

Peppermint and Sled: Tools for Evaluating SMP
Systems based on IA-64 (IPF) Processors

Sujoy Basu, Sumit Roy, Raj Kumar, Tom Fisher1, Bruce E. Blaho1
Client Media and Systems Laboratory
HP Laboratories Palo Alto
HPL-2002-14
January 25th , 2002*

E-mail: sujoy_basu@hp.com

IA64,
architecture,
simulation,
Itanium,
McKinley

In this paper, we describe Peppermint and Sled: tools developed
for evaluations of computer systems based on IA-64 processors.
Sled generates trace from applications running on IA-64
processors, while Peppermint models the complete system
using cycle-accurate, trace-driven simulation

Peppermint and Sled allow us to perform a trace-based
evaluation of 4 applications running on SMP systems based on
Itanium and McKinley processors. We find that the
improvement in IPC of McKinley relative to Itanium ranges
from 7% to over 100% for our different applications. The
improvement can be attributed to a variety of factors. These
range from the availability of additional functional units and
issue ports in the McKinley processor to our assumption of a
better memory system. While the improvement in performance
remains valid in SMP systems in some cases, higher contention
for system bus and memory reduces the performance gain in
other cases. Increasing the system bus bandwidth and size of
queues for pending requests in the memory controller are
identified as first steps for optimizing SMP performance.

* Internal Accession Date Only Approved for External Publication
1 Technical Computing Division, Hewlett-Packard, Fort Collins, CO, 80528
Copyright IEEE. To be published in and presented at the 16th International Parallel and
Distributed Processing Symposium (IPDPS) 15-19 April 2002, Ft. Lauderdale, Florida

Peppermint and Sled: Tools for Evaluating SMP Systems based on IA-64
(IPF) Processors

Sujoy Basu�, Sumit Roy and Raj Kumar
Hewlett-Packard Laboratories

Hewlett-Packard Company
1501 Page Mill Rd.

Palo Alto, CA 94304

Tom Fisher and Bruce E. Blaho
Technical Computing Division

Hewlett-Packard Company
3404 E Harmony Rd.

Fort Collins, CO 80528

1 Introduction

In this paper, we describe Peppermint and Sled: tools developed for cycle-accurate, trace-driven simulation of
applications running on IA-64 processors, with the possibility of doing execution-driven simulations in future. With
the introduction of Itanium processor[11], it has become necessary for system architects to understand the performance
of applications developed for the IA-64 family of processors. They would like to spend their time on those aspects of
the design where the maximum impact on performance could be realized. Some of the different scenarios in which we
envisage the use of Peppermint and Sled are illustrated in Figure 1.

Identify functions
or whole

applications to be
analyzed

Use Sled to
generate trace by

running
application

Edit configuration file
of Peppermint to
vary the IA-64

system architecture
under study

Run Peppermint
with the generated

trace as input

Identify
architectural

improvements

Edit and compile
source code of

Peppermint to refine
further the system

under study

Optimize
application

Figure 1. Possible uses for Peppermint and Sled

The design of our simulator Peppermint is influenced by the complex, real-world technical applications we need
to analyze. The tools will be used primarily to study long traces captured from such applications, and simulate the
traces by varying various parameters of system components like the memory controller. However as shown in our
experiments in this paper, Peppermint can be used to explore other aspects of the design space. The motivation
for this project has been the development of a tool set that can be used for fast exploration of the design space
for systems built around IA-64 processors. Detailed performance simulations, such as those possible using flexible
simulation environments like [3], can be very slow. Because of our requirement for fast simulations, we have chosen
to selectively model system components. We might iteratively refine the model later if higher accuracy is required at
the cost of slower simulation speed.

�contact at sujoy basu@hp.com

1

Peppermint currently models one or more IA-64 processor with three levels of cache, a system bus, memory con-
troller and DRAM chips. All these components are parameterized. Peppermint uses a configuration file in which these
parameters are specified. The focus of this paper is to give the maximum amount of information about the details of
our implementation. Since we are selectively modeling details of the system architecture, we have chosen to highlight
these details. Then we give the reader some idea about the basic experiments that can be conducted using our tools.

Although the target architecture for Peppermint is an IA-64 system, only the generation of IA-64 traces have
been done on Itanium systems using Sled . Peppermint itself has been developed and tested primarily on PA-RISC
computers running HP-UX and IA-32 computers running Linux. It takes the trace and a configuration file as input.
The actual application or the libraries used by it on the IA-64 system need not be provided to Peppermint since Sled
captures all the necessary information in the trace.

This paper is organized as follows. Section 2 describes how Peppermint models different components of the system
architecture, and our ongoing work on validation. That is followed by Section 3, which describes in detail how Sled
, the tool for capturing IA-64 application traces, is implemented and performs. Then the performance of Itanium and
McKinley are compared in Section 4. Finally we present our conclusions in Section 5.

2 Architectural Model

In this section, we describe the details of the system architecture modeled by Peppermint. In case the reader is
interested in extending the model, experience in writing architectural models for Augmint [9] will be required.

2.1 Processor Architecture

2.1.1 Instruction Dispersal

Peppermint parameterizes the issue width of the processor. For both Itanium and McKinley, this number is 2. This
means that at most 2 instruction bundles will be available for dispersal every cycle in the dispersal window. Exper-
iments can be conducted by varying this parameter in Peppermint. Dispersal is achieved with a decoupling buffer,
which decouples the front end of the pipeline from the rest of the pipeline. The front end is responsible for fetching
instructions from instruction cache into the decoupling buffer, while the back end disperses them. Peppermint has one
primary event corresponding to the front end, and another primary event corresponding to the back end. Both of these
events are scheduled on every clock cycle.

The event corresponding to the front end reads entries from the trace file, and schedules corresponding instruction
fetches. The number of such instruction fetches in a cycle may be limited, of course, by factors like available ports
on the I-cache and number of outstanding cache misses. These instruction fetch events will in some subsequent clock
cycle feed the corresponding instruction bundle into the decoupling buffer. Here perfect branch prediction is assumed.
The model can be extended to introduce delay due to branch mispredictions.

The event corresponding to the back end starts by checking that the dispersal window is filled with bundles. If not,
it shifts the next bundles in the instruction stream from the decoupling buffer into the dispersal window. This succeeds
unless the bundle is not available due to cache miss. Next it tries to issue all the instructions in the dispersal window
to their issue ports within the same cycle. To do that, the instruction bundle is decoded using functions from a library
used by linker and other system tools. Next, rules available in [7] are used to determine which issue port can be given
an instruction. As soon as an instruction fails to find a free issue port, dispersal stops for that cycle. All instructions
in sequential order preceding that instruction have been dispersed that cycle. Dispersal is said to split-issue at that
instruction. Also, an explicit stop-bit might be encoded in the bundle, indicating split-issue at an instruction. Other
special cases for Itanium that cause split-issue are implemented. The reader is referred to [7] for these details. Another
important cause for split-issue that we implement is an instruction waiting for a source operand register that is the
target of a load from memory.

2.1.2 Predication

Predicated instructions, for which the predicate register contains 0, must be squashed in the pipeline without updating
the architectural state. Specifically, Peppermint cannot mark the target register of such an instruction busy, forcing
some instruction to wait for the register to become available. This is currently modeled when the predicated instruction

2

is a load or store. Peppermint uses the value of the predicate register recorded by Sled in the load or store trace entry
to determine whether the load or store needs to be issued to the memory system, and also whether the target register
of a load needs to be marked busy. This is quite good as a first-order approximation since loads can have high latency
due to cache misses. If higher accuracy of simulation is desired, the value of predicate register has to be recorded in
the trace for all instructions; then Peppermint can ensure that other predicated-off instructions do not mark their target
register busy.

2.1.3 Data Speculation

Data speculation is a technique that allows the compiler to schedule loads ahead of time. In this case, though, the
speculation arises from the fact that the load has been scheduled prior to stores that actually precede it in program
order and can potentially write into the memory location from which the load will be reading. Compile-time analysis
for ruling out such overlapping stores and loads is difficult when dynamic data structures (code with pointers) preclude
static analysis. The IA-64 architecture supports such data speculation by introducing advance load instructions. An
advance load behaves like a normal load in accessing memory. However, in addition to that, the target register, load
address and number of bytes being loaded are entered in the Advance Load Address Table (ALAT). Every store
instruction checks the ALAT for entries with overlapping addresses. Such entries are invalidated. At the original
location of the load in the instruction stream, a speculation check (chk.a) instruction is placed. When executed, it
checks the ALAT for the entry inserted by the corresponding advance load. If the entry is present, speculation has
succeeded. Otherwise it has failed, and a branch is taken to fix-up code.

Peppermint currently does not model the ALAT. However it does issue advance loads to memory, which is what
the architecture specifies. Notice also that during the capture of a trace by Sled , if the application has any failed
speculation, it will branch to fix-up code. The execution of that fix-up code will get recorded in the trace. So modeling
the ALAT is not necessary unless one is experimenting with the design of the ALAT. In that case, however, one must
use Peppermint in execution-driven mode so that the branch to fix-up code is only taken when the modeled ALAT
indicates failure of speculation.

2.1.4 Control Speculation

Control speculation allows the compiler to minimize the stall due to load instructions that suffer large latencies result-
ing from cache misses. The compiler can speculatively schedule such loads far ahead of their normal position in the
instruction stream, even before intervening branch instructions. This indicates the load should be executed condition-
ally depending on the outcome of the branches. For such speculative loads, exceptions such as page faults are deferred
until the outcome of the speculated branches are known. Peppermint currently does not model exceptions. All loads
are sent to the memory hierarchy. Like data speculation, it can be added to the model. However Peppermint must be
used in execution-driven mode, as explained in Section 2.1.3.

2.1.5 Register Remapping

In the IA-64 architecture, instructions dispersed to functional units, must undergo register remapping before being
able to access the register file. There are 2 features of the IA-64 Instruction Set Architecture that require remapping
of register names: register stacking and register rotation. Register stacking ensures that each active frame on the
procedure call stack of a program can use its own register frame consisting of potentially all physical registers in the
general register file. Hardware transparently manages the register file in two ways. It remaps the register number in
the instruction to the correct physical register. It also spills and restores registers between the general register file and
backing store in memory. Register rotation enhances instruction-level parallelism; it allows overlapped execution of
loop iterations, known as software pipelining. This is done without requiring the compiler to unroll the loop body
when generating code. This is possible since the hardware manages counters called rotating register base (RRB) that
can remap the register number in an instruction to different physical registers in different iterations.

Register remapping is handled in both Peppermint and Sled. Firstly, Sled reads the Current Frame Marker (CFM)
register to extract the parameters governing stacking and rotation. Then it does the appropriate modulo arithmetic
to identify the physical register to be read. Since the register is spilled to the backing store during trace generation,
the correct location in memory is then read. Similarly, Peppermint models the Current Frame Marker and related
registers, and simulates the effect of all instructions that affect them. Examples of such instructions are alloc, br.call,

3

brl.call, br.ret, cover and clrrrb . Furthermore, it also implements the remapping function. However it diverges from
the hardware in assuming a very large physical register set. So memory traffic resulting from spilling or restoring
registers is not simulated.

2.1.6 Cache Hierarchy

Peppermint simulates all three levels of cache present in the Itanium processor family. The simulator is highly param-
eterized, and the cache configuration can be easily modified to explore the design space with simulations. Parameters
that could be changed for each cache include the size, line size, associativity, line replacement policy, number of ports,
access latency and number of outstanding misses. Also caches can be turned off selectively to alter the depth of the
cache hierarchy. Instantiating an additional level of cache and adding it to the configuration file is quite simple. Cur-
rently Peppermint makes some simplifying assumptions regarding access latency. Exceptional cases are not treated
separately. Instead all integer loads have a latency of 2, 6 or 21 cycles depending on whether they hit in the Itanium’s
L1D, L2 or L3 cache respectively. Instruction fetches have a latency of 1, 5 or 20 cycles depending on whether they
hit in the Itanium’s L1I, L2 or L3 cache respectively. Floating-point loads bypass the first level of cache, and incur a
latency of 9 or 24 cycles, depending on whether there is a hit in L2 or L3 cache. All types of loads that miss in the L3
cache access memory by initiating a transaction on the system bus. The details are described in the following sections.
Peppermint also supports a limit on the number of outstanding misses for each level of the cache hierarchy.

Changing the values for the different parameters simply requires modification of these values in the configuration
file. However treating special cases separately, that are not already handled in Peppermint, will require addition of
code to dynamically override the latency when the exception occurs. Since Peppermint decodes each instruction, the
framework is present for such code to be added easily.

2.2 System Bus

We simulate a pipelined, split-transaction system bus. The frequency is parameterized. Arbitration is done in
round-robin order among the requesting caches. The arbitration algorithm can be called by higher-priority I/O devices.
However the current model does not include such devices.

2.3 Memory Controller

We have parameterized the memory controller so that the bits from the physical address to be used for row address,
column address and bank can be specified in the configuration file. This allows us to study different memory configu-
rations. Other parameters that can be varied include the number of open pages and size of outstanding read and write
queues in the memory controller. Scheduling policies for memory accesses can also be studied. We schedule reads
with a higher priority than writes, with some exceptions such as the presence of overlapping writes. However a whole
range of policies can be studied by writing the appropriate function for selecting among the different queues for reads,
writes, precharge and activation. Additional queues can also be defined if needed. However since we do not model
the internal logic of the memory controller, we assume a constant time overhead in addition to the waiting time in the
queues. This overhead is parameterized, and memory benchmarks could possibly be used to approximate the value
for a computer system. For DRAM, important parameters available for DRAM data sheets are parameterized. Various
situations such as precharge and hit on an open page are modeled. Accordingly, the latency seen by each memory
access varies.

2.4 Performance and Validation

The cache system of Peppermint has been validated against Dinero [8]. Preliminary validation has indicated that the
margin of error is within 20%. Further detailed validation is planned using the McKinley processor. The throughput
of Peppermint will depend on the details being simulated. Table 1 gives an idea of how the throughput of Peppermint
varies with the benchmark used and with the length of the trace. Unlike [13], we do not use sampling. All instructions
are simulated. Hence our throughput numbers cannot be directly compared to theirs.

4

Program Instructions Throughput
(instr / sec)

MCF 100 K 7692
MCF 1 M 11494

VORTEX 100 K 20000
VORTEX 1 M 22727

Table 1. Throughput of Peppermint for SPEC 2000 benchmark programs, MCF and VORTEX, on
a HP Kayak XU 800 workstation with 733 MHz Pentium III processor and 256 MBytes RDRAM

3 Trace Generation Tool: Sled

Peppermint currently does only trace-driven performance simulation. A trace generation tool is required to produce
the input for the simulator. Trace collection methods have been classified into at least five different types: probe-
based, microcode modification, instruction set-emulation, static code annotation, and single-step execution [14]. A
trace generation tool called Sled was developed to collect the input traces for the Peppermint simulator. Sled can
single-step application processes and thus collect instruction and address traces. These traces are unfiltered since they
are collected before going through the various cache levels. This feature is useful for exploring design parameters in
the memory hierarchy such as the effect of changing the cache sizes, latencies or associativity.

3.1 Implementation Details

Sled currently produces traces in a modified Dinero format [8]. The basic record type is explained in Section A in
the Appendix. Sled is basically a program that can control the execution of another process. Under Linux the required
functionality is provided through the ptrace(2) system call. In HP-UX 11i the ttrace(2) call provides similar function.
These system calls provide support to manipulate the execution state of a process. They can be used to single-step
the execution, to read and modify most of the registers of a stopped process, as well as to read any location of the
memory space of the process. The register reading facility is used extensively by Sled to collect instruction trace data
by reading the Program Counter. Memory locations are read to extract the current execution bundle from the process
image.

A monitored process is usually created by Sled forking and then executing the program of interest. However, Sled
can also be attached to a running process by specifying the process id. If Sled forks a child, the new process puts itself
into a traceable state and waits for the parent. The parent Sled process can set a breakpoint if specified. It then signals
the child to proceed. The child process executes the program of interest, which runs till the breakpoint. The hardware
debug registers of the Itanium are used to set these breakpoints, but a similar objective could be achieved by modifying
the programs code space and inserting a software breakpoint.

Once the child reaches the first breakpoint, the parent can collect statistics, and disable this breakpoint. Trace
collection would typically be enabled only after reaching the first breakpoint. If the last breakpoint is specified, it is
set at this time. This allows Sled to collect data even within a ‘backward’ window in the program.

Depending on the arguments to Sled , the child program either proceeds or is single-stepped till it exits or reaches
the last breakpoint. At this point, the parent can stop generating trace records, or get the current values of the PMU
counters. The parent process detaches itself from the child. The child process can then run to completion. As a
convenience, a termination signal can also be sent to the child at this time. This is especially convenient for collecting
data in a limited range of a long running program.

In tracing mode, Sled reads the value of the instruction pointer from the context of the child at every trap point. The
current instruction bundle is then read by dereferencing this value and reading from the memory image of the process
being monitored. Memory accesses are then detected by disassembling the contents of the bundle. The bundles are
decoded using code from the IA-64 version of the GNU binutils. If a memory access is found, its address is read from
the corresponding indirection register. In case of Itanium, this may require reading registers from the backing store. If
a memory access occurs in a loop, the registers also have to be de-rotated before they can be read. Sled also determines
the contents of the predicate register and thus creates the appropriate record entry. The decoded bundles are cached in

5

a direct mapped buffer. This saves the cost of system calls for the next time that these instruction bundles would have
to be read from the memory image of the process.

In addition to collecting address and instruction traces, Sled can also be used as a performance measurement tool.
It uses the perfmonctl system call available in the Linux IA-64 kernel to access the performance monitoring registers
available on the Itanium. Sled provides the capability to collect detailed statistics around any window of execution of a
program. One extension planned for Sled is the ability to reset breakpoints, so that one can accumulate the performance
data for a region of code that get executed repeatedly. This overcomes one fundamental limitation in the Itanium
implementation of the Performance Monitoring Unit. Specifically, address range based performance monitoring is not
available for all possible event types, for example CPU CYCLES [6].

3.2 Sled Performance

One metric proposed for evaluating the quality of a trace collection tool is the slowdown compared to a full speed
execution of the same piece of code [14]. The slowdown reported for single-step based trace collection cover a wide
range, from 100 [1], 1000 [4], to 10,000 [5]. As shown in Table 2, the slowdown as seen on a 800 MHz dual Itanium
system lies towards the low end of reported figures. p

Program Instr Full Trace Slowdown
Speed Enabled

(Millions) (sec) (sec)
MCF 3.17 1.08 59.23 60

VORTEX 1.26 0.21 41.7 200

Table 2. Trace collection slowdown for SPEC 2000 benchmark programs, MCF and VORTEX

Trace collection is more expensive than merely single-stepping the processor, since system calls are required to
read the instruction pointer, the bundles, and in case of a memory access, the contents of the indirection register, the
predicate register and the backing store. However, the bundle cache performs fairly well as seen by the data in Table 3.
It is can be seen that the single stepping cost and trace collection cost both scale linearly with the length of the trace
collected, and that the overhead for trace collection lies between 20 - 30 % of the execution time.

Instruction Count Single step Trace collect
(sec) (sec)

1 Million 23.49 28.44
10 Million 211.14 270.38

100 Million 2174.00 2691.59

Table 3. Single stepping and Trace collection time for SPEC 2000 benchmark program, MCF

4 Comparison of Itanium and McKinley

Next we present results from our experimental evaluation of systems based on Itanium and McKinley processors.
Systems based on Itanium and McKinley processors differ not only in the processor, but also in the system bus and
memory. Peppermint allows us to explore the design space by doing controlled experiments. We compare 2 systems
based on these 2 processors, with typical configurations for system bus and memory, to get an estimate of the perfor-
mance improvement for different applications between these 2 systems. We also vary design parameters to get a sense
of what contributes to the difference in performance. The differences between the systems compared are presented
in Table 4. More detailed comparison can be made by comparing the configuration files for Itanium and McKinley
presented in Section B in the Appendix.

The comparison is done using traces captured from 4 applications. To capture a trace from an application, first the
source code of the application is examined to identify the code fragment which initializes data structures. A function is

6

Parameter Itanium McKinley

Processor Frequency 800 MHz 900 MHz
Third-level Cache 4 MB 3 MB

System-bus Frequency 133 MHz 200 MHz
System-bus Width 64 bits 128 bits

Double Data Rate DRAM No Yes

Table 4. Some Difference in system parameters between the 2 systems

Application Description

Mcf Combinatorial optimization: network simplex algorithm
Vortex Lookups, insertions and deletions in object-oriented

database; the benchmark does not have any database I/O
Gap System for computational discrete algebra
Transcoder Down-scale transcoding of compressed video

optimized for speed and power

Table 5. Applications Used in Our Experiments

identified which is called only after this initialization code. Next the application is run under the control of Sled , and
tracing is started when the identified function is reached. This ensures that initialization code is skipped. To ensure
that cold misses in the caches are a small part of the whole execution, we captured traces containing 100 million
instructions. Preliminary experiments had indicated that increasing the trace length increased metrics like Instructions
per cycle (IPC). However they leveled off before 100 million instructions. However this should be a function of
cache size. Increasing the cache size far beyond what we used might require further increase in trace length. The 4
applications used in this study are described in Table 5. For the applications from the SPEC CPU2000 suite [2], the
reference data set was used as input. The remaining application, Transcoder, is described in [10, 12].

4.1 Basic Results

In the first set of experiments shown in Figure 2, we compare the execution of Itanium and McKinley based systems
compared in Table 4. The metrics used are instructions per cycle (IPC) and instructions per second (IPS). Each line
shows the corresponding metric for McKinley normalized to that of Itanium. The results show that for the application
traces used, the performance improvement of McKinley over Itanium can range from 7% to over 100%, when compar-
ing IPC. With IPS, the results are even better, since the frequency of the McKinley processor used in our experiments
is higher than that of Itanium.

In the second set of experiments shown in Figure 3, we take the total execution cycles of each application, normal-
ized to the longest running application, and plot a bar graph. Each bar shows 5 components. The Busy component
counts cycles in which at least 1 instruction is dispersed by the front end of the processor pipeline. The remaining
components measure stalls in instruction dispersal. They are attributed to instruction fetch (Ifetch) when the stall
results from the decoupling buffer being empty. If the stall occurs because an issue port cannot be assigned to the
instruction, it is attributed to functional units (Funit). If a data dependency forces instruction dispersal to be stalled, it
is accounted for in the DataDep component. Finally the Cache component account for stalls reached when loads or
stores cannot be issued due to the limit on outstanding misses in the caches.

On the X-axis, each bar has a label. The first character indicates the application, which can be Gap (G), Transcoder
(T), Mcf (M) or Vortex (V). The second character indicates whether the system simulated is an Uniprocessor (u)
or Multiprocessor (m), specifically a 2-processor SMP. The last character indicates Itanium (I) or McKinley (M),
indicating the system parameters used, as shown in Table 4.

Both gap and transcoder are quite compute-intensive and most of their execution time can be attributed to Busy
cycles in which 1 or more instructions are issued. The FUstall component of transcoder, which represents stall due to

7

0

0.5

1

1.5

2

2.5

gap mcf transcoder vortex

Normalized IPC

Normalized IPS

Figure 2. Relative IPC and IPS

unavailability of functional units, decreases from 13% for Itanium to 8% for McKinley. This is due to the increased
number of functional units in Mckinley. This increases the IPC of transcoder by 7%. For gap, the improvement in
execution time from Itanium to Mckinley can be attributed to both DDstall and IFstall, stalls due to data dependencies
and instruction fetches respectively. The larger size and line size of the second-level cache in Mckinley benefits gap. It
also benefits significantly from the better memory system of Mckinley (double-data rate and higher frequency), which
implies lower latency for third-level cache misses. Its IPC increases by 11%. For the dual-processor configurations,
both applications maintain their performance improvement from Itanium to Mckinley.

The uniprocessor execution of mcf on Itanium and Mckinley show a huge difference in performance. This is because
the execution of mcf on Itanium is dominated by data dependency stalls (DDstall). It accounts for 86% of the execution
time. Mckinley cuts down this component to 75%. This improves the IPC of mcf by 100%. This is despite the fact
that Mckinley has 3 MBytes of third-level cache, compared to 4 MBytes in Itanium. The primary contributor for
this performance improvement is the better memory system of Mckinley as explained in the previous paragraph. The
memory system is critical for mcf, because mcf is pointer-intensive, and has low cache hit rates. The problem is
more acute in IA-64 architectures, where the pointers increase to 64 bits in width, and result in larger working sets.
For the dual-processor execution of mcf with vortex, we find that improvement in IPC is only 36% from Itanium
to Mckinley. This is due to the higher contention for system bus and memory in the dual-processor systems. For
mcf on the uniprocessor systems, bus utilization was 71% and 76% for Itanium and Mckinley respectively. For the
dual-processor systems, we found the bus utilization to be 77% and 79% for Itanium and Mckinley respectively. The
number of memory accesses that had to be retried because the memory controller had reached the limit on pending
reads or writes was 5.2 million and 2.7 million on Itanium and Mckinley respectively in the uniprocessor case. For the
dual-processor case,the number of retries were 7.3 million and 3.0 million on Itanium and Mckinley respectively. The
average latency of a read serviced by memory was 103 processor cycles for Itanium and only 72 cycles for Mckinley;
difference between uniprocessor and dual-processor configurations was negligible. This implies that memory bank
conflicts did not change significantly with increase from 1 to 2 processors. To summarize, the main problems observed
in the SMP case are high bus utilization and increased retries as a result of queues in the memory controller reaching
their limit. So improving system bus bandwidth and increasing the queue sizes in the memory controller might be the
first steps in improving SMP performance.

The uniprocessor runs of vortex on Mckinley yields an improvement of 21% in IPC over Itanium. This is a result of
reduction in stalls due to data dependencies (DDstall) and instruction fetches (IFstall). In the dual-processor case, the
improvement in IPC for vortex is only 16%. Again this can be attributed to the higher contention for system bus and
memory. The number of retries induced by the memory controller in the dual-processor case, as mentioned earlier,

8

0

20

40

60

80

100

120

GuI TuI
Gm

I
Tm

I
GuM TuM

Gm
M

Tm
M M

uI VuI
M

m
I

Vm
I

M
uM VuM

M
m

M
Vm

M

Applications + Architecture

N
o

rm
al

iz
ed

 C
yc

le
s

Cache

DataDep

Funit

Ifetch

Busy

Figure 3. Breakdown of normalized execution cycles

were 7.3 million and 3.0 million on Itanium and Mckinley respectively. For the uniprocessor case, vortex had 1.8
million and 0.8 million retries for Itanium and Mckinley respectively.

4.2 Parameter Sensitivity

We also studied variation of some system parameters. Figure 4 shows the effect of varying the frequency of the
system bus. The total execution cycles of each application is plotted relative to the longest running application, which
is normalized to 100. Each bar is labeled on the X-axis with 1 or 2 applications (G, M, T or V), followed by the system
architecture (I or M) and bus frequency. For the Itanium system configuration, the bus frequencies chosen are 133,
266 and 333 MHz, corresponding to labels 1, 2, and 3 respectively. For McKinley, the corresponding bus frequencies
are 200, 333 and 450 MHz respectively. The most significant improvement in performance has been observed in mcf.
The DataDep component shows significant reduction for this application on both Itanium and McKinley. On Itanium,
for example, its IPC increases by 42% if the bus frequency is increased from 133 to 333 MHz.

Figure 5 shows the effect of varying the size of the third-level cache. The total execution cycles of each application
is plotted relative to the longest running application, which is normalized to 100. Each bar is labeled on the X-axis
with 1 or 2 applications (G, M, T or V), followed by the system architecture (I or M) and finally the size of the third-
level cache (3, 4, 8 or 16 M). Increasing cache size yields better performance improvement compared to increasing
bus frequency. In fact, the IPC for mcf on Itanium increased by 42% due to increase in system bus frequency, while
it increased by 120% due to increase in cache size. The results turned out to be additive. That is, the 2 enhancements
together increased IPC by 162%. For McKinley, the improvement in IPC resulting from increasing bus frequency to
333 MHZ was 30%, while increasing third-level cache size to 8 MBytes increased IPC by 113%. Together, these 2
enhancements increased IPC by 126%.

5 Conclusion

This paper describes the implementation of Peppermint and Sled: tools for cycle-accurate, trace-driven simulation
of applications running on IA-64 processors. These tools are used to compare the performance of systems based on
Itanium and McKinley processors using 4 applications. We find that the improvement in IPC of McKinley relative to

9

0

20

40

60

80

100

120

GI1 GI3
GM

2
M

I2
M

M
1

M
M

3
TI1 TI3

TM
2 VI2

VM
1

VM
3

GTI1
GTI3

GTM
2

M
VI2

M
VM

1

M
VM

3

Applications + Architecture

N
o

rm
al

iz
ed

 C
yc

le
s

Cache

DataDep

Funit

Ifetch

Busy

Figure 4. Effect of Bus Frequency on Execution Time

Itanium ranges from 7% to over 100% for our different experiments. The improvement can be attributed to a variety
of factors. These range from the availability of additional functional units and issue ports in the McKinley processor
to our assumption of a better memory system. While the improvement in performance remains valid in SMP systems
in some cases, higher contention for system bus and memory reduces the performance gain in other cases. Increasing
the system bus bandwidth and size of queues for pending requests in the memory controller are identified as first steps
for optimizing SMP performance.

10

0

20

40

60

80

100

120

GI4
M

GI8
M

GI1
6M

GM
3M

GM
8M

GM
16

M
M

I4
M

M
I8

M

M
I1

6M

M
M

3M

M
M

8M

M
M

16
M

TI4
M

TI8
M

TI1
6M

TM
3M

TM
8M

TM
16

M
VI4

M
VI8

M

VI1
6M

VM
3M

VM
8M

VM
16

M

Applications + Architecture

N
o

rm
al

iz
ed

 C
yc

le
s

Cache

DataDep

Funit

Ifetch

Busy

Figure 5. Effect of Level 3 Cache Size on Execution Time

11

A Using Sled

The format of the bundle used by Sled includes fields for identifying the bundle type, predicate value, predicate
register and address of either instruction fetch or memory access (load or store). The details of the bundle format are
presented in Figure 6.

Pred Reg On/Off Type 64 bit Address
Pred Reg : 6 bits for the predicate register.

On/Off : 1 bit for predicate, On = 0, Off = 1.
Type : 2 bits for the record type.

0 = Memory read.
1 = Memory write.
2 = Instruction fetch.
6 = Instruction fetch with bundle information.

Address : Instruction or Memory address.
in hexadecimal (without leading 0x).

Figure 6. Basic record type produced by Sled

The 128 bits of the instruction bundle are available through a record as shown in Figure 7.

6 64 bit Address Bundle High 64 Bits Bundle Low 64 Bits

Figure 7. Bundle record type produced by Sled

A.1 User Interface

Sled has a command line interface with the following options:

-a <file name> (append output to file).

-b Add the bundled opcodes to the instruction fetch record. The opcodes are only printed at 16 byte aligned
instruction addresses.

-d (disassemble, implies -s).

Disassemble the instructions as they are being stepped through. This is useful for verifying the output of the
tool.

-e EVENT1,EVENT2,.., (events to monitor, max 4).

Collect performance counter values for the requested events. The Itanium implementation limits the number of
events that can be monitored to a maximum of four events. The arguments are optional, and some combinations
of events may not be allowed by the architecture. This option is currently available only on Linux-ia64.

-f <first instruction to monitor>.

Specify the starting point for generating traces or collecting statistics. This breakpoint can be specified using a
symbolic name or a numeric address.

-k <signal> (kill child with signal after last instruction).

Send this signal to the monitored program when Sled exits. This is especially useful when generating traces or
collecting statistics only between two breakpoints. The default is to let the monitored program run to completion.

12

-l <last instruction to monitor>.

Specify the ending point for collecting traces or statistics. The breakpoint can be specified using a symbolic
name or a numeric address.

-n <number of instructions to step through> (implies -s).

This flag is usually specified with -t to collect data for a fixed number of instruction.

-o <file name> (overwrite output in file).

-p <target pid to attach to>.

Attach Sled to a running program with this pid. The program name is not required since Sled obtains all the
information by querying the running program. This mode can be used combined with the -n flag to periodically
collect samples from long running programs.

-P (enable performance counters).

Collect performance counter values from the monitored program. If the events to be monitored are not specified
with the -e flag, Sled defaults to reporting the values for IA64 INST RETIRED, CPU CYCLES, LOADS RETIRED,
and STORES RETIRED [6]. This option is currently available only on Linux-ia64.

-s (single step).

Single step the program and print the number of instructions executed. This flag is useful on OSes that do not
have a Performance counter interface to determine the number of instructions retired in a section of the program.

-t (generate address trace).

Collect traces in the modified Dinero format. The -b flag adds two further fields at aligned instruction fetches.

-v (verbose).

Provide debugging and progress information.

13

B Comparison of Configuration Files

Table 6 presents the difference in configurations parameters provided to Peppermint for our comparison of Itanium
and McKinley. Some of these parameters are based on assumptions made by the authors about processor and DRAM
technology at the time the project was done, and do not necessarily reflect actual products based on these 2 processors.

System Parameter Itanium McKinley

Processor Frequency 800 MHz 900 MHz
L1 I-cache Line Size 32 bytes 64 bytes
L1 I-cache Associativity 4 4
L1 I-cache Size 16 KB 16 KB
L1 I-cache Ports 2 2
L1 I-cache Access Latency 2 cycles 1 cycle
L1 D-cache Line Size 32 bytes 64 bytes
L1 D-cache Associativity 4 4
L1 D-cache Size 16 KB 16 KB
L1 D-cache Ports 2 4
L1 D-cache Access Latency 2 cycles 1 cycle
L2 Cache Associativity 6 8
L2 Cache Line Size 64 bytes 128 bytes
L2 Cache Size 96 KB 256 KB
L2 Cache Ports 2 4
L2 Cache Access Latency (integer) 6 cycles 5 cycles
L2 Cache Access Latency (floating-point) 9 cycles 6 cycles
L3 Cache Associativity 4 12
L3 Cache Line Size 64 bytes 128 bytes
L3 Cache Size 4 MB 3 MB
L3 Cache Access Latency (integer) 21 cycles 12 cycles
L3 Cache Access Latency (floating-point) 24 cycles 16 cycles
System Bus Frequency 133 MHz 200 MHz
System Bus Width 64 bits 128 bits
DRAM Frequency 100 MHz 150 MHz
RAS to CAS Delay, tRCD 20 ns 20 ns
CAS Latency (DRAM cycles) 2 2
Double Data Rate No Yes

Table 6. Difference in System Parameters

14

C Using Peppermint

Assuming you have acquired the source files for Peppermint , the first step is to enter the top-level directory, and
build and install the libraries:

cd peppermint
./configure
make install

You will not normally need to compile the front-end program that reads the trace files generated by Sled , and
drives the simulation. The above step should be sufficient to build the complete Peppermint simulator as the binary
file read trace in the directory peppermint=applications=no ctxsw. However if you decide to change any source
code or link different libraries and recompile, after the above steps, you might have to execute:

cd applications/no_ctxsw
make clean
make

To run Peppermint using the configuration file for Itanium and McKinley respectively, using a trace file your app.tr
generated by Sled , you will have to execute:

cd applications/no_ctxsw
read_trace -- -c peppermint.config.itn < your_app.tr
read_trace -- -c peppermint.config.mck < your_app.tr

Peppermint runs in SMP configurations, when it is given the -m flag for multiple processors, along with the -c flag
for configuration file. It has been tested for 2 and 4 processor systems. When given the -m flag, it assumes that the
traces for the different processors are available in files named peppermint.trace0, peppermint.trace1, . . .

Suppose you have 2 compressed traces from your applications that you want to run in a SMP configuration. You
could uncompress the trace files in files named peppermint.trace0 and peppermint.trace1 if you have enough disk
space. The alternative could be the following sequence of commands:

cd applications/no_ctxsw
mkfifo peppermint.trace0 peppermint.trace1
gzcat your_app0.tr.gz > peppermint.trace0 &
gzcat your_app1.tr.gz > peppermint.trace1 &
read_trace -- -c peppermint.config.itn -m 2

15

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache Performance of Operating System and Multiprogrammed Workloads.
ACM Transactions on Computer Science, 6(4):393 – 431, 1988.

[2] S. P. E. Council. Spec cpu2000 benchmark. For further information, check http://www.spec.org/.
[3] D. Burger and T. Austin. The SimpleScalar Tool Set. Technical Report 1342, University of Wisconsin, 1997.
[4] J. K. Flanagan, B. E. Nelson, J. K. Archibald, and K. Grimsrud. BACH: BYU Address Collection Hardware, The Collection

of Complete Traces. In Proceedings of the 6th International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 128 – 137, 1992.

[5] M. Holliday. Techniques for Cache and Memory Simulation using Address Reference Traces. International Journal in
Computer Simulation, 1:129 – 151, 1991.

[6] intel. Intel RIA-64 Architecture Software Developer’s Manual, volume 4, chapter Processor Performance Monitoring. Intel
Corporation, 1.1 edition, July 2000.

[7] Intel Corporation. Itanium Processor Microarchitecture Reference, August 2000. Document Number 245473-002, Available
from http://developer.intel.com/design/itanium/manuals/.

[8] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simulator. Technical report, University of Wiscon-
sin, 1999. Available at http://www.cs.wisc.edu/ markhill/DineroIV/.

[9] A.-T. Nguyen, M. Michael, A. Sharma, and J. Torrellas. The augmint multiprocessor simulation toolkit for intel x86 archi-
tectures. In International Conference on Computer Design (ICCD), 1996.

[10] S. Roy and B. Shen. Implementation of an Algorithm for Fast Down-Scale Transcoding of Compressed Video on the Itanium.
In Proceedings of the 3rd Workshop on Media and Streaming Processors, pages 119 – 126, Austin, TX, December 2001.

[11] H. Sharangpani and K. Arora. Itanium processor microarchitecture. IEEE Micro, pages 24–43, September-October 2000.
[12] B. Shen and S. Roy. A very Fast Video Spatial Resolution Reduction Transcoder. In To appear in Proceedings of ICASSP

2002, Orlando, FL, May 2002.
[13] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang. Softsdv: A presilicon software development environment for the

ia-64 architecture. Intel Technology Journal, 4th Quarter 1999. Available from http://developer.intel.com/technology/itj/.
[14] R. A. Uhlig and T. N. Mudge. Trace-driven Memory Simulation: a Survey. ACM Computing Surveys, 29(2):128 – 170, June

1997.

16

