0.99902 0.99914 
0.95 0.94994 0.99272 0.99264 0.99882 0.99982 0.99982 0.99981 0.99997 0.99997 
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Table 5 
Rejection efficiency of plurality voting vs. majority voting (M=12, N=7) 

 p=0.85  p=0.9  p=0.95  
R Rejection 

Rate (%) 
Error Rate 

(%) 
Rejection 
Rate (%) 

Error Rate 
(%) 

Rejection 
Rate (%) 

Error Rate 
(%) 

0 0 0.2460 0 0.0131 0 0.0037 
1 0.356 0.0534 0.020 0.0058 0.0008 0.0032 
2 0.668 0.0043 0.154 0.0032 0.012 0.0031 
3 2.777 0.0034 0.862 0.0030 0.107 0.0028 

Majority 
Voting 

1.203 0.0043 0.273 0.0032 0.020 0.0032 

 
 
Table 6 
Recognition rates of a strict plurality voting system with different p’s and N’s (M=50, r=1) 

p N 
 2 3 4 5 6 7 8 9 10 

0.3 0.09059 0.21775 0.34066 0.4533 0.54194 0.61199 0.66099 0.70627 0.74422 
0.6 0.35704 0.64725 0.81405 0.89939 0.94267 0.9659 0.97988 0.98736 0.99353 
0.7 0.49264 0.78087 0.91009 0.96066 0.9823 0.99145 0.9956 0.99812 0.99906 
0.8 0.64116 0.89613 0.96963 0.99003 0.99659 0.99881 0.99955 0.99993 0.99992 
0.9 0.81089 0.97284 0.99533 0.99894 0.99987 0.99998 0.99999 1 1 
0.95 0.90242 0.99265 0.99923 0.99991 0.99998 1 1 1 1 

 
Table 7 
Recognition rates of a strict plurality voting system with different p’s and N’s (M=3, r=1) 

p N 
 2 3 4 5 6 7 8 9 10 

0.3 0.24527 0.25684 0.20922 0.29233 0.30272 0.27434 0.32226 0.33131 0.31073 
0.6 0.35991 0.64715 0.64815 0.68285 0.75265 0.78346 0.7966 0.83848 0.85639 
0.7 0.49036 0.78382 0.78266 0.83752 0.88279 0.91015 0.92511 0.94707 0.95795 
0.8 0.64012 0.89592 0.89612 0.94201 0.96239 0.97735 0.98356 0.99086 0.99376 
0.9 0.80907 0.9721 0.97182 0.99135 0.99496 0.99823 0.99901 0.99966 0.99981 
0.95 0.90276 0.99268 0.99270 0.99887 0.99934 0.99986 0.99994 0.99999 0.99999 
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Table 8 
Applications using plurality voting 

No 1 2 3 4 
Source Lin, 2002a Lin, 2002b Fiscus, 1997 Xu et al., 1992 
Domain OCR POS Tagging ASR Handwriting 

Recognition 
Recognition 

Rates of 
Individual 
Classifiers 

(Best Result in 
Bold) 

0.9887 
0.9945 
0.9971 

0.9340 
0.9345 
0.8935 

0.551 
0.549 
0.513 
0.511 
0.498 

0.8605 
0.9310 
0.9295 
0.9390 

Plurality 
Voting 

(Actual) 

0.9983 0.9595 0.603 0.9890 

Plurality 
Voting 

(Theoretical)  

0.99988 
(M=3) 

0.9827 
(M=2) 

0.8068 
(M=10) 

0.9938 
(M=3) 

Independence 
Factor 

0.4317 0.5187 0.203 0.9124 

 
Table 9 
Plurality voting vs. majority voting 

 Simple Plurality Voting  Strict Plurality Voting Majority Voting 
Decision 
Criterion 

Most Votes Most Votes with at 
Least Margin of r (r>0) 

At Least Half of Total 
Votes 

Analysis Method Monte Carlo Method Monte Carlo Method Closed Formula 
Effect of M on 

Recognition Rate 
Monotonically Increasing N>3: Monotonically 

Increasing  
N=3, Not Affected 

Not Affected 

Effect of N on 
Recognition Rate 

Stepwise Pattern No Fixed Pattern Zigzag Pattern 

Reliability 
Control 

Not Available Flexible Fixed 

Relationship  Equivalent When M=2 and r=1 
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Fig. 1. Simulation of jE  with a recognition rate of jp  
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Fig. 2. Workflow of the experimen
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Fig. 3. Relationship between recognition rates and numbers of classifiers 

(Simple plurality voting with M=2,3,50 vs. majority voting, p=0.8) 
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Fig. 4. Relationship betweens recognition rates and numbers of classifiers 

(Strict plurality voting with M=2,3,50 and r=1, p=0.8) 
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Fig. 5. Relationship between recognition rates and numbers of classes 

(Simple plurality voting with N=3 and 5, strict plurality voting (r=1) with N=3 and 5, p=0.8) 
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