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Abstract

Biologically inspired approaches to computer
security are appealing for two reasons. Firstly
our computers are under attack, and biological
species have been attacking each other for mil-
lions of years. Secondly as computers become
more complex, traditional approaches to security
are unlikely to scale and biological metaphors be-
come increasingly powerful. Given the overlap in
the domains, the hope is that taking ideas from
biology and applying them to computer security
will bear fruit.

The particular ideas that researchers have ap-
plied to computer security include the immune
system, the diversity of species, epidemiology and
non-representational systems.

This paper examines the pros and cons of bio-
logically inspired approaches. It provides both an
introduction and review of work in this area, as
well as making suggestions for future work.

1 Introduction

Biologically inspired approaches to computer security
are appealing because of the obvious analogies between
the security of computer systems and the survival of bio-
logical species. Over evolutionary time, organisms have
competed for scarce resources, and have attacked and
exploited weaknesses in other organisms. Our computer
systems are also continually under attack, from deter-
mined hackers and malicious code. Both areas can be
characterised as arms races between attacker and de-
fender as each evolves or invents better ways to attack
or defend. These similarities suggest that one might be
able to build effective computer security systems by bor-
rowing ideas from biological systems.

Indeed we often use biological language e.g. virus,
worm, antidote, immune system to describe aspects of
computer security.

A more subtle reading of the analogy is that biolog-
ical systems have evolved to be remarkably robust to
fairly major changes in themselves and their environ-
ments. The mechanisms that they use to defend them-
selves from attack are equally robust. For example, our
immune system responds slowly to pathogens that it has
not encountered before, but remembers the pathogen so

that it can react quickly should the body be re-infected.
It does this without attacking other “foreign” proteins
such as food, foetuses or non-harmful bacteria.

A further factor is that computer systems are becom-
ing more complex. The individual computers are com-
plex, and they are connected together in larger networks.
This makes security more and more difficult (the more
complex, the more likely that something will be forgot-
ten). Centralised approaches to security have difficulty
scaling to this complex world, and the very homogeneity
required to make such approaches scale can itself be a
source of vulnerability. Biological systems, on the other
hand are nearly always decentralised and distributed, so
are obvious sources of inspiration.

There are a variety of ways that researchers have taken
biological ideas and applied them to computer security.
Some of them have been quite abstract, using the bio-
logical idea more as a metaphor, while others have been
more detailed, attempting to build systems that mimic
their understanding of the underlying biological mecha-
nisms.

The paper begins by introducing the various facets of
computer security, before looking at the biologically in-
spired approaches that have been taken: models of the
human immune system, diversity, studying the propaga-
tion of viruses, and non-representational systems. The
paper then discusses the overall approach, questioning
its applicability given the differences between biological
and computer systems, and concludes with some recom-
mendations for further work.

2 Computer security background

The general approach of computer security is to counter
threats by using a combination of prevention, detection
and response (Schneier, 2000; Anderson, 2001). Attacks
are prevented by ensuring that vulnerabilities are re-
moved, machines are isolated from others using firewalls
etc.. Security violations are detected when they occur,
and are then responded to. Of the three, the most effort
is put into prevention, less into detection, and little into
response, which is nearly always a manual process.

The threats themselves can be divided into two broad
classes: attacks on data; and attacks on infrastructure.
Attacks on data are ones where data is stolen (e.g. credit
card numbers from web sites), or where data is altered



either for fraudulent purposes, or to damage reputation
(e.g. defacing of web sites (alldas.org, 2002)). These at-
tacks are often the work of an individual, although the
attacks themselves are increasingly automated. These
attacks often involve “intrusions”, where the attacker
breaks into the computer system by exploiting a vul-
nerability in a piece of software and gains inappropriate
access to data. Taking a traditional view on security,
these attacks are prevented by using firewalls to protect
computers from outside attack, detected using Intrusion
Detection Systems (IDS), and the response is often a
manual process.

Intrusion Detection Systems generally monitor ei-
ther network traffic or the behaviour of individual ma-
chines/programs and fall into two types: those that look
for patterns of known exploits (misuse detection); and
those that attempt to detect new or previously unknown
exploits (anomaly detection). The first type will miss
new attacks until they have been characterised, and the
second type is likely to be plagued with false alarms.

Attacks on infrastructure also fall into two categories:
malicious mobile code, where self-replicating code causes
damage to machines, or consumes resources (network
bandwidth, disk space etc.); and denial of service at-
tacks, where a flood of individually legitimate requests
causes overload and failure of targeted systems.

The security response to viruses is generally to use
virus scanning software. Viruses infect files on comput-
ers and the tell-tale changes that they make can be de-
tected by scanning files looking for suspicious data. The
most common scanners use a database of “virus signa-
tures”. Like the misuse detectors, these are vulnerable
to new viruses until a signature has been developed and
distributed, which is often a long and tedious process.
This speed is becoming more significant, as viruses in-
creasingly use Internet protocols to spread at alarming
rates (eEye Security, 2001; Weaver, 2002).

For denial of service attacks, prevention is diffi-
cult (these are legitimate requests), detection is fairly
straightforward (the machine is overloaded), but re-
sponse is rather difficult, since the requests could be
coming from many machines across the Internet, over
which the victim has no control. This is a problem since
denial of service attacks are remarkably common (Moore,
Voelker, & Savage, 2001).

All of these attacks are serious issues for organisations,
and all of them require significant manpower to counter
and clean up afterwards.

3 Computer Immune Systems

3.1 Biological immune systems

This section considers the various ways that researchers
have interpreted biological immune systems for security.
The immune system is perhaps the most obvious “sys-

tem” that would have an analogy for security. Its role is
to defend against attack, and patch and clean up after
an attack. It is thus appropriate for all of the threats.

There are many good overview textbooks for the im-
mune system (e.g. Janeway et al. (2001)) but in brief
antigens (foreign proteins) are recognised by antibodies
(immune system detectors). The antibodies are highly
specific, only binding to a small set of antigens. If they
do bind, then a complex set of events occur that result
in the foreign protein being destroyed.

Antibody cells are covered with antigen detectors, and
they are as theoretically likely to match and destroy
healthy cells as foreign proteins. This would obviously
be undesirable, and in most cases does not happen. The
immune system thus appears to be able to discriminate
between “self”, and “non-self”. An alternate view is that
the immune system does not discriminate self/non-self,
but responds primarily to damage to cells, recognising
foreign proteins that cause damage, not foreign proteins
per se (Matzinger, 1994).

There are two ways to think about detecting the differ-
ence between self and non-self. One would be to model
self, and detect differences from self; or the opposite,
model non-self and detect non-self. The immune system
chooses the latter approach, it’s antibodies being detec-
tors for non-self. This is somewhat counter-intuitive, as
the space of possible antigens is much larger than the
number of self proteins. Perelson & Weisbuch (1997) es-
timate that there are around 10! antigens, and roughly
105 different proteins that make up the human body.
Humans have around 10'° antibodies, of which there are
roughly 107 different types (antibodies exist in multiple
identical copies). There are thus more antibodies than
different self proteins, but many less than there are dif-
ferent antigens.

The immune system also has the property that it can
both react to antigens that it has not been in contact
with before, and can also remember antigens for long
periods of time (70+ years). The secondary response to
an antigen is much quicker and more effective than the
first. This property is exploited in vaccination.

3.2 Computer immune systems

Stephanie Forrest and her group at the University of
New Mexico (Forrest, 2002) have applied models of the
human immune system to the problem of intrusion de-
tection. As described in Section 2, the idea is to look for
changes in data, odd patterns in network traffic or odd
behaviour of running programs that are evidence that an
intruder is breaking in and gaining illegal access to data.
On finding an intrusion, these systems alert system ad-
ministrators who then deal with the problem as they see
fit. While making these systems accurate is important
(detecting all the intrusions), reducing the number of
false alarms (normal behaviour classed as an intrusion)



is vital because of the human involvement.

Forrest makes the analogy between self in the body,
and normal behaviour of a computer system (non-self
is thus abnormal behaviour). Self is represented as a
set of strings (with a variety of different representations
depending on the domain), and antibodies or detectors
are also represented as strings. The binding between
the strings is modelled by a matching function, the most
common one being r-contiguous bits, which returns true
when two strings match in more than r contiguous posi-
tions. This allows detectors to match a variety of strings.
In some of the papers (Forrest et al., 1994; Hofmeyr,
1999) they use detectors for non-self (which is directly
analogous to the immune system), and in others (Forrest
et al., 1996; Somayaji & Forrest, 2000) they use detectors
for self.

By casting the problem as differentiating between nor-
mal and abnormal, the systems are capable of detecting
novel attacks. They also turn the security problem into
a classification problem: given a training set of normal
examples, but no abnormal examples, learn a set of de-
tectors that given a new string will predict whether it is
normal or abnormal. The labels on the data are gener-
ally provided by a human.

An immune system inspired approach to this problem
is not to model normal (self), but to generate detectors
for abnormal (non-self), by generating strings that do
not match any of the normal strings. A new string can
then be matched against all of the detectors, and if any
of them match, then the the new string can be classified
as abnormal.

Detectors for non-self are preferred over detectors for
self because they produce less false alarms, as shown
in Figure 1. If non-self detectors are used and there
is inadequate coverage, then the errors that result are
false negatives (missing intrusions). On the other hand,
using self detectors will results in false alarms, which are
problematic. From a performance point of view, a test
string need only be compared against non-self detectors
until one matches, while it would need to be compared to
all self detectors to ensure that the test string is non-self.
However, if self is more common than non-self (which is
a reasonable assumption), using detectors for self may be
more efficient: test strings which are really self will end
up being checked against all of the non-self detectors,
but only against self detectors until a match is found.

If detectors for non-self are used then the probability
of a false negative error Py (missing an abnormal string)
will go down as the number of detectors Np increases.
In addition, the number of detectors required to cover
the whole of non-self (which is generally much larger
than the size of self) will depend on how many strings
each detector can detect. This can be represented by the
probability P, that two random strings will match. The
error rate Py is given by the probability that a random
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Figure 1: Differences between self and non-self detectors with
incomplete coverage. The universe of strings is represented
by the box, with self strings represented by the grey blob,
and non-self surrounding self. Detectors are indicated by
solid ellipses. The left hand figure shows the effect of using
non-self detectors. Considering the test strings A and B, A
will be accurately classified as self (it does not overlap any
detectors), but B will be a false negative (an anomaly that
will be missed). The right hand picture shows the situation
when detectors for self are used. A is now a false positive (it
is self classified as non-self), while B is accurately classified.

string will not match any of the detectors (Forrest et al.,
1994)

Py =(1— P,V me Pmln (1)
SO rearranging
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This means that the number of detectors needed is pro-
portional to In Py, which is good, and is inversely pro-
portional to P,,. P,, is the probability that two ran-
dom strings will match, and is thus very sensitive to
the representation used. For realistic applications, with
many pieces of information encoded into the strings, P,
is likely to be small, making Ng large. It is worth noting
that Ny is independent of the size of the self set, defined
as Ng.

Since these detectors are different from all of the self
set, they can be quite difficult to find. The simplest
algorithm is the generate-and-test or negative selection
algorithm (Forrest et al., 1994), shown in Figure 2. De-
tectors are generated at random, checked against all of
the self set and any that do not match are kept. There
is no attempt made to ensure that there is even cover-
age of the non-self space, although other immune models
(e.g. Farmer, Packard, & Perelson (1986)) do include this
factor.

The number of detectors that need to be generated
can be estimated by considering that the probability of
a detector not matching any of the self strings is (1 —
P,,)Vs | s0 if Ngro is the number of detectors that need
to be tested, Ng = Ngo(1 — P,,)Vs. Rearranging this
gives

al N ()

Npop=———~&N
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Figure 2: Negative selection. Detectors are generated at ran-
dom, and compared against the self set (represented by the
light grey blob). If they match, they are rejected, but if they
do not match, then they are kept as detectors of non-self. The
end result is that non-self is covered with detectors. Figure
taken from Hofmeyr (1999).

Thus Ngo is proportional to N (so has the same de-
pendency on Py and P,), and is also exponential in
the size of Ng. This means that it might take a very
long time to generate enough detectors'. Forrest et al.
(1994); Hofmeyr (1999) argue that this is not a signif-
icant problem, although this was not the experience of
Kim & Bentley (2001) when applying this algorithm in
an intrusion detection application.

Given the number of detectors required, and the dif-
ficulty of generating them, why is such a simple algo-
rithm used when there are other classification algorithms
(e.g. neural networks) available? There are two reasons,
firstly that by being simple, it is possible to change the
model of non-self easily by deleting and regenerating de-
tectors. This is important for computer systems where
self/normal may change frequently. Secondly there are
no examples for abnormal with which to train a more
sophisticated model, and generating those examples is
costly regardless of the model used.

Other researchers have used immune system ideas in
a similar vein, although mostly for intrusion detection
(Kim & Bentley, 2001; Dasgupta, 1999; Williams et al.,
2001). Dasgupta & Attoh-Okine (1997) is a more general
review of immune system based approaches.

Overall, exploiting the immune system results in se-
curity systems with many simple detectors, that allow
the detection of previously unknown events, and give
control over the type of errors that will occur. On the
other hand, a lot of simple detectors are needed to cover
even small amounts of data, and even more have to be

ID’haeseleer, Forrest, & Helman (1996) shows a greedy algo-
rithm that can generate detectors in linear time, but it is still a
significant computational load.

generated to find those.

3.3  Anti-virus immune system

An alternative to having many simple detectors is to
have fewer more complex detectors. This has been
the approach of the anti-virus group at IBM (2002a).
Their “immune system” analogy concentrates more on
the memory aspect of the human immune system, and
neglects the details of antibodies etc.

The IBM work has at its core the idea of signa-
ture based scanning for virus detection and elimination,
which was discussed in Section 2. The antibodies are the
signatures, and they are stored in a memory (database).
Files are scanned comparing them against the memory
to determine if the computer is infected with a virus.
Virus signatures are difficult to generate, although in a
different way from the previous detectors. In order to
generate a virus signature, the action of the virus in a
system needs to be understood, and represented such
that it can be checked by scanning.

Kephart (1994) is an early paper presenting this ap-
proach. Special “decoy” programs (whose only role is
to sit on machines and wait to be infected) are used to
“trap” viruses, and provide data for the automatic gener-
ation of the virus signature. This signature is then prop-
agated in a self-replicating manner to the neighbours of
the infected machine, as shown in Figure 3. This has
the advantage that the antidote can be applied exactly
where it is needed, at the centre of the virus spread.

A later paper (White et al., 1998) shows the devel-
opment of this work into a “commercial grade immune
system”. Interestingly this is a much more engineering
based approach, removing nearly all of the detailed bio-
logical analogies: the virus signature is extracted from a
central server to which users submit “virus reports”, and
the distribution of signatures is also centralised. This
is probably because generating the virus signature is a
computationally expensive task, and also one that might
need manual intervention. This is easier to manage if it is
centralised. Once you have a central signature processor,
centralised distribution of signatures also makes sense.
What is lost compared to their original system is speed of
response (due to communication delays), and the ability
to pinpoint the antidote/signature at the virus outbreak.

This research shows that the work required to accu-
rately detect and defend against viruses is considerable.
The centralised approach is one way to allow most ma-
chines to not be affected by this computational load.
It also shows the complexity of immune type systems,
whether they consist of many simple detectors or fewer
more complex ones.
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Figure 3: Since each host has its own signature-extraction
engine, once they have calculated the signature for the virus
that has infected them, they can immunise themselves, and
spread the antidote to their neighbours. This means that
the antidote can be applied to infected hosts (black circles
with extra rings), and immunise hosts that are not yet in-
fected (white circles with dotted rings). This fights the self-
replication of the virus with the self-replication of the anti-
dote. Figure taken from Kephart (1994).

3.4 Danger theory

In the two previous examples, the immune system is
understood as differentiating normal and abnormal be-
haviour, but how can they be differentiated? The defi-
nition of normal in the Forrest case is determined either
by a human labelling the data, or in Hofmeyr (1999)
by the system asking a human for confirmation. In the
IBM work, although decoy programs are used so that
viruses can be found automatically, in their industrial
system the detection of normal/abnormal is carried out
by humans. In the human immune system, the idea of
self /non-self discrimination defers the question of what
is self to some other system.

Self/non-self and normal/abnormal are convenient la-
bels for what these detection systems attempt to do.
However, looking at the data without a human labeller,
it is impossible to differentiate between the two. Even
if the decoy programs of the IBM scanner catch viruses,

they cannot detect whether the virus is doing any harm.
This is a problem of symbol grounding (Harnad, 1990).
What is needed is a grounding signal that is within the
system and indicates damage.

The Danger theory of immunology (Matzinger, 1994)
suggests that damage to cells is the key signal that en-
ables a biological antibody response. This provides the
grounding signal, that damage is abnormal. This theory
explains why the body can choose to accept some foreign
proteins (e.g. food, foetuses), but not others (e.g. harm-
ful antigens), because it is only the proteins that cause
harm that elicit an immune response.

The computer immune system described by Burgess
(1998) describes an implementation of this idea, albeit
for fault tolerance rather than security. He used the
signals generated by dying computer processes as his
grounding signal, allowing him to detect when some fault
had occurred. While this work is an interesting first
step, his “danger signals” are rudimentary. If computers
were endowed with more ways of detecting their state
(or health), and more ways of affecting that state, then
building systems like these would be easier.

4 Diversity

A tactic that biological systems use to thwart attack is
diversity. By making each individual slightly different
(both genetically, and through experience), the overall
species is robust to changes in predators, food supply,
environmental conditions etc. A monoculture is much
more vulnerable to being completely wiped out by these
changes.

The diversity in nature contrasts strongly with the
monoculture of computer systems. While there are vari-
ations of operating system type, version, and applica-
tions, the overall diversity is low. Indeed versions of
an application are designed to behave identically. While
this facilitates management of computer systems, it does
make computer systems vulnerable to attack. This vul-
nerability was pointed out in the aftermath of the first
Internet worm (Eichin & Rochlis, 1989).

Forrest, Somayaji, & Ackley (1997) present a good
discussion of this topic, and make the point that diver-
sity does not remove vulnerabilities, rather it makes each
computer vulnerable in a different way. There is only so
much diversity that is possible because of the layered ar-
chitecture of computer systems: each layer must honour
its contract/interface with adjacent layers. Some diver-
sity can be introduced by making aspects of the operat-
ing system that are arbitrary, random. This will disrupt
exploits that rely on any underlying consistency.

For example, a common attack method is a “buffer-
overflow” attack, where the attacker overwrites the stack
of the target machine, so that their code rather than the
normal program is run (Aleph One, 1996). Buffer over-
flow exploits are sensitive to the exact layout of the stack,



but since compilers generally produce identical stack lay-
outs, the exploits are general—a single exploit will be
successful against all installations of the software. While
there are ways of making stacks that are harder to at-
tack (e.g. Cowan et al. (1998)), Forrest, Somayaji, &
Ackley (1997) suggest an approach based on diversity.
They produced a compiler that padded the stack with
random amounts of blank space. This does not affect
the normal running of the program, and does not reduce
the total number of vulnerable machines, but does re-
duce the number of machines that are vulnerable to any
one exploit. It also makes the exploit slightly harder to
write, since the exact stack layout cannot be known in
advance?.

Pu et al. (1996) also suggest a method for adding di-
versity in operating systems, and Linger (1998) suggests
ways to obfuscate code. Other suggestions are polymor-
phic code, where several teams code components inde-
pendently, and select different combinations at run or
compile time.

There are a number of issues with all these approaches:

e To be effective, the diversity needs to make machines
vulnerable in different ways. However, since the dif-
ferent layers must honour their interfaces, adding di-
versity may not have any effect. For example, if the
vulnerability is in the specification, any implementa-
tion (diverse or not) will be vulnerable.

e Software, (particularly enterprise software) is fre-
quently brittle, and often written in ways that exploit
“arbitrary” parts of the operating system. Changing
those “arbitrary” parts can cause programs to fail.
While it is not good practise to write programs in
this way, many significant ones are.

e For other systems, removing diversity is key to re-
liability and portability. Early games software in-
teracted directly with the computer hardware, with
many bugs and incompatible systems. Microsoft’s
Windows 95 operating system contained a device
management layer which masked the diversity of the
computer hardware, making games more robust.

e In all security areas, there is a trade-off between the
risk associated with a threat, and the costs incurred
to defend against it. Using diversity as a counter
measure definitely increases costs, but it is not clear
how effective it would be at reducing the risk. This
is because it does not remove vulnerabilities, it just
makes them less uniform. A better understanding
of the effect of diversity on risk would be helpful in
understanding this trade-off.

2Unfortunately, there are methods for writing buffer-overflow
attacks that are somewhat insensitive to the exact stack layout
(Aleph One, 1996).

In summary, diversity is a nice idea for biological sys-
tems, but it is plagued with economic and software com-
patibility issues. It highlights some of the tensions be-
tween computer and biological systems. Computer sys-
tems are designed with a narrow set of criteria of which
manageability is one. Diversity is a good idea, but only
for systems without this kind of demand. Diversity for
security will only become a good idea if the criteria under
which we evaluate our computer systems are changed.

5 Virus Epidemiology

Viruses are a significant threat to computer security
(Grimes, 2001). They are named after biological viruses:
they are generally small pieces of code that “infect” a
host, and use its resources (processor, memory, band-
width) to damage the host and propagate itself.

The proposition of the biological work in this area is
that by studying the propagation and epidemiology of bi-
ological viruses, the behaviour of computer viruses can
be understood in more detail, and better countermea-
sures can be devised.

The field of mathematical epidemiology (modelling the
spread of disease mathematically) has a long history (see
Kephart & White (1991) for a review). Most of the
work on computer viruses has concentrated on the ef-
fect of topology, the characteristics of the network over
which the virus spreads. This is because unlike biological
viruses that are transmitted when individuals are close
to one another, computer viruses spread over a network.
For example, an email virus spreads over the network
formed by the address books of email users.

A standard epidemiological model for virus infection is
the Susceptible — Infected — Susceptible (SIS) model.
In this model individuals start susceptible, become in-
fected at a rate )\, and are cured at a rate § where-
upon they can be re-infected. If this system is modelled,
the system behaviour depends on the ratio v = /A, If
v > 1, the cure rate is greater than the infection rate, and
the virus does not spread. If v < 1, then the virus does
successfully propagate, reaching a steady state preva-
lence (or occurrence) of (1 — ) of the population.

Kephart & White (1991) examined the interaction of
this model with various types of graphs, and found that
as the connectivity of the graph was reduced, the virus
was less and less likely to propagate, e.g. it needed a
much lower value of v. They used this to suggest that
virus scanning software could be effectively used to pre-
vent virus propagation, since that software essentially
increases the cure rate §, so increasing 7. Interestingly
they also pointed that real computer viruses have much
lower prevalences than might be expected i.e. lower than
(1=7).

The topologies that Kephart considered were appro-
priate to the threats at the time—boot and file viruses
transmitted by floppy sharing. Modern viruses use In-



ternet protocols, which appear to have “small-world” or
scale-free topologies (Albert, Jeong, & Barabasi, 1999;
Faloutsos, Faloutsos, & Faloutsos, 1999). These types of
networks have a small but significant number of nodes
with many connections, which makes it easy for viruses
to spread quickly.

More recent work by Pastor-Satorras & Vespignani
(2001) has found that when viruses spread on scale-free
networks, there is no threshold on the value of v i.e. all
viruses spread, regardless of the value of ~.

As yet, this field has not generated any significant ad-
vances for combating viruses, although this newer work
does hold some promise. It would be interesting to ap-
ply more sophisticated models of the individuals e.g. the
Susceptible — Infected — Resistant (SIR) model more
accurately models present day anti-virus software. In
addition, these models mostly assume random propaga-
tion across the network, but viruses such as Code Red
IT (eEye Security, 2001) have sophisticated propagation
strategies, designed to find vulnerable machines both lo-
cal to and far from the infected machine.

6 Non-representational approaches

In computer security, the usual paradigm can be de-
scribed as prevent, detect, and respond (Schneier, 2000),
usually involving a human to understand the output of
the detection and determine an appropriate response. A
more biologically plausible approach is to tightly couple
the detection and response phases rather like a control
loop, so that overall the system does the right thing, but
with no easy human understanding. This difference is
illustrated in Figure 4.

When a human is in the loop, a representation of the
system needs to be computed, and effort taken to reduce
errors. The human is then responsible for deciding which
(generally discrete and irrevocable) response is made.
Computing an error-free representation is hard, as the
discussion of errors in Section 3.2 highlights. In addi-
tion, any delay in the system (either from the human, or
computing the representation) increases the likelihood
that the planned response will be inappropriate. If a
simple controller is used, there is no need to compute
a complex representation; the loop is fast so responses
are corrective actions rather than large changes; and the
system is tolerant to detection errors, since these will be
corrected by the loop before they generate a response
that is inappropriate.

There are two issues with applying this idea to com-
puter security, firstly being the lack of things to measure.
Processor load, memory usage etc. are available, but are
not direct measurements of “damage” or illegal activ-
ity. In addition corrective actions are typically binary
and irrevocable e.g. “switch the machine off”, “patch
it”, “shut down the service” etc. This means that the
detection phase needs to be accurate, because the re-

Represent
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Figure 4: The figure shows the generic control of a system
either by a simple control system that detects and responds,
or with a human. For the human to understand the sys-
tem, a human-interpretable representation needs to be com-
puted. This is hard to calculate without errors, and any delay
in the system (from computing the representation, or from
the human), makes the chances of an inappropriate response

higher.

sponses are so definite. In order to relax the need for
accurate detection, the responses need to be made more
benign e.g. “slow down the service”.

Somayaji & Forrest (2000) is a good example of this
approach. Their system is used to automatically re-
spond to intrusions caused by e.g. an attacker exploiting
a buffer overflow vulnerability in sendmail, a common
mail program. The detection system looks for anomalous
behaviour of running programs, by building a database
of short sequences of system calls (these are requests to
the operating system for resources e.g. memory access).
The actual system calls made by a running process can
be checked against this database. Previous work (Forrest
et al., 1996) showed that attacks on programs manifest
themselves as a burst of abnormal system call sequences
(since the program is doing something that it would not
normally do).

The response part of the system is to insert delays
between the system calls, in proportion to the number
of abnormal patterns produced by the program. If too
many abnormal patterns occur the process is terminated.
The system thus degrades the performance of programs
that are under attack, because in practise the attacks
generate so much abnormal activity that the programs
are shut down. At the same time, the system is tolerant
to false alarms, since these are rare enough to not have a
significant effect on the normal operation of the system.

Other complete systems (detection—response) such as



described by Dasgupta (1999), offer the same kind of au-
tomatic system, but are not in the same spirit, trying to
use multiple detectors to improve the detection accuracy,
because they are using binary (on/off) responses.

A better example would be Mahajan et al. (2001)
where the flow of traffic through an Internet router is
examined, and packets are preferentially dropped from
the most congested flows (a flow is defined as all the
packets to the same destination). Some Internet proto-
cols interpret dropped packets as signalling congestion,
and will “back off”, reducing the rate at which they send
packets. This system allows the router to deal with over-
congestion from both flash floods (genuine over conges-
tion) and denial of service attacks.

This approach to security has some promise because
experience in other domains e.g. robotics (Brooks, 1986)
has suggested that low level feedback loops can be more
robust than using higher-level representations. However
the difficulties of designing appropriate detectors and re-
sponses in computer systems remains a challenge.

7 Discussion

Looking at the work on biologically inspired approaches
to computer security, one is struck that firstly there is
not much of it, and secondly that none of it (with the
exception of the IBM virus scanner) is wildly success-
ful. If the analogies are so good, why has there not been
more progress? This section looks at some of the counter
arguments, asking whether the differences between bio-
logical and computer systems are too great, whether the
time-scales that they operate under are too different, and
whether the concept of “survival of the gene not the in-
dividual” is really appropriate for computer systems.

7.1 Fundamental differences

The first question is whether the differences between
computer and biological systems are too great for any
useful analogies to be drawn.

The most obvious difference is that biological systems
are massively parallel and our computer systems are not.
Taking for example our immune systems, with 10'° an-
tibodies being recycled at the rate of 107 per day, our
immune system uses significant amounts of the body’s
resources. It is only because all of the reactions can oc-
cur in parallel that this does not affect e.g. the speed
of the brain. Biologically inspired approaches largely
assume this level of parallelism, and while they can be
implemented in serial computers, they are less effective.
This progression is evident from the IBM virus scanner
discussed in Section 3.3. Their first system had individ-
ual hosts computing virus signatures, and distributing
them locally. Because this is too computationally ex-
pensive, the “commercial-grade” solution is centralised.
This might be more effective, but loses some advantages:

the response is slower because of communication delays,
and the antidote is not immediately applied in the most
affected areas. If the virus signature could be calcu-
lated without affecting the performance of the individual
hosts, it might have been a different story.

This issue is compounded by the criteria with which
we evaluate successful computer designs. Unlike biolog-
ical systems, where the criteria is to survive and repro-
duce, computer systems are evaluated against a much
narrower set of benchmarks. The result is biological sys-
tems which are massively parallel, redundant and ro-
bust, and computer systems which are serial, optimised
and brittle. The driving characteristics of computing
systems are performance and cost, and serialised biolog-
ically inspired approaches do not fare will against those
criteria. Neither for that matter does any attempt to
make computers secure, fault tolerant or robust.

As computers get more complex, the need for robust-
ness should change the criteria (some moves in this direc-
tion are argued by IBM (2002b)), and this should create
opportunities for all types of solution, biologically in-
spired or not.

Even without changing the criteria there are still ways
that parallel systems could be incorporated. A good
analogy would be the graphics hardware in computers,
which handles the computationally expensive job of gen-
erating the display. Perhaps “immune chips” are needed
that are tightly integrated with the processor and oper-
ating system but run in parallel. Alternatively dedicated
machines could be used.

A further difference between biological and computer
systems is the granularity of “sensors” and “actuators”
available. Our skin is plastered with sensory receptors,
and our muscles are incredibly finely controlled, with
each muscle fibre having its own nerve supply. The kind
of sensory information available in our computers e.g.
processor load, memory allocation, etc. are more akin
to measuring heart-rate than nerve signals. In addition,
as pointed out in Section 6, having a variety of benign re-
sponses is important. Adding these features would allow
the creation of more interesting automatic systems.

7.2 Different time-scales

The second issue is that of time-scales, and is more
directly relevant to security than the previous section.
The argument goes that biological viruses evolve slowly,
changing randomly until they become a problem. Bi-
ological defences are optimised for this slow threat.
Computer viruses, on the other hand are designed to
be deadly by intelligent people, and thus biologically-
inspired defences are inappropriate (Schneier, 2000).
There are two parts to this issue, the first being
the suggestion that evolution cannot provide defences
against attacks created by intelligent hackers. While
evolution is slow, it is also parallel and thorough, and



evolved systems contain a cumulative memory of past at-
tacks (their forebears have survived attacks in the past,
and those defence mechanisms are passed on). There
is no reason why evolved systems would be any worse
than human designed systems on countering intelligent
attack, and they could be better.

On the other hand, evolved systems are not immune
to step changes, in fact they often cause mass extinction
and death (cf. the environmental changes and dinosaurs).
But human engineered systems are just as vulnerable.
For example, virus scanners had to be greatly enhanced
when virus writers started producing encrypted viruses.
These had a different “footprint” on every machine, so
the then-current scanning technology could not detect
them (Grimes, 2001).

It would be fair to say that defence systems, biological
or not, have problems with large changes in the skills
of the attacker. However, biological system have been
involved in these kinds of arms races for much longer
than computer systems, and so should provide useful
inspiration.

7.8 Survival of the individual

The final argument against biological approaches is that
they often stress the survival of the gene at the expense
of the individual. This is fine, as long as it is not an
important computer that is the unlucky individual!

This could or could not be a problem depending on
at what level the analogy is drawn: is an individual a
computer? a computer component? etc. For example, if
individuals are Internet routers, then the overall species
performs routing. The routing system is already robust
to failures of individual routers, so applying this sort of
security solution is not a problem. On the other hand,
having the routing system as an individual is not sensi-
ble.

This argument stems from a traditional view of com-
puter security where the world is viewed in binary terms,
computers are either infected or uninfected. Even in
the security community there has been a move towards
thinking about the survival of the mission, not the com-
puting infrastructure (Ellison et al., 1997). More infor-
mation on this work can be found in DISCEX (2000,
2001).

7.4 Summary

The main stumbling blocks for biologically inspired ap-
proaches to security are the architectures of computers
and the criteria under which we evaluate them. How-
ever, while these factors make it more difficult, they are
not insolvable.

8 Conclusion

Biological approaches to computer security have been
tried by a number of different research groups, in a va-
riety of different security areas. Models of the human
immune system have been used for intrusion detection,
combating viruses and building fault-tolerance. The di-
versity of biological species has inspired the creation of
compilers that create diverse code. The propagation of
disease has inspired researchers to model the spread of
computer viruses. The non-representational systems ob-
served in nature have inspired others to build automatic
systems to control congestion on networks and prevent
intrusions. Some of these have been successful (e.g. virus
scanning), others less so (e.g. the issues surrounding di-
versity), and for others it is too soon to tell (e.g. virus
propagation).

The general approach is made more difficult by the
fact that biological systems are inherently parallel, while
computer systems are generally centralised. This, to-
gether with the focus of computer systems being high
performance and low cost, makes the computational cost
of biologically inspired approaches difficult to justify. Al-
though to be fair, all approaches to security suffer from
this criteria.

To address this issue, more work needs to be done ei-
ther to parallelise computers, or to ensure that these se-
curity functions can be run in parallel. In addition, more
information about the state of a machine is needed, as
well as more ways to influence that state without shut-
ting down the system.

There are also some areas, particularly in fighting In-
ternet denial of service attacks, where there is a desper-
ate need for better technology. In this case, the dis-
tributed nature of the system should make biological
analogies a good place to look for inspiration.

To summarise, biological approaches to computer se-
curity is an interesting area that does show promise, al-
though a relaxing of the constraints of the problem would
help progress in this area.
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