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Abstract:  This paper describes the use of a genetic algorithm 
(GA) to find parameter-values for trading agents that operate in 
virtual “e-marketplaces”, where the rules of the marketplaces 
are also under simultaneous control of the GA. The aim is to use 
the GA to automatically design new agent-based e-marketplaces 
that are more efficient than markets designed by (or populated 
by) humans. Das et al. (2001) recently demonstrated that ZIP 
software-agent traders consistently outperform human traders 
in Continuous Double Auction (CDA) marketplaces. Cliff 
(2001b) used a GA to explore a continuous space of auction 
mechanisms, with ZIP traders simultaneously evolving to oper-
ate efficiently in these evolved markets. The space of possible 
auction-types explored includes the CDA and also two purely 
one-sided mechanisms. Surprisingly, the GA did not settle on 
the CDA. Instead, in two experiments, optima were found at a 
one-sided auction mechanism; and in a third experiment a novel 
hybrid auction mechanism partway between the CDA and a one-
sided auction was evolved. This paper extends that research by 
studying the auction mechanisms that evolve when the market 
supply and demand schedules undergo a sudden “shock” change 
half-way through the evaluation process.  It is shown that hy-
brid market mechanisms (again partway between the CDA and 
a one-sided mechanism) can evolve in place of the one-sided so-
lutions that evolve when there are no market shocks. Further-
more it is demonstrated that the precise nature of the hybrid 
auction that evolves is dependent on the nature of the shock. 
These results indicate that the evolution of one-sided mecha-
nisms reported by Cliff (2001b) is an artefact of using single 
fixed schedules, and that in general two-sided auctions will 
evolve. These two-sided auctions may be hybrids unlike any 
human-designed auction and yet may also be significantly more 
efficient than any human designed market mechanism. 
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I. INTRODUCTION 
 
ZIP (Zero-Intelligence-Plus) artificial trading agents, introd-
uced by (1997), are software agents (or “robots”) that use 
simple machine learning techniques to adapt to operating as 
buyers or sellers in open-outcry auction-market environ-
ments similar to those used in the experimental economics 
work of Smith (1962). ZIP traders were originally developed 
as a solution to the pathological failures of Gode & Sunder’s 
(1993) “ZI” (Zero-Intelligence) traders, but recent work by 
Das et al. (2001) at IBM has shown that ZIP traders (unlike 

ZI traders) consistently out-perform human traders in human-
against-robot experimental economics marketplaces. 
 
The operation of ZIP traders has been successfully demon-
strated in experimental versions of continuous double auction 
(CDA) markets similar to those found in the international 
markets for commodities, equities, capital, and derivatives; 
and in posted-offer auction markets similar to those seen in 
domestic high-street retail outlets (Cliff, 1997). In any such 
market, there are a number of parameters that govern the ad-
aptation and trading processes of the ZIP traders. In the origi-
nal 1997 version of ZIP traders, the values of these parame-
ters were set by hand, using “educated guesses”.  However, 
Cliff (1998; 2001a) presented the first results from using a 
standard genetic algorithm (GA) to automatically optimise 
these parameter values, thereby eliminating the need for 
skilled human input in deciding the values. 
  
Prior to the research described by Cliff (2001b), in all previ-
ous work using artificial trading agents, ZIP or otherwise, the 
market mechanism (i.e., the type of auction the agents are 
interacting within) had been fixed in advance. Well-known 
market mechanisms from human economic affairs include: 
the English auction (where sellers stay silent and buyers 
quote increasing bid-prices), the Dutch Flower auction 
(where buyers stay silent and sellers quote decreasing offer-
prices); the Vickery or second-price sealed-bid auction 
(where sealed bids are submitted by buyers, and the highest 
bidder is allowed to buy, but at the price of the second-
highest bid: game-theoretic analysis demonstrates that this 
mechanism encourages honesty and is robust to attack by 
dishonest means); and the CDA (where sellers announce de-
creasing offer prices while simultaneously and asynchro-
nously the buyers announce increasing bid prices, with the 
sellers being free to accept any buyer’s bid at any time and 
the buyers being free to accept any seller’s offer at any time). 
The CDA is of particular interest because it is the basis of 
most major national and international financial markets, and 
hence has been the subject of much academic study  (see e.g., 
Friedman & Rust, 1993).  
 
Cliff (2001b) presented the first results from experiments 
where a genetic algorithm (GA) optimises not only the pa-
rameter values for the trading agents, but also the style of 
market mechanism in which those traders operate. To do this, 
a space of possible market mechanisms was created for evo-
lutionary exploration. The space includes the CDA and also 
one-sided auctions similar (but not actually identical to) the 



English Auction (EA) and the Dutch Flower Auction (DFA). 
Significantly, this space is continuously variable, allowing 
for any of an infinite number of peculiar hybrids of these auc-
tion types to be evolved, which have no known correlate in 
naturally occurring (i.e., human-designed) market mecha-
nisms. While there is nothing to prevent the GA from settling 
on solutions that correspond to the known CDA auction type 
or the EA-like and DFA-like one-sided mechanisms, it was 
found that hybrid solutions can lead to the most desirable 
market dynamics. Although the hybrid market mechanisms 
could easily be implemented in online electronic market-
places, they have not been designed by humans: rather they 
are the product of evolutionary search through a continuous 
space of possible auction-types. Thus, the results in Cliff 
(2001b) were the first demonstration that radically new mar-
ket mechanisms for artificial traders may be designed by 
automatic means. 
 
This is not a trivial academic point: although the efficiency of 
the evolved market mechanisms are typically only a few per-
centage points better than those of the established human-
designed mechanisms, the economic consequences could be 
highly significant. According to figures released by the New 
York Stock Exchange (NYSE), the total value of trades on 
the CDA-based NYSE for the year 2000 was $11060bn (i.e., 
a little over 11 trillion dollars: see NYSE, 2002). If only 0.1% 
of that liquidity could be eliminated or captured by a more 
efficient evolved market mechanism, the value saved (or 
profit generated) would still be in excess of $10bn.  And that 
is just for one market: similar savings could presumably 
made at NASDAQ, at European exchanges such as LSE and 
LIFFE, and at similar exchanges elsewhere around the globe. 
 
Section II gives an overview of ZIP traders and of the ex-
perimental methods used, including a description of the con-
tinuously-variable space of auction types. This is largely 
identical to the account given by Cliff (2001b), albeit ex-
tended to summarise the results from that paper and to de-
scribe how the new experiments whose results are presented 
here differ from the previous work. These new results are 
presented in Section III and are discussed in Section IV. Note 
that in this paper v=U[x,y] denotes a random real value v 
generated from a uniform distribution over the range [x,y].    
 
 

II. METHODS 
 
A. Zero-Intelligence Plus (ZIP) Traders 
 
ZIP trading agents were described fully in a lengthy report by 
Cliff (1997), which included sample source-code in the C 
programming language. For the purposes of this paper a high-
level description of the key parameters is sufficient.  
 
Each ZIP trader i is given a private (i.e., secret) limit-price, 
λi, which for a seller is the price below which it must not sell 
and for a buyer is the price above which it must not buy. If a 

ZIP trader completes a transaction at its λi price then it gen-
erates zero utility (“profit” for the sellers or “saving” for the 
buyers). For this reason, each ZIP trader i maintains a time-
varying margin µi(t) and generates quote-prices pi(t) at time t 
according to pi(t)=λi (1+µi(t)) for sellers and pi(t)=λi (1-µi(t)) 
for buyers. The “aim” of traders is to maximise their utility 
over all trades, where utility is the difference between the 
accepted quote-price and the trader’s λi value. Trader i is 
given an initial value µi(0) (i.e., µi(t) for t=0) which is subse-
quently adapted over time using a simple machine learning 
technique known as the Widrow-Hoff rule which is also used 
in back-propagation neural networks. This rule has a “learn-
ing rate” parameter βi that governs the speed of convergence 
between trader i’s quoted price pi(t) and the trader’s idealised 
“target” price τi(t). When calculating τi(t), traders introduce a 
small random absolute perturbation generated from U[0,ca] 
(this perturbation is positive for sellers, negative for buyers) 
and also a small random relative perturbation generated from 
U[1-cr,1] (buyers) or U[1,1+cr] (sellers). Here ca and cr are 
global system constants. To smooth over noise in the learning 
system, there is an additional “momentum” parameter γi for 
each trader (such momentum terms are also commonly used 
in back-propagation neural networks).  
 
Thus, adaptation in each ZIP trader i has the following pa-
rameters: initial margin µi(0); learning rate βi; and momen-
tum term γi.  In an entire market populated by ZIP traders, 
values for these three parameters are randomly assigned to 
each trader via: µi(0)= U(µmin, µmin+µ∆); βi=U(βmin, βmin+β∆); 
and γi=U(γmin, γmin+γ∆). Hence, to initialise an entire ZIP-
trader market it is necessary to specify values for the six mar-
ket-initialisation parameters µmin, µ∆, βmin, β∆, γmin, and γ∆; and 
also for the two global system constants ca and cr. And so it 
can be seen that any set of initialisation parameters for a ZIP-
trader market exists within an eight-dimensional real space. 
Vectors in this 8-space can be considered as genotypes, and 
from an initial population of such genotypes it is possible to 
allow a GA to find new genotype vectors that best satisfy an 
appropriate evaluation function. This is exactly the process 
that was introduced by Cliff (1998, 2001a), and that is de-
scribed further below.  
 
When monitoring events in a real auction, as more precision 
is used to record the time of events, so the likelihood of any 
two events occurring at exactly the same time is diminished. 
For example, if two bid-quotes made at five minutes past nine 
are both recorded as occurring at 09:05, then they appear in 
the record as simultaneous; but a more accurate clock would 
have been able to reveal that the first bid was made at 
09:05:01.64 and the second at 09:05:01.98. Even if two 
events occur absolutely at the same time, very often some 
random process (e.g. what direction the auctioneer is looking 
in) acts to break the simultaneity.  
 
Thus, we may simulate real marketplaces (and implement 
electronic marketplaces) using techniques where each signifi-
cant event always occurs at a unique time. We may choose to 



represent these by real high-precision times, or we may ab-
stract away from precise time-keeping by dividing time (pos-
sibly irregularly) into discrete slices, numbered sequentially, 
where one significant event is known to occur in each slice. 
In the ZIP-trader markets explored here, we use such a time-
slicing approach. In each time-slice, the atomic “significant 
event” is one quote being issued by one trader and the other 
traders then responding either by ignoring the quote or by one 
of the traders accepting the quote. (NB Ras et al. (2001) used 
a continuous-time formulation of the ZIP-trader algorithm). 
  
In the markets described here (and in Cliff, 1997; 1998; 
2001a; 2001b), on each time-slice a ZIP trader i is chosen at 
random from those currently able to quote (i.e. those who 
hold appropriate stock or currency), and trader i’s quote price 
pi(t) then becomes the “current quote” q(t) for time t. Next, 
all traders j on the contraside (i.e. all buyers j if i is a seller, 
or all sellers j if i is a buyer) compare q(t) to their own cur-
rent quote price pj(t) and if the quotes cross (i.e. if pj(t)<=q(t) 
for sellers, or if pj(t)>=q(t) for buyers) then the trader j is 
able to accept the quote. If more than one trader is able to 
accept, one is chosen at random to make the transaction. If no 
traders are able to accept, the quote is regarded as “ignored”. 
Once the trade is either accepted or ignored, the traders up-
date their µ(t) values using the learning algorithm outlined 
above, and the current time-slice ends. This process repeats 
for each time-slice in a trading period, with occasional injec-
tions of fresh currency and stock, or redistribution of λi limit 
prices, until a maximum number of time-slices have run.   
 
B. Space of Possible Auctions 
 
Now consider the case where we implement a ZIP-trader con-
tinuous double auction (CDA) market. In any one time-slice 
in a CDA either a buyer or a seller may quote, and in the defi-
nition of a CDA a quote is equally likely from each side.  
One way of implementing a CDA is, at the start of each time-
slice, to generate a random binary variable to determine 
whether the quote will come from a buyer or a seller, and 
then to randomly choose one individual as the quoter from 
whichever side the binary value points to. Here, as in previ-
ous ZIP work (Cliff, 1997; 1998; 2001a; 2001b) the random 
binary variable is always independently and identically 
distributed over all time-slices. 
  
So, let Q=b denote the event that a buyer quotes on any one 
time-slice and let Q=s denote the event that a seller quotes, 
then for the CDA we can write Pr(Q=s)=0.5 and note that 
because Pr(Q=b)=1.0-Pr(Q=s) it is only necessary to specify 
Pr(Q=s), which we will abbreviate to Qs hereafter. Note ad-
ditionally that in an English Auction (EA) we have Qs=0.0, 
and in the Dutch Flower Auction (DFA) we have Qs=1.0. 
Thus, there are at least three values of Qs (0.0, 0.5, and 1.0) 
that correspond to three types of auction familiar from centu-
ries of human economic affairs. Although the ZIP-trader case 
of Qs=0.5 is indeed a good approximation to the CDA, the 
fact that any ZIP trader j will accept a quote whenever q(t) 

and pj(t) cross means that the one-sided extreme cases Qs=0.0 
and Qs=1.0 are not exact analogues of the EA and DFA.  
 
The inventive step introduced by Cliff (2001b) was to con-
sider the Qs values of  0.0, 0.5, and 1.0 not as three distinct 
market mechanisms, but rather as the two end points and the 
midpoint on a continuum of mechanisms. For values other 
than these, there is a straightforward implementation. For 
example, Qs=0.1 can be interpreted as specifying an auction 
mechanism where, on the average, for every nine quotes by 
buyers, there will be one quote from a seller. Yet the history 
of human economic affairs offers no examples (as far as I am 
aware) of such markets: why would anyone suggest such a 
bizarre way of operating? And who would go to the trouble 
of arbitrating (i.e., acting as an auctioneer for) such a mecha-
nism? Nevertheless, there is no a priori reason to argue that 
the three known points on this Qs continuum are the only loci 
of useful auction types. Maybe there are circumstances in 
which values such as Qs=0.712803 (say) are preferred. Given 
the infinite nature of a real continuum, it seems appealing to 
use an automatic exploration process, such as the GA, to 
identify useful values of Qs.   
 
Thus, Cliff (2001b) added a ninth dimension to the search 
space, and the genotype in the GA became the eight real val-
ues for  ZIP-trader initialisation, plus a real value for Qs.  As 
with all prior experiments (Cliff, 1998; 2001a; & 2001b), no 
“NYSE” improvement rule (Cliff, 1997) was used.  

 
C. The Genetic Algorithm 
 
The same simple GA used by Cliff (2001b) is used here, with 
one difference. Cliff (2001b) used a population of size 30 and 
evolution was allowed to progress for 1000 generations. Each 
experiment was repeated 50 times, and it was found that sev-
eral of the experiments yielded multimodal results. However, 
in all the experiments reported on in that paper, the qualita-
tive nature of the results was very clear by generation 500: all 
runs settled to a particular mode by generation 300, and the 
improvement in performance (i.e., fitness) between genera-
tion 500 and generation 1000 was always very small. Thus, 
all the experiments reported on in this paper ended after 500 
generations. All other GA control parameters are unchanged. 
For an introduction to GAs, see Mitchell (1998). 
  
In each generation, all individuals were evaluated and as-
signed a fitness value; and the next generation’s population 
was then generated via mutation and crossover on parents 
identified using rank-based tournament selection. Elitism 
(where an unadulterated version of the fittest individual from 
each generation is copied into each successive generation) 
was also used.     
 
The genome of each individual was simply a vector of nine 
real values. In each experiment, the initial random population 
was created by generating random values from U[0,1] for 
each locus on each individual’s genotype. Crossover points 



were between the real values, and crossover was governed by 
a Poisson random process with an average of between one 
and two crosses per reproduction event. Mutation was im-
plemented by adding random values from U[-m(g),+m(g)] 
where m(g) is the mutation limit at generation g (starting the 
count at g=0). Mutation was applied to each locus in each 
genotype on each individual generated from a reproduction 
event, but the mutation limit m(g) was gradually reduced via 
an exponential-decay annealing function of the form: 
log10(m(g))= -( log10 (ms)-(g/(ng-1)) log10(ms/me)) where ng is 
the number of generations (here ng=1000 for consistency 
with Cliff (2001b), despite the fact that all experiments are 
now terminated after 500 generations) and ms is the “start” 
mutation limit (i.e., for m(0)) and me is the “end” mutation 
limit (i.e., for m(ng-1)). In all the experiments reported here, 
as in (Cliff, 2001b), ms=0.05 and me=0.0005.    
 
If ever mutation caused the value at a locus to fall outside 
[0.0,1.0] it was simply clipped to stay within that range. This 
clip-to-fit approach to dealing with out-of-range mutations 
has been shown by Bullock (1999) to bias evolution toward 
extreme values (i.e. the upper and lower bounds of the clip-
ping), and so Qs values of 0.0 or 1.0 are, if anything, more 
likely than values within those bounds. Moreover, initial and 
mutated genome values of µ∆, β∆, and γ∆ were clipped where 
necessary to satisfy the constraints (µmin+µ∆)<=1.0, 
(βmin+β∆)<=1.0, and (γmin+γ∆)<=1.0. 
 
The fitness of genotypes was evaluated using the methods 
described by Cliff (1998; 2001a; 2001b). One trial of a par-
ticular genome was performed by initialising a ZIP-trader 
market from the genome, and then allowing the ZIP traders to 
operate within the market for a fixed number of trading peri-
ods, with allocations of stock and currency being replenished 
between each trading period. Each trading period ended ei-
ther when no more trades was possible, or a maximum num-
ber of time-slices was reached.  
 
During each trading period, Smith’s (1962) α measure (root 
mean square deviation of transaction prices from the theoreti-
cal market equilibrium price) was monitored, and a weighted 
average of α was calculated across the trading periods in the 
trial as described in Section II.E below. As the outcome of 
any one such trial is influenced by stochasticity in the system, 
the final fitness value for an individual was calculated as the 
arithmetic mean of 100 such trials. Note that as minimal de-
viation of transaction prices from the theoretical equilibrium 
price is desirable, lower scores are better: that is, we are at-
tempting here to minimise the α fitness value.  
 
D. Previous Results 
 
In Cliff (2001b), results were presented from three evolution 
experiments. In each experiment, a single fixed market sup-
ply and demand schedule was used for every trial in the ex-
periment. These three schedules are referred to as markets 
M1, M2, and M3. In all of them there were 11 buyers and 11 

sellers, each empowered to buy/sell one unit of commodity: 
markets M1 and M2 are illustrated in Figures 1 and 2.  
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Figure 1: Supply and demand schedules for market M1 
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Figure 2:  Supply and demand schedules for market M2.  

 
The best mode of evolved results from experiments with M1 
all had values of Qs =~0.0. The best mode of evolved results 
from experiments with M2 all had values of Qs that, while 
clearly nonzero, were sufficiently small that they did not give 
performance that was statistically better than if Qs had been 
fixed at zero a priori. That is, with both M1 and M2 the 
evolved value of Qs was effectively zero, and so the EA-like 
one-sided auction was found to be the most efficient market 
mechanism. For M3, however, values of Qs around 0.16 con-
sistently evolved, and this hybrid auction mechanism was 
shown to be more efficient than the previously-known Qs=0.0 
and Qs=0.5 mechanisms that it lies between. 
 
E. Dual-Schedule “Market-Shock” Experiments 
 
Because for each trial in all three of Cliff’s (2001b) experi-
ments a single fixed market schedule was used in evaluating 
the evolving solutions, there is a manifest possibility that the 
GA tailored the final evolved solutions to peculiarities of  the 
specific market schedules employed – i.e., that it “over-
fitted”. To test this hypothesis, a new set of experiments were 
run, where “shock changes” are inflicted on the market by 
swapping from one schedule to another halfway through the 
evaluation process. For ease of comparison with the results 
presented by Cliff (2001b), a six-period duration was used for 



each schedule, meaning that one trial now lasts for 12 peri-
ods: six periods with the ZIP trading agents adapting to trade 
under the first schedule, then at the end of the sixth period a 
sudden shock change of the market supply and demand to the 
second schedule (without altering any of the traders’ parame-
ters or variable values) followed by six periods of the traders 
adapting to trade and under that new schedule.  
 
In Cliff (2001b), the evaluation function was a weighted av-
erage of  Smith’s α measure: in each trading period p the 
value αp was calculated, and the fitness score was computed 
as (1/ws).Σ(αp.wp) for p=1…6 with weights w1=1.75, w2=1.5, 
w3=1.25, and w4=w5=w6=1.0; and ws=Σwp. In the dual-
schedule experiments reported here, this was simply extended 
so that p=1…12 and wp>6=wp-6.   
 
Two sets of experiments are reported on here: one set is re-
ferred to as “M1M2” to denote the fact that market M1 was 
used for the first six periods followed by M2 for the second 
six periods; and the other is referred to as “M2M1” to denote 
the reverse situation. 
 
In any one experiment, there are 30 individuals evaluated over 500 genera-
tions where each evaluation involves calculating the mean of one hundred 
12-period trials, so a total of 1.5 million market trials would be executed in 
any one GA experiment (on a Hewlett-Packard Kayak XU800 workstation 
this would take approximately 5 hours). Nevertheless, the progress of each 
GA experiment is itself affected by stochasticity (e.g. the GA may become 
trapped on local minima) and so to generate reliable results each experiment 
was repeated 50 times (i.e., 75 million market trials, taking approximately 
10.5 days).  Results from eight such 50-repeat experiments are discussed 
here (i.e., 84 days processing on one machine).   

 
III. RESULTS 

A. M1M2 
 
Figure 3 shows results from 50 repetitions of the M1M2 
evolving-market (EM) experiment: for each experiment, the 
fitness of the best (elite) member of the population is re-
corded. The results are clearly bimodal. Of the 50 repetitions, 
in 36 the elite ends up on fitness minima of about 3.85, while 
the other two elite fitness mode involves less-good minima  
around 4.2 to 4.3.  Figure 4 shows the evolutionary trajectory 
of the mean value of Qs calculated over the 36 members of 
the best elite mode. Clearly, the elite mode uses a hybrid auc-
tion mechanism partway between the one-sided Qs =0.0 mar-
ket and the Qs=0.5 CDA. 
 
For comparison, Figures 5, 6, and 7 show the fitness values 
from 50 repetitions of the M1M2 experiment in fixed-market 
(FM) conditions (i.e., where the value of Qs was not evolved) 
for Qs=0.0, Qs=0.5, and Qs=1.0 respectively. Using Qs=0.0 is 
plausible because in Cliff (2001b) separate experiments 
evolving on M1 and on M2 alone both converged on optima 
at Qs=0.0. Moreover, using Qs=0.5 gives a CDA, and the 
CDA is often applauded as an auction mechanism in which 
transaction-price equilibration is rapid and stable, so we 
could plausibly expect the best fitness from using that market 
type. Fixed-market Qs=1.0 results in Figure 7 are included for 

completeness, as this is analogous to the human-designed 
DFA mechanism. 
 
With Qs fixed at zero, Figure 5 shows that the mean best-
mode elite score is around 4.1; and with Qs=1.0, the results 
are worse by a factor of more than two. With the fixed CDA 
Qs=0.5 auction style, an average elite fitness of around 4.05 is 
settled on by almost all experiments, as shown in Figure 6. 
To ease the comparison between the EM and FM-CDA re-
sults, Figure 8 shows the mean and standard deviation of the 
best-mode elite scores on the same graph. The EM results are 
clearly lower (and hence better) than those for the FM CDA. 
 
As our fitness values are effectively measures of market effi-
ciency, from Figure 8 it appears that using Qs values of 0.25 
give more efficient markets than using  the previously 
“known” Qs values such as 0.0, 0.5, or 1.0 for the M1M2 
schedule sequence. 
 

 
 
Figure 3: Elite fitness values from 50 repetitions of the 500-generation 
M1M2 evolving-market (EM) experiment. Lower values are better solutions 
(less deviation of transaction prices from the market’s theoretical equilibrium 
price). Results are bimodal, with 36 of the repetitions (72%) settling in the 
best mode with values around 3.85.  
 

 
Figure 4: Evolutionary trajectory of mean (plus and minus one s.d.; n=36) 
value of Qs in the best elite mode of the 50 M1M2 EM experiments shown in 
Figure 3. The mean settles to approximately 0.25  



 
 
Figure 5: Elite fitness values from 50 repetitions of a 500-generation M1M2 
fixed-market (FM) experiment with Qs=0.0. Results are trimodal, with the 9 
experiments (18%) in the best mode settling to values around 4.1. 
   

 
 
Figure 6: Elite fitness values from 50 repetitions of a 500-generation M1M2 
fixed-market (FM) experiment with Qs=0.5. Results are bimodal, with 49 of 
the repetitions (98%) settling in the best mode with values around 4.05   
 

 
 
Figure 7: Elite fitness values from 50 repetitions of a 500-generation M1M2 
fixed-market (FM) experiment with Qs=1.0. Results are bimodal, with both 
modes in the range 8.5 to 10.5.  

 
 
Figure 8:  Average elite fitnesses from 50 EM and 50 FM(Qs=0.5) M1M2 
experiments; data is plotted for mean fitness, plus and minus one standard 
deviation (s.d.). Best EM fitness mode settles to a mean of approx 3.85 with 
a s.d. of approx 0.06 (n=36); FM values settle to a mean of around 4.05 with 
a s.d. of approx. 0.1 (n=49).  
 
This Qs=0.25 mechanism could easily be implemented in an 
electronic marketplace by allowing, on the average, one 
quote in four to come from a seller while the remaining 
quotes come from buyers.  
 
B. M2M1 
 
Figure 9 shows the evolutionary trajectories for the elite fit-
ness scores in 50 repetitions of the M2M1 EM experiment. 
The best mode has a mean fitness of 4.18. Figure 10 shows 
the evolutionary trajectory of the mean Qs value in the best 
mode: a final value of approximately 0.45 is settled on. This 
is sufficiently close to the CDA value of Qs=0.5 to arouse 
suspicion that the EM results have settled to a Qs value that 
yields results statistically indistinguishable from those that 
would result if a CDA mechanism had been chosen a priori. 
To test this hypothesis, 50 repetitions of a FM experiment 
with Qs=0.5 were run, and the elite fitness results are illus-
trated in Figure 11. 
 
The FM-CDA (Qs=0.5) results for M2M1 shown in Figure 11 
are unimodal, and the mean elite fitness is again approx 4.18. 
Thus, simple visual comparison (cf. Figure 8) is not sufficient 
to establish any statistically significant difference between 
best modes shown in the M2M1 EM and FM-CDA results. 
 
Following Cliff (2001b), the Wilcoxon version of the Wil-
coxon-Mann-Whitney Test (Siegel & Castellan, 1988) was 
used to see if there is a statistically significant difference be-
tween the M2M1 EM and FM(Qs=0.5) results. The m=50 
final best-mode fitness scores from the FM(Qs=0.5) experi-
ment and the n=46 final best-mode fitness scores from the 
EM experiment were grouped together, with the EM values 
marked as Type 1 and the FM values marked as Type 2. Fit-
ness values were then assigned a rank-order based on their 
position following sorting into ascending order. There were 
no tied ranks. Summing the rank values for Type 2 (FM) 



gave a value W2=2480. Using this value and N=m+n for 
z=(W2+0.5-m(N+1)/2)/(mn(N+1)/12)0.5 gives z=0.407037, 
which is not significant. Thus it can be concluded that there is 
no statistically significant difference between the results from 
the EM and FM(Qs=0.5) experiments for M2M1.  
 
Furthermore, it should be noted that, as with the M1M2 
schedule ordering, the FM(Qs=0.0) and FM(Qs=1.0) results 
for M2M1 were clearly and consistently worse than either the 
EM or FM(Qs=0.5) results: see Figures 12 and 13 respec-
tively.  
 
  

 
 
Figure 9: Elite fitness values from 50 repetitions of the 500-generation  
M2M1 EM experiment. There are two clear modes: one (n=3) at approx 5.6 
and the other  (n=46) around 4.18. The one “outlier” result may be heading 
for the lower mode or may be a distinct third mode.  
 

 
 
Figure 10: Evolutionary trajectory of mean (plus and minus one s.d.; n=46) 
value of Qs in the best elite mode of the 50 M2M1 EM experiments shown in 
Figure 9. The mean settles to approximately 0.45   
 

 
 
Figure 11: Elite fitness values from 50 repetitions of a 500-generation M2M1 
fixed-market (FM) experiment with Qs=0.5. Results are unimodal, with all 
the repetitions settling in the best mode with values around 4.2   
 

 
 
Figure 12: Elite fitness values from 50 repetitions of a 500-generation M2M1 
fixed-market (FM) experiment with Qs=0.0. For much of the experiment the 
results are multi-modal, but by generation 500 all the repetitions settle with 
values around 9 to 11. 
 
 

IV. DISCUSSION AND CONCLUSION 
   
Note that although one-sided Qs=~0.0 mechanisms were 
evolved in (Cliff, 2001b) for M1and M2 individually, when 
the traders have to deal with the “shock” transition from M1 
to M2, or from M2 to M1, two-sided mechanisms are found 
by the GA to give the most efficient markets.  For the M1M2 
experiments the hybrid Qs=0.25 market gives significantly 
better results than the CDA, while for M2M1 the evolved 
solution of Qs=~0.45 was no better but also no worse than 
the CDA of Qs=0.5. Thus, this paper extends the line of re-
search first reported on by Cliff (2001b). It again demon-
strates the use of an evolutionary search through an infinite 
space of possible market designs that includes the CDA of 
Qs=0.5 and also the two pure one-sided solutions of Qs=0.0 
and Qs=1.0.  And again new “hybrid” market mechanisms 
were found to give better market dynamics for M1M2 than 



the previously-known auction styles. Once again, while such 
evolved market mechanisms are unlike any human-designed 
mechanism, they could nevertheless readily be implemented 
as online electronic marketplaces.  
 
  

 
 
Figure 13: Elite fitness values from 50 repetitions of a 500-generation M2M1 
fixed-market (FM) experiment with Qs=1.0. Results are unimodal, with all 
the repetitions settling to values around 13 to 14. 
  
 
 
Thus, one contribution of this paper is the demonstration that 
the Qs=~0.0 results for M1 and M2 in Cliff (2001b) are con-
sequences of (unrealistically) using unchanging supply and 
demand curves for the duration of each experiment. The re-
sults presented here show that, for dealing with shock 
changes from M1 to M2, and from M2 to M1, Qs=~0.0 is not 
the best value, even though it was the optimum for each mar-
ket individually. A second contribution is the demonstration 
that the optimum Qs value is order-dependent: i.e., that the 
evolved value of Qs for M1M2 is different to that for M2M1.  
 
It is widely acknowledged within artificial evolution research 
that blind evolutionary search processes such as that imple-
mented by the GA used here will frequently improve fitness 
via ruthless exploitation of any regularity in the task envi-
ronment. We have seen that, although in the M2M1 experi-
ments no such regularity was identified for exploitation, in 
the M1M2 experiments there was an underlying regularity 
that allowed an evolved hybrid (Qs=0.25) market mechanism 
to be more efficient. Thus, the major contribution of this pa-
per is to demonstrate that, even when there are shock changes 
in supply and demand, there may be sufficient regularity in 
some market situations such that non-CDA hybrid two-sided 
auctions are more efficient than any human-designed market 
mechanism. Given these results, coupled with the results of 
Das et al. (2001) who demonstrated that ZIP artificial trading 
agents reliably outperform human traders in experimental 
CDA settings, it seems plausible to conjecture that, in future, 
some or possibly all major financial markets will be imple-
mented as e-marketplaces populated by autonomous soft-
ware-agent traders. In such an agent-dominated future, mar-

ket mechanisms originally designed for human traders may 
not be the most efficient; and the results of this paper demon-
strate that new hybrid mechanisms can be evolved that are 
more efficient than traditional human-designed markets. 
 
Even if such hybrids are only a few percentage points more 
efficient than conventional human-designed mechanisms, it 
seems perfectly plausible that the results of using these artifi-
cially-evolved auction-mechanism designs in major interna-
tional financial markets (populated by artificial trading age-
nts) will be savings or profits measured in billions of dollars.  
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