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Abstract

This paper presents an approach to robot arm
control that exploits the natural dynamics of the
arm. This is in contrast to traditional approaches
that either ignore or cancel out arm dynamics.
While the traditional approaches are more gen-
eral, they often result in systems and robot de-
signs that are not robust. The alternative ap-
proach gives systems that are computationally
simple, robust to variation in system parameters,
robust to changes in the dynamics themselves,
and versatile.

This paper examines the example of using a
compliant robot arm, controlled by independent
neural oscillators, in a crank-turning task. A
model is constructed, and the robot behaviour
compared with the model. This data shows that
the arm-oscillator system is exploiting the nat-
ural dynamics by finding and exciting the reso-
nant mode of the underlying mechanical system.
Since this is a natural behaviour of the system,
the robot behaviour is robust.

The paper concludes by discussing the opportu-
nities and limitations of this approach.

1 Introduction

This paper presents an approach to robot arm control
that exploits the natural dynamics of the arm and its en-
vironment. The idea is to “let the physics do the compu-
tation”. This results in a system that is versatile, robust,
computationally simple and easy to implement. The pa-
per describes a case study of this approach, analysing
crank-turning using a compliant robot arm.

The approach is motivated by related work in robotics.
A number of researchers have built systems that ex-
ploit natural dynamics to perform tasks in simple ways
(e.g. the passive dynamic walkers of McGeer (1990),
the dynamic running machines of Raibert (1986), and
the open loop stable juggling machines of Schaal and
Atkeson (1993)). It is also motivated by evidence from

*Work carried out at the MIT Artificial Intelligence Lab, 545
Technology Square, Cambridge MA 02139, USA

Figure 1: Picture of Cog turning a crank. The robot is using
two shoulder joints and two elbow joints to create the motion
of the crank.

human movement: humans exploit the spring-like prop-
erties of their legs while running (Alexander, 1990), when
swinging their arms (Hatsopoulos and Warren, 1996) and
when throwing (Bingham et al., 1989)*.

The idea is to align the passive dynamics of the arm
with the task, such that the natural behaviour of the
arm is to perform the task. The motion is then achieved
by using a controller to inject energy into the system.

The experiments described in this paper were con-
ducted using the arms of the humanoid robot Cog at
MIT (Brooks and Stein, 1994), shown in Figure 1. The
arms are constructed using special actuators that en-
sure a smooth compliant motion, and are controlled by
“neural oscillators” (simulations of neurons in oscilla-
tory circuits). A great many different tasks have been
demonstrated by applying the idea of exploiting natu-
ral dynamics on this system (Williamson, 1998, 1999).
These include tuning into the resonant frequencies of the
arm itself, juggling, turning cranks with one or two arms

IMore detailed biological evidence can be found in Williamson
(1999)



(as shown in Figure 1), passing a slinky toy from arm to
arm, sawing, hammering and playing drums.

For most of these tasks, the joints of the arm are con-
trolled independently, with no connections between the
joints, as illustrated in Figure 2.
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Figure 2: Figure showing configuration of oscillators and arm.
The oscillators are tightly coupled to each joint, with their
output driving the setpoint 6,;, and their input being either
the joint angle 6;, or the joint torque u;. There are no soft-
ware connections between the oscillators; they use mechani-
cal coupling through the physical arm to coordinate with one
another and the task.

The oscillators drive the setpoint (desired position) of
each joint, causing the arm to oscillate. They respond
to the local dynamical state using feedback either from
the joint angle or the joint torque. They thus form a
tightly coupled dynamical system. Since there are no
connections between the oscillators, mechanical interac-
tions between the arm joints, detected via the feedback
signals, are used to provide coordination.

The paper will compare traditional control methods
with exploiting natural dynamics, showing that tradi-
tional control is more general, but exploiting natural
dynamics has advantages for particular tasks. The pa-
per will then describe in detail a crank-turning exam-
ple, comparing data from the robot with a mathematical
model. This will show that the robot exploits its natu-
ral dynamics to turn the crank. The paper concludes by
discussing the approach of exploiting natural dynamics,
highlighting opportunities and limitations.

2 Comparisons

The main difference between traditional robot control
and the approach taken in this paper is the role of the
robot dynamics. In traditional control, the robot is
viewed as a general purpose manipulator that performs
tasks independent of the robot configuration. The task
is specified in terms of the desired motion (force, po-
sition, compliance) of the robot, and the robot control
enforces that command. The robot dynamics are gen-
erally ignored or cancelled, and certainly do not play a
part in how the task is planned. The approach taken in
this paper is the opposite: the robot dynamics are cru-
cial for the performance of the task as they determine

the range of possible tasks, and also how the tasks are
accomplished. The robot dynamics are specified so that
the task motion is a passive behaviour of the system, and
the oscillators are used to inject energy into the arm and
so create the motion.

This difference is illustrated in Figure 3. The task
illustrated is that of moving a mass backwards and for-
wards. In traditional control, the dynamics of the robot
are removed, so the equivalent connection between the
desired position of the mass x4, and its actual position
x is stiff. The x4 trajectory is required to move the
mass backwards and forwards, and the controller needs
to overcome the inertial and frictional forces on the mass.
If the dynamics of the arm are exploited, represented
here by a spring, the situation is somewhat simpler. The
natural behaviour of the mass is to vibrate on the spring
and so move backwards and forwards. The role of the
trajectory x4 is now to inject and remove energy to sus-
tain the motion, not create the whole motion.
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Figure 3: Comparison between traditional control (a), and
exploiting natural dynamics (b) for the task of moving a

mass backwards and forwards. Under traditional control the
dynamics of the robot are not used. The controller enforces a
stiff structure which makes the actual mass position z track
closely the desired position z4. If the robot is made to be
compliant, then its dynamics can be exploited to perform
the same task in a different manner. The mass will naturally
vibrate on the spring of the robot dynamics, and the role of
the desired trajectory is to sustain the motion, rather than
create the whole motion.

The traditional approach is more general, since the
mass can be moved in any arbitrary trajectory x;. How-
ever, for rhythmic tasks, the alternative has some ad-
vantages. One consequence of exploiting the dynamics
is that the arm needs to be compliant. This has the
benefit of giving robust interaction with objects and un-
expected collisions. The traditional controllers need to
be stiff to reduce tracking errors. This stiffness causes
problems in practice: unexpected collisions are not dealt
with robustly by high gain position controlled systems,
and high gain force control is known to be difficult be-
cause of stability issues (Craig, 1989).

The second difference is in terms of the design of the
controller, and is illustrated schematically in Figure 4.
While a traditional controller requires a desired trajec-
tory x4, the oscillator control generates that signal us-
ing its internal dynamics. As before, the traditional ap-
proach is more general, the oscillator system being re-
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Figure 4: Comparison between traditional control (a), and
oscillator control (b). In traditional control the plant’s state
x is controlled to follow the desired state x4 using a controller.
This controller could have internal state as indicated by the
M, say from an integral term. The oscillator control has no
explicit desired trajectory, this being generated internally by
the oscillator dynamics. The oscillator modifies its control
This has the
advantage that a low gain system can be used where the

action u dependent on the system state .

complexity of planning x4 is carried out by the oscillator
dynamics rather than by some other system.

stricted to the trajectories that are generated by the os-
cillator dynamics. Also as before, arranging the control
in this way has some practical advantages.

The main advantage of using the oscillator is that the
desired trajectory is reactive to the dynamics of the sys-
tem. Referring to the mass-spring system in Figure 3,
the oscillator can generate a trajectory which comple-
ments the motion of the mass, by injecting and remov-
ing energy. The x4 generated by the oscillator is reactive
since it is calculated within a tight loop, and is synchro-
nised with the system motion since it is generated rel-
ative to the state x. These characteristics are achieved
without a separate system to calculate 4, and without
the extra sensing, modelling and computation that cal-
culation of z; would require.

In the case of oscillators controlling multiple joints of
the arm, this internal generation of trajectories is even
more advantageous. The oscillators are independent,
coupled only through the arm dynamics. The trajecto-
ries for all the joints are thus generated in a distributed
manner with coordination which is correct relative to the
motion of the arm. This contrasts with the complexity
of the system which would be needed to generate explicit
trajectories for all the joints. This difference is accentu-
ated by the versatility of the oscillator system. While
calculating x4 for one task is relatively straightforward,
repeating this for each joint and each new task would
be tedious or require the extra complexity of kinematic
modelling and calibration.

A further difference in the robotic case is that the os-
cillator control system does not deteriorate as the speed
of the task increases and the dynamics of the arm be-
come significant. Both position and force control for
robots degrades at high speeds because of disturbances

from the arm dynamics. If the arm dynamics are aligned
with the task, and as the speed increases those dynamics
remain aligned with the task, then the oscillator system
will be robust to the change in speed.

3 Architecture

The arms used for this work are those of the humanoid
robot Cog, as shown in Figure 1. Each arm has six de-
grees of freedom, and each joint is actuated by a Series
Elastic Actuator (Pratt and Williamson, 1995). This
actuator consists of an ordinary electric motor in series
with a torsional spring. By controlling the twist of the
spring, the output force of the actuator can be controlled.
This arrangement gives robustness to collisions (the en-
ergy of impact is absorbed by the spring, not by the
fragile gearbox teeth), is easy to make passive (impor-
tant for touching objects and surfaces), and produces
clean (low noise) force control.

In order to control the position of the arm, a low gain
position control loop is wrapped around the force control
provided by the Series Elastic Actuators. This allows the
stiffness and damping at each joint to be varied, while
retaining overall smooth compliant motion. The arm is
moved about by altering the desired position or setpoint
of the joint. The torque wu; is thus

U; = kl(ﬂm — 9,) — blél (1)
where k; is the stiffness of the joint, b; the damping, 6;
the joint angle and ,; setpoint.

As mentioned above, a “neural oscillator” is used to
generate the motion of the robot joints. The oscillator
chosen was originally analysed by Matsuoka (1985), and
consists of two simulated neurons (state variables z; and
v;) arranged in mutual inhibition, as shown in Figure 5.
The time evolution of the oscillator is given by the fol-
lowing equations, where [z]T = max(z, 0).

nd = c—x — o — [zl =ikl (2)
nor =[]t —un (3)
Tk = ¢—x2 — fua —m]T = Tihilg]T  (4)
Ty =[]t — v (5)
Yout = [x1]+ - [$2]+ (6)

The output of the oscillator is ¢, 8 and - are con-
stants?, ¢ is a constant that determines the amplitude
of the oscillation and 7; and 7 are time constants that
determine the natural frequency of the oscillator (the
frequency that it will oscillate at with no input). Inputs
to the oscillator are g; which are weighted by gains h;.

If an oscillatory input is applied to the oscillator, for
a wide range of input amplitudes and frequencies the

2Typical values are 8 = 2, v = 2.
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Figure 5: Schematic of the oscillator. The oscillator equa-
tions simulate two neurons in mutual inhibition as shown
here. Black circles correspond to inhibitory connections, open
to excitatory. The mutual inhibition is through the ~[z;]"
connections ([z]* = max(z,0)), and the Sv; connections cor-
respond to self-inhibition. The input g; is weighted by a gain
h;, and then split into positive and negative parts. The pos-
itive part inhibits neuron 1, and the negative part neuron
2. The output of each neuron y; is taken to be the positive
part of the firing rate z;, and the output of the oscillator as
a whole is the difference of the two outputs.

oscillator will entrain the input, producing an output
that is at the same frequency, but a different phase from
the input. This entrainment behaviour is key to the
oscillator responding the dynamics of the arm.

The oscillators are connected to the robot arm as
shown in Figure 2, using the output of an oscillator v,
to drive the desired position of the joint 6,;, and the
feedback to the oscillators g; either comes from the joint
angle 6; or the joint torque u;.

4 Case study: Crank-Turning

The configuration for crank-turning is shown in Figure 1.
In this example four joints are actuated by oscillators,
the two shoulder joints, and the two elbow joints. Traces
of this configuration are shown in figure 6°.

When the feedback is not used, the oscillators produce
oscillatory signals that are not coordinated with one an-
other (they are not coupled), and so the arm moves spas-
modically and does not turn the crank. However when
the feedback is used, the oscillators are coupled together
through mechanical coupling, and after an initial tran-
sient the crank is turned smoothly.

The crank-turning behaviour is robust to changes in
most of the oscillator parameters (gains, time constants
etc.) and is more sensitive to the initial posture of the
arm and the sizes of the oscillator amplitudes (tonic pa-
rameter ¢) (see Williamson (1999) for full details). The
posture and amplitudes determine whether the arm goes
all way round the crank, and how violent the motion is.

3In order to differentiate the source of the data, data from the
real robot is marked and simulated data marked
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Figure 6: Transients of crank turning with a redun-
dant arm (the configuration shown in Figure 1). Three de-
grees of freedom are shown here, for two shoulder joints and
one elbow joint. The top two graphs show the joint angles,
and the motion of the crank as the feedback is turned on,
which occurs at the vertical line. The system has a short
transient before finding the stable motion. The lower two
plots show the same result, only this time the feedback is
turned off at the vertical line. The system quickly falls out of
coordination, and the crank stops being turned smoothly.

Because the arm is compliant, the system is still fairly
robust to these values, with a variety of postures and
amplitudes giving crank-turning motion.

The cranking behaviour is also remarkably robust to
different configurations of the arms, being accomplished
with one arm in a redundant configuration (four and
six degrees of freedom with oscillators) and in non-
redundant configurations using one and two arms. It is
also robust to changes in the robot system, with chang-
ing stiffnesses, damping or added weights.

Given that crank-turning is just one of an infinite num-
ber of ways that the oscillators could move the arm, an-
swering the question “why does it work?” is important.
For that we need to model the arm’s oscillators and the
coupling as shown in the following sections.



5 Coupling model

The action of the mechanical coupling through the arm
is to constrain the motion of each joint dependent on
the motion of the other joints. Since the arm is com-
pliant and in most configurations redundant, the cou-
pling is not very stiff, i.e. there is some slop in the sys-
tem. A simple approximation to this coupling is shown
in Figure 7. This shows two robot links represented as
masses (my,ms), with the joint level control appearing
springs (k1, ko) and dampers (c¢1,¢2) connected to each
mass. The coupling is included as a spring (kr) coupling
the two masses, the stiffness of which can be varied to
model the strength of the coupling?. The motion or an-
gle of each mass is 61, 6,, and the oscillator outputs are
01}1 ) 61}2 -
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Figure 7: A simple model of coupling through the natural
dynamics. The model consists of two masses driven by oscil-
lators, connected by a coupling spring k.

The equations of motion for this system are

mlél + Clél + (k1 + kT)61 — k165 =
mQéQ + CQéQ — k16, + (k'Q + k'T)92 =

klavl
k2bya  (7)

This is a resonant mass-spring system, which has a free-
vibration behavior when there is no driving input (i.e.
0y1 = 0,2 = 0). There are two resonant modes, at two
different resonant frequencies. These can be determined
by assuming solutions of the form © = Ae/*!, and solv-
ing the resulting eigenvalue problem

kit+kr+jwe —kr
B e— po (O] (C]
( er k2+kT1+jwc> <9;) =w? (@;) (8)
mao ma

for values of w and ratios ©1/0,.

Adding the oscillator to this analysis requires some
extra work. The system is linear, but the oscillator is
non-linear, and so cannot be directly added. However,
when the oscillator is entrained, it produces an output
at the same frequency as the input, so is effectively a
linear transformation. Linear transformations are gen-
erally expressed as a transfer function N(jw) = ge’?,
where g is the gain (ratio of output amplitude to input

4In general the coupling should include a damper. Including
the damper complicates the equations without changing their fun-
damental result so it was ignored.

a 0.2} 0.2 B
5 0.3 ’\
1 | 0.4 /\ ]
c o a
© 0 R
0—0,2789 T =

+A

250

+A

08 0.9
log(frequency)

Figure 8: Oscillator Bode plot. The top graph shows
the gain |N(jw, A)| plotted against frequency, and the lower
plot the phase. The multiple lines correspond to different
values of input amplitude A as indicated by the numbers
and arrows on the plot. The gain is inversely related to A
and is roughly independent of frequency. The phase is less
dependent on A, and reduces from around 180° to 60° as the
frequency is increased. The natural frequency of the oscillator
is indicated by the vertical line.

amplitude), and ¢ the phase difference. Because the os-
cillator behavior depends on the input amplitude A as
well as frequency, its response is a function of both i.e.
N(jw, A). This technique is known as Describing Func-
tion Analysis (Gelb and Vander Velde, 1968). For the
oscillator, N can be most easily calculated by applying
a variety of input amplitudes and frequencies, simulating
the oscillator, and sampling the oscillator behavior.

The frequency response is often plotted as a Bode plot,
as shown in Figure 8. The plot shows the variation of
gain and phase with frequency. The multiple lines corre-
spond to different values of A, the arrow referring to the
direction of increasing A. Changes in amplitude affect
the gain (the actual output amplitude of the oscillator
is constant, making the gain o< 1/A), but not the phase,
which remains roughly independent of A. The gain is
also roughly independent of frequency, whilst the phase
is not.

Returning to the model, and writing the effect of the
oscillator as g;e/“%i changes the system from being a
driven resonant system (7), to a freely vibrating system:

( Q1/my _k'T/m1> (91> — 2 (91> (9)
—kr/m2 Q2/m2 ) \O2 O

Where Q; = k; + kr + jwe; — kigie?® . This is solved by
setting the imaginary parts to zero (the final solutions
are steady state, they do not grow or decay) (Strang,

1993).
we; = kiIm[gied’i] (10)



and then solving numerically for the oscillator frequency
and phase. The final solution for w can then be obtained
by solving the resulting eigenvalue problem. Full details
are given in Williamson (1999).

The expression for the eigenfrequencies is obtained by
solving (9) and is complicated:

W2 — Yo+ kX, \/Aé + 2k A A + kTZ%n (11)
o 2

where G; = (k;/m;)(1 —gicos¢;), Lo = G1+Ga, Ag =
G1—Ga, Ay = (1/mi—1/ms) and E,,, = (1/m1+1/ms).
This can be simplified by considering that at constant
frequency, the phase of N does not change greatly with
input amplitude (see Figure 8), and the phase is such
that cos ¢ is small. This makes Ag = ki /my — kao/mo,
which can be neglected compared to the other terms in

(11), giving

v N{ Xa/2 (12)

From which the eigenmodes of the system can be cal-
culated. The ratio ©;/0, also has two values:

2]6’1‘/’!711

@1/(_)2 ~ { kl/mlfkg/m272kT/m1 (13)

kT ma
k1/m1—k2/m2+2kT/m2

which is the same as the resonant modes of the underly-
ing mechanical system.

To conclude, the periodic solutions which exist for a
set of oscillators driving a spring-mass system have the
following characteristics:

e The solutions are stable steady state solutions, with
the oscillator canceling out the damping in the orig-
inal system.

e The frequency of the final solution is not the eigen-
frequency of the original mode, but is given by the
interaction of the oscillator and system as defined by
(10) and (11).

e The modes of the system are close to the eigenmodes
of the original unactuated system, over a wide range
of oscillator and system properties. This is shown in
Figure 9, which shows the oscillator accurately find-
ing the mode as either its parameters are doubled, or
the system parameters are changed by a factor of six.

e The oscillator only finds one mode, not a superposi-
tion of modes as one would find in the linear case.

e The decentralized oscillator system requires no cali-
bration, very little tuning, and no kinematic calcula-
tions to drive the system in its resonant mode.
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Figure 9: Plot showing robustness of oscillator to find-
ing mode of system, under changing oscillator and system pa-
rameters. The y axis of the plots shows the angle of the mode
in ©1, 0, space, i.e. arctan(©1/0;). The top plot shows the
effect of varying the natural frequency of the oscillator, with
the lines indicating the underlying mechanical system modes.
The accuracy of the oscillator is remarkable, given that the
oscillator frequency doubles over the plot range. The bot-
tom plot shows the effect of altering the stiffness of kq, while
keeping the other stiffness constant at k2 = 25 Nm/rad.
When k; is close to 25 Nm/rad the error in the modes is
very low. As the stiffness gets bigger or smaller, the approxi-
mation ki /m1 = k2 /ms becomes less accurate, and the error
gets slightly bigger.
tem is remarkable, given the change in stiffness of six times
(k1 = 10 > 60 Nm/rad).

The robustness of the oscillator sys-

6 Comparison with robot data

The previous section showed that using independent os-
cillators at the joints of a springy system would result in
the system being driven along its resonant mode, thus
exploiting the natural dynamics of the system. This is
an appealing explanation for the robot crank turning:
connecting the arm to the crank constrains the motion,
and the lowest frequency mode (which is often the largest
gross behavior) is to turn the crank. In this section we



compare the robot crank-turning to the model, to con-
firm that this is an accurate explanation.

The coupling springs in the robot case are rather more
complicated than the linear k7 used in the analysis, but
can be approximated by considering the solution of one
mode of the system. The full dynamics of crank-turning
are complicated and non-linear, but have the same gen-
eral form as the full arm dynamics (Craig, 1989):

M(©)6 + C(0)0 + K(0)0 = K'0, (14)

When this system is undergoing steady state oscillation
it can be approximated a linear system, written as a
set of eigenvalues and vectors. Transforming the vari-
ables © = Uq, where U is the matrix of eigenmodes, and
writing the effect of the oscillator as a diagonal matrix
G exp(j®), this equation can be written

UTMUG+UTCUG+UTKUq=UTK'Ge’®Uq  (15)
Which looking at one mode u; reduces to
ul Mug; + ul Cuig; +ul Kuig; = u] K'Ge'®u;q; (16)
or approximately

m; + é4; + kq; = ug’K'Ge]‘q)uiqi (17)

The accuracy of this as a model of the crank-turning
problem can then be assessed by comparing real robot
data to the predictions of the model.

The crank-turning performance was measured for the
robot in a configuration similar to that shown in Fig-
ure 1, using four oscillators to actuate both shoulder,
and both elbow joints. The frequency of the motion was
calculated using a zero-crossing detector, and the ampli-
tude and phase of the various joint motions and oscillator
outputs was measured using a single frequency Fourier
transform. The mode of the system u; was directly cal-
culated from the amplitudes and phases of the joint mo-
tions, and the gain of the oscillator directly measured
by comparing joint motions and oscillator outputs. The
stiffness and damping at each joint was also measured.

To generate a range of data points, the stiffness of
the arm was varied by scaling the stiffness at all the arm
joints by the ratio 1:2:3 i.e. doubling and tripling the arm
stiffness, keeping the damping constant. The oscillator
time constants were also varied.

The coupling model predicts that the effect of the os-
cillator is to cancel out the damping in the system, or

éw ~ Im[u! K'Gel®u;) (18)

Figure 10 shows a plot of w versus the imaginary part of
the oscillator behavior. Equation (10) predicts that this
should result in a straight line with gradient 5/1:: For
these experiments the damping was kept constant, so ¢
should also be constant. The lines are straight, which is

Im[u” K G exp(j®) u]
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Figure 10: Plot of Im[u] K'Gel®u;] against w for the
crank-turning. The crank-turning involves four joints of the
arm, for which the mode is calculated from measured ampli-
tude and phase data. The three lines correspond to different
values of the arm stiffness (o low, O medium and ¢ high
stiffness). The theory predicts that these points should lie
on straight lines with gradients proportional to the ratio of
damping to stiffness in the system. The actual gradients are
detailed in Table 1, and are in fact inversely proportional to
arm stiffness.

kay | Value Norm Predict |
1 -1.63 1 1

2 -0.85 0.52 0.5

3 -047  0.29 0.33

Table 1: Gradients for the lines in Figure 10.

itself a good result given the simplicity of the model and
the complexity of the arm motion. The gradients of the
lines (listed in Table 1) are approximately proportional
to 1/ l::, which is exactly as predicted by the theory.

The theory also predicts that the real part of the os-
cillator should be inversely related to w?:

E — mw? ~ Re[u! K'Gel®u;) (19)

Figure 11 shows the plot for this situation. Again the
straight lines are striking. One might expect the mass
matrix of the system 7 to be independent of the stiffness,
making the gradients constant. The gradients are shown
in Table 2. They are roughly constant given the scatter
in the plots (gradients in the ratio 1:1.14:1.8). The ab-
scissa reflects the effect of k in the equation above, with
the abscissa increasing with increasing stiffness. The
data set which gives the poorest comparison is that for
kay= 3, which is the noisiest of the three cases.

The reasonably accurate fit of the crank-turning data
with the model shows that the model is a good descrip-
tion of the overall system. It also lends support to the
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Figure 11: Plot of Re[ul K'Ge’®u;] against w?. The
theory predicts that these lines should be straight, with ap-
proximately constant gradient. The lines for low and medium
stiffness (kay) have roughly equal gradients, and the line for
high stiffness is different, but the data is considerably more
noisy.

Gradient Abscissa
kay ‘ Value Norm Predict ‘ Value Norm  Predict |
1 -0.19 1 1 5.63 1 1
2 -0.21 1.14 1 14.02 2.49 2
3 -0.33 1.8 1 27.94  4.96 3

Table 2: Gradients and abscissa for the lines in Fig-
ure 11.

explanation that crank-turning can be thought of as a
resonant mode of the arm-crank system, which the oscil-
lators are tuning into and exciting. The natural dynam-
ical properties of the system are thus being exploited.

7 Discussion

This paper has presented the idea of exploiting natural
dynamics in robot control. This means “let the physics
do the computation”, aligning the natural dynamics of
the arm with the task, and using simple controllers to
excite and perturb the otherwise natural motion.

Compared to traditional control techniques that use
computation and robot design to eliminate robot dynam-
ics, this approach emphasises the importance of having
significant dynamics. This allows the use of compliant
arms that in themselves have some advantages (stabil-
ity, robustness against collisions etc.). Traditional ap-
proaches are more general, but for particular tasks, ex-
ploiting the natural dynamics gives solutions that are
more robust.

These claims have been examined using the example
of a compliant robot arm driven by neural oscillators for
a crank-turning task. The crank-turning behaviour was

modelled, demonstrating that the action of the oscilla-
tors was to find the resonant mode of the arm, a funda-
mental property of the arm dynamics. This was backed
up by data taken from the robot. The crank-turning ex-
ample shows the power of exploiting natural dynamics:
complex tasks can be achieved with remarkable simplic-
ity; the solution is robust to large changes in both the
oscillator parameters and the system properties; and the
resulting system is versatile.

The question remains of the relevance of this approach
to other robot tasks. While some tasks (e.g. crank-
turning, bicycle pumping) are well constrained, others
are less (e.g. sawing), or not at all (e.g. free movement).
There are three possibilities for these tasks, either to add
connections between the oscillators to enforce phase re-
lationships, (this has been shown in Williamson (1999)
not to be effective), drive the arm in different ways (drive
combinations of joints, not individual joints) or create an
artificial potential landscape over which the arm moves.
The middle approach is perhaps most biologically in-
spired, as our muscles tend to actuate combinations of
joints, rather than single ones (Hogan, 1985).

For tasks that are not rhythmic, the oscillators can
still be used, by using a single cycle of the oscillator to
drive the arm, and relying on the entrainment properties
of the oscillator to excite the natural dynamics. Some
early work on this is reported in Williamson (1999).

More generally, the approach of exploiting the under-
lying behaviour of the system rather than enforcing that
behaviour using computation feels intuitively powerful.
While it is difficult to design systems that work in this
way, the work in this paper gives some pointers. Impor-
tant aspects are the physical constraints of the task (e.g.
the crank), how the control is organised (at the joint
level, or combinations of joints?), what aspect of the dy-
namics is exploited (crank-turning exploits mass-spring
resonance, but the effect of gravity, or skeletal loads
could also be exploited), and what controller is used (the
oscillators are efficient at finding resonant modes, while
other controllers might be appropriate for different situ-
ations).

This paper has shown some of the benefits of exploit-
ing natural dynamics. Hopefully it will challenge and
inspire others to try this approach.

References

Alexander, R. M. (1990). Three uses for springs in legged locomo-
tion. International Journal of Robotics Research, 9(2):53—61.

Bingham, G. P., Schmidt, R. C., and Rosenblum, L. D. (1989).
Hefting for a maximum distance throw: A smart perceptual
mechanism. Journal of Ezperimental Psychology: Human Per-
ception and Performance, 15(3):507-528.

Brooks, R. A. and Stein, L. A. (1994). Building brains for bodies.
Autonomous Robots, 1(1):7-25.

Craig, J. J. (1989). Introduction to Robotics: Mechanics and Con-
trol. Addison-Wesley, Reading, Massachusetts, second edition.



Gelb, A. and Vander Velde, W. E. (1968). Multiple-input Describ-
ing Function and Nonlinear System Design. McGraw-Hill.

Hatsopoulos, N. G. and Warren, W. H. (1996). Resonance tun-
ing in rhythmic arm movements. Journal of Motor Behavior,
28(1):3-14.

Hogan, N. (1985). The mechanics of multi-joint posture and move-
ment control. Biological Cybernetics, 52:315—-331.

Matsuoka, K. (1985). Sustained oscillations generated by mutu-
ally inhibiting neurons with adaption. Biological Cybernetics,
52:367-376.

McGeer, T. (1990). Passive dynamic walking. International Jour-
nal of Robotics Research, 9(2):62-82.

Pratt, G. A. and Williamson, M. M. (1995). Series elastic actua-
tors. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS-95), volume 1, pages
399-406, Pittsburg, PA.

Raibert, M. H. (1986). Legged Robots That Balance. MIT Press,
Cambridge, Massachusetts.

Schaal, S. and Atkeson, C. G. (1993). Open loop stable control
strategies for robot juggling. In Proceedings 1993 IEEE Inter-
national Conference on Robotics and Automation, volume 3,
pages 913-918.

Strang, G. (1993). Introduction to Linear Algebra. Wellesley-
Cambridge Press, Wellesley, MA.

Williamson, M. M. (1998). Neural control of rhythmic arm move-
ments. Neural Networks, 11:1379-1394.

Williamson, M. M. (1999). Robot Arm Control Ezploiting Natural
Dynamics. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA.



