

Incremental Machine Learning to Reduce Biochemistry
Lab Costs in the Search for Drug Discovery

George Forman
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-141
May 14th , 2002*

E-mail: gforman@hpl.hp.com

supervised
machine
learning,
support
vector
machines,
reinforcement
learning

This paper promotes the use of supervised machine learning in
laboratory settings where chemists have a large number of samples
to test for some property, and are interested in identifying as many
positive instances for the least laboratory testing effort. Rather than
traditional supervised learning where the chemists would first
develop a large training set and then train a classifier, the paper
promotes incrementally re-training from each lab test as it
completes and then predicting the next best sample to test, as in the
field of reinforcement learning. The method outperformed the 2001
KDD Cup thrombin competition winner, partly due to its reduced
risk to concept drift from training set to test set.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Incremental Machine Learning to
Reduce Biochemistry Lab Costs in the

Search for Drug Discovery

George Forman
Hewlett-Packard Labs

1501 Page Mill Rd. MS 1143
Palo Alto, CA, USA 94304

gforman@hpl.hp.com
+1 (650) 857-7835

Abstract
This paper promotes the use of supervised machine learning
in laboratory settings where chemists have a large number of
samples to test for some property, and are interested in
identifying as many positive instances for the least laboratory
testing effort. Rather than traditional supervised learning
where the chemists would first develop a large training set
and then train a classifier, the paper promotes incrementally
re-training from each lab test as it completes and then
predicting the next best sample to test, as in the field of
reinforcement learning. The method outperformed the 2001
KDD Cup thrombin competition winner, partly due to its
reduced risk to concept drift from training set to test set.

1. Introduction
In modern drug discovery, chemists test many

different organic molecules to identify those that
successfully bind to a target site on a given receptor.
This activity was recently used as the basis for a
challenge problem in the 2001 KDD Cup [1]. In this
classification competition, DuPont Pharmaceuticals
Research Laboratories made available the results of lab
experiments that tested 1,909 organic compounds for
whether they bind to thrombin (a protease involved in
blood clotting). Only 42 of the compounds showed a
positive result. Contest entrants applied various
learning methods, such as Support Vector Machines
and Bayesian classifiers, to learn the discriminating
patterns among the 139,351 binary features in this
training set. Finally, they applied their trained
classifiers to the 634 compounds in the competition test
set. The entries were judged on how well their
predictions matched actual laboratory tests.

Although this procedure suited the classification
competition well, actual use in a pharmaceutical
research laboratory would be somewhat different.
Chemists would use the classifier’s predictions to guide
their efforts in the laboratory work, and if successful,
would end up not testing all 634 compounds, but only
those that were predicted positive, for example. Due to

the natural limits of laboratory equipment and staffing,
these tests would be carried out sequentially (though
perhaps in small batches). Because each lab test costs
money and time, it would make sense to test the most
certain positive predictions first, and proceed down the
ordered list. Once an adequate number of binding
compounds is identified, further testing expense could
be avoided.

Furthermore, since modern computers are fast
enough to train a new classifier quickly, the results of
each lab test could be incrementally included in the
training of the classifier to further improve its precision
before the next best predicted organic compound is
selected. In fact, this incremental learn and search
procedure could well be applied from the outset as soon
as just one positive and one negative training example
has been identified in laboratory testing, i.e. without
the aid and associated cost of building the training set
of 1,909 compounds.

This incremental re-training and prediction is the
subject of this paper. We demonstrate that it is highly
effective for the thrombin classification task. Indeed, it
surpasses the performance of the best entry in the KDD
Cup contest, even without the benefit of the original
training set. This is partly due to its reduced exposure
to concept drift between the training and test sets, as we
discuss later. Finally, this incremental search method
is surprisingly fast and scalable. Although a natural
interest for computer scientists would be to improve the
computation time for incrementally re-training the
classifier, traditional batch learning methods yield
ample performance. On a modest 733 MHz computer,
it took less than a minute to retrain and obtain the next
prediction, despite there being 139,351 features and
despite spawning a separate Java classifier sub-process
on each iteration, rather than using optimized compiled
code. We conclude that this application is ready for
practical use in lab settings and does not require
incremental optimization research.

2

In the following section we lay out the procedure,
and in the next section we describe experimental results
on the 2001 KDD Cup thrombin classification task,
demonstrating its viability. Following this we discuss
related work and variations we evaluated.

2. Incremental Learn & Search Procedure
Initially, when the training set is empty, candidates

may be chosen randomly until at least one positive and
at least one negative training example has been
confirmed in laboratory testing. We note that the
chemist’s knowledge comes into play in selecting the
overall set of organic compounds to consider. Thus,
even random selection already benefits from domain
knowledge. Nonetheless, the chemists may optionally
provide initial choices superior to random sampling.

The procedure at each step is as follows:

1. train a classifier with the available training data,

2. select the strongest positive prediction from among
the untested candidates,

3. test it in the laboratory, and

4. add its result to the training set for future
iterations.

If the laboratory setup more efficiently handles a
batch of ten at a time, then the ten strongest predictions
would be taken. We discuss variants later.

2.1 Classifier for the Thrombin Task
The choice of classifier is left open in the

procedure above. For our experiments with the
thrombin task [1], we assessed Naïve Bayes (NB),
Nearest Neighbor (NN), and Support Vector Machines
(SVM), the latter two having been found to perform
well in high-dimensional (text-domain) spaces [7].
Feature selection is an important scalability
consideration for these data, as there are 139,351
binary features (whose meanings remain undisclosed).
At each iteration, we selected features via the well-
known Information Gain metric, chosen for its good
performance in high-dimensional (text-domain) spaces
[8]. (In our pilot experiments, we considered other
feature selection metrics, such as Chi-Squared, without
finding improvement.)

We wrote the control software in Perl, chosen for
its quick prototyping ability. On each iteration, it
selects features, prepares new training files, and spawns
a new Java sub-process running the WEKA [6] open-
source implementation of Naïve Bayes, (k=1) Nearest
Neighbor, or (linear kernel) Support Vector Machines,
using default parameters. As a nod to scalability, the
Perl program only loads the 170 MB thrombin dataset

into memory once (taking almost three minutes), and
computes the information gain scores for the many
features incrementally, updating only those scores that
are affected by each additional sparse feature vector.

3. Experimental Results
We performed our experiments on the official test

set of the KDD Cup thrombin competition. Of the 634
compounds, 150 are active in binding. Given this 24%
positive rate, according to the Geometric distribution, it
takes on average 3.2=(1-p)/p random samples to yield
an initial training set with at least one positive and at
least one negative.1

0

25

50

75

100

125

150

0 100 200 300 400 500 600

po
st

iv
es

 f
ou

nd
 (

cu
m

ul
at

iv
e)

lab tests (cumulative cost & time)

Ideal

Random

SVM

NB
NN

precision

Figure 1: Number of positives found vs. number
of iterations. 8000 features were selected at each
iteration via Information Gain.2 The ‘precision’
curve shows, for the Naïve Bayes classifier, the
% correct positive predictions at each step.

The graph in Figure 1 plots the number of
positives found over time—the “reward curve.” Any
procedure carried out to the end will finish with 150
positives found after all 634 lab tests. Since the cost of
laboratory testing increases linearly with each iteration,
the ideal reward curve would identify all the positives
at the beginning, yielding a 45o slope until the positives
were exhausted—by contrast, random sampling yields
on average a diagonal line with slope 150/634.

Actual curves for the incremental learn and search
process lie between these two extremes. Once the

1 For situations where positives are very rare, it may be
worthwhile to attempt to beat the random odds by explicitly
selecting compounds whose feature vectors differ most
from the known negative training examples.

2 Since the Nearest Neighbor classifier was an order of
magnitude slower, its curve represents only 4000 features.
It is excluded from the remainder of the paper, because its
results at 4000 and 8000 features over many runs are
consistently and substantially inferior.

3

minimal training set is established via random
sampling (i.e. following the random curve for ~3
samples), the reward curve then shifts to using the
classifier. Initially we expect the classifier to perform
only a little better than random guessing, and then to
improve as the training set fills out. To demonstrate
this, Figure 1 also overlays, for the Naïve Bayes
classifier, a graph of the precision, i.e. the percentage
of positive predictions that are correct at each iteration.
(Note that precision, not overall accuracy, is the
appropriate goal for the classifier.) As expected, the
classifier’s performance begins ~24% precision—no
better than random—and grows to 75% precision when
the training set has ~150 samples. The good precision
accounts for the steepness of the reward curve.

Later in the process, when most of the positive
compounds have already been identified, the
classification problem gets progressively harder to find
the remaining few positives among the many remaining
negative compounds. After 175 iterations, Naïve Bayes
has identified 111 positives, and from that point
onward the classifier fails to identify any positives—
zero precision—and we see a sharp knee in the reward
curve that then proceeds linearly to the top right—as
good as random guessing for the final positives. SVM,
perhaps because of its more powerful hypothesis space
(lower bias), performed substantially better in this
region until iteration ~330, at which point its
performance is roughly linear (random) in identifying
the last 10 positives. Nonetheless, this represents over
44% cost savings over random sampling to attain 140
positives—330 lab tests instead of 592.

It can be especially difficult to find the last
remaining positives if they are scattered as noise in
negative regions of the feature space, e.g. if they are
actually mislabeled negatives in the training set due to
noise or experimental error in the laboratory setting.

3.1 ROC Curves
To present these results in more familiar terms, we

express them as ROC curves. The initial search begins
at 0 true positives and 0 false positives, and climbs
upward. Figure 2 presents four example ROC curves
with varying parameter settings: the bold lines
represent SVM and the thin lines represent Naïve
Bayes; meanwhile the dotted lines represent 2000
features selected, and solid lines represent 8000
features selected. At 2000 features, the two classifiers
perform comparably and have a rounded shape. At
8000 features, SVM performs substantially better than
Naïve Bayes after the knee in its reward curve: the area
under the ROC curve for SVM is 87%, while the area
for Naïve Bayes is 79%.

For comparison, we overlay the ROC curve of the
winning entry of the KDD competition, which in
contrast trained from the 1,909 examples of the official
training set. We hypothesize that its relatively poor
performance on the testing set is due to concept drift
between the training set and the test set [2]. While
such situations are usually avoided by machine learning
researchers, it is not uncommon in real-world industrial
problems, where it can be difficult to obtain exactly the
right training set for the intended usage of the
classifier. Often training data are drawn from an
earlier point in time or from a restricted subset of
geographical samples, having a somewhat different
distribution than encountered in actual use. Such
concept drift can severely impair the performance of a
deployed classifier.

Fortunately, the incremental predict and re-train
paradigm has significantly less exposure to this risk,
since it is continually learning on the very instances it
is being used to classify. Note this only works because
we obtain the true label after each prediction. Complete
immunity from concept drift is impossible, however,
e.g. if the pool of available instances is changed over
time and takes on a different character from the earlier
samples.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

%
 t

ru
e

po
si

ti
ve

s

% false positives

NB

SVM

KDD winner

8000 features
2000 features

Figure 2: ROC curves generated incrementally
by the search procedure for Naïve Bayes and
Support Vector Machines using 2000 and 8000
features.

3.2 Average Waste Cost Analysis
The performance curves shown up to this point

each represent a single run, which may display
significant variation due to the initial random
sampling. In determining the best choice of classifier
and number of features to use, however, we need to
consider an average over multiple runs. There remains
the question of which scalar performance metric by
which to judge. The average ROC area is one

4

candidate, but this measure is significantly influenced
by the area covered by the latter portion of the curve,
and our overall goal is to minimize lab testing costs,
avoiding the latter portion of the curve. Thus, a more
appropriate measure is the cost (number of iterations)
to obtain a majority of the positives, say 2/3rds, i.e. 100
positives. The minimum cost would then be 100. In
order to make the range of costs comparable across
different dataset sizes with different numbers of
positives, we normalize the cost by first subtracting the
minimum cost possible, and then normalize by the
number of negatives. This normalized “waste cost” is
equivalent to the false positive rate on the ROC curve
when 2/3rds of the true positives have been obtained.

Using this metric as our guide for selecting the best
performance, we average over 10 runs for various
choices of classifier and number of features to select.
The results are plotted in Figure 3. The number of
features has a major effect, and the choice of classifier
has a minor but non-negligible effect. The best of these
choices was SVM with 8000 features, which accrued
~50 false positives to attain 100 true positives. Even at
4000 features where the difference in the curves
appears small, a one-sided Wilcoxon rank-sum test
confirms that SVM performance is statistically
significantly better than Naïve Bayes at p=0.006.

Using this methodology, we evaluated a number of
variations. We discuss some of these next.

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 10000

F
P

%
 (

no
rm

al
iz

ed
 c

os
t)

Number of features selected

NB

SVM

Figure 3: Average waste cost to obtain 2/3rds of
the positives (i.e. 100 positives), as we vary the
classifier and number of features selected.

4. Discussion, Related Work & Variations
The sampling order of instances induced by the

incremental search method will tend to reinforce local
maxima encountered in the hypothesis space. As a
Gedanken experiment, consider a 2-D space that
consists of a sea of negatives with an island of positives
and another distant, tiny island of positives. If the

initial random samples identify only the large island, a
generic classifier will concentrate on that island and
only once it has been exhausted will it begin sampling
outside the island. Toward the end of its search it will
be forced to discover the distant, minor island of
positives.

Note that active learning methods suffer the same
blind spot. The goal of active learning is to select the
training examples so as to quickly improve the
classifier’s overall accuracy. An active learner requests
samples from the region of greatest uncertainty, as
opposed to the present work, which draws from the
region of greatest certainty of being positive. For the
example above, active learning would extensively
sample the edges of the large island, and if effective in
its goal, would experience a hit rate of about 50%—a
poor strategy for reducing laboratory costs—and would
not discover the tiny island of positives until forced.

In order to discover isolated islands of positives,
one needs a method that is willing to sample from
predicted negative regions. One method, known as ε-
greedy [5] in the field of reinforcement learning,
replaces the greedy search behavior with random
sampling on some iterations with probability ε. We
applied this variation for ε = 1% and 5%, but
performance only degraded, due to the additional
random tests this method inserts into the search.
(Note: in evaluating this and subsequent variations, we
tested for a performance improvement at 90% (135) of
the positives, because of greater sensitivity to sustained
performance in this difficult region and because the
variations are aimed at improving the latter portion of
the search.)

We then evaluated a variation that randomly
samples only when the best prediction is (strongly)
predicted to be negative, i.e. when the classifier
believes it has exhausted the positive regions.
Evaluation showed this also to degrade performance for
the thrombin task.

Rather than depend on the classifier’s own
estimation to determine when it is searching in a
predominantly negative region, we assessed a variation
that decides to use random sampling only when the
most recent K samples have been negative, having
observed long runs of negatives in practice. Once
again, for the thrombin task, this showed only
performance degradation for K=3 through 8.

One final variation we tested was to increase the
initial random sampling period to 5, 10, or 15 samples,
before beginning the use of the classifier. Neither did
this improve performance.

Finally, we make a note about the computation
workload. Each iteration typically took under 30

5

seconds. A typical simulation run up to 100 positives
found took under 2.5 hours—insignificant compared to
the laboratory time to perform the many tests. The
iterations slow as the training set gets larger, but in a
lab setting, as opposed to our simulation setting, the
process would be terminated long before the end.
Complete simulations for Naïve Bayes with 8000
features, for example, took almost 10 hours of compute
time. Improvements would certainly be welcome for
conducting simulation studies.

5. Conclusion
In this paper, just as in the 2001 KDD Cup, we

promote the use of supervised machine learning to
predict the organic compounds that are most likely to
be active in binding in order to help guide the
chemist’s experiments to reduce costs and improve
their yield. Unlike the KDD competition, we propose
that the training set be gleaned from the testing set
incrementally as it is tested, yielding a “predict and re-
train” search process, as in reinforcement learning [5].
The superior results demonstrated for this method
reflect its reduced exposure to the risk of concept drift
between the training and testing sets. In addition, this
eliminates the cost of gathering a separate training set.

Acknowledgments

We would like to express our thanks for the
encouragement provided by Umesh Dayal and Jaap
Suermondt, and for the statistics consulting that Hsiu-
Khuern Tang willingly gave. We extend our
appreciation to the WEKA project for their open source
machine learning software [6] and to DuPont
Pharmaceuticals Research Laboratories and the KDD
Cup organizers for making the thrombin dataset
available and providing new challenges. We also thank
the Informatics and Distribution Laboratory for use of
the ID/HP i-cluster [3].

References
[1] Cheng, J., Hatzis, C., Hayashi, H., Krogel, M.-A.,

Morishita, S., Page, D. & Sese, J. KDD Cup
Report. ACM SIGKDD Explorations, 3(2):47-64,
2001.

[2] Forman, G. A Method for Discovering the
Insignificance of One’s Best Classifier and the
Unlearnability of a Classification Task. In Data
Mining Lessons Learned Workshop, 19th

International Conference on Machine Learning
(ICML), Sydney, Australia, July 8-12, 2002.
Hewlett-Packard Tech Report HPL-2002-123.

[3] Informatics and Distribution Laboratory, Cluster
Computing Center, http://www-id.imag.fr/Grappes

[4] Haztis, C. & Page, D. KDD Cup 2001 Summary
Presentation, at Knowledge Discovery in Databases
Conference (KDD), August 26, 2001. Available at
http://www.cs.wisc.edu/~dpage/kddcup2001

[5] Sutton, R.S., Barto, A.G. Reinforcement
Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

[6] Witten, I.H., Frank, E. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, October
1999.

[7] Yang, Y., Liu, X. A Re-examination of Text
Categorization Methods. In Proc. of the ACM
SIGIR Conference on Research and Development
in Information Retrieval, 1999.

[8] Yang, Y., Pedersen, J.O. A Comparative Study on
Feature Selection in Text Categorization. In Proc.
of the 14th International Conference on Machine
Learning (ICML), 1997, pp.412-420.

