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Abstract

Consider the following common scenario: a data-
mining practitioner tries various specialized
classification algorithms on a new dataset of
unknown difficulty and selects the apparent best.
Supposing its accuracy were 70% on a held-out
test set, how can one know whether this is a
significant result or not? It can be difficult to tell
in the absence of standard benchmark results for
the dataset. Surprisingly, it can also be difficult
to tell even when the dataset has hundreds of
benchmark results. This paper presents a method
to address this question by comparing the chosen
best classifier to the distribution of performance
scores obtained by many simple classifiers that
are randomly generated. This can also serve to
discover when a classification problem appears
nearly unlearnable. It is demonstrated for the
results of the 2001 KDD Cup thrombin
competition.

1. Introduction

A great deal of supervised machine learning research and
industrial practice follows a pattern of trying a number of
classification algorithms on a dataset, and then selecting
and promoting the algorithm(s) that performed best
according to cross-validation or a held-out test set. How
can one know whether the selected algorithm is a
significant result? To illustrate the problem, here are four
scenarios where it may not be.

A. Specialized search space: Sometimes the researcher
or practitioner conducting the experiments is a
specialist in, say, neural networks or decision trees,
and they experiment with variations in structure or
learning parameters, without considering more
diverse induction algorithms. Though their
experiments may show that a particular improvement
to an algorithm achieved the best results, it is
possible that its performance is merely on par with
trivial classification algorithms. For example, after a
number of research papers published good results

using sophisticated algorithms on the UCI
classification datasets, Holte (1993) demonstrated
competitive performance using a simple decision
stump, which uses only one feature.

B. Overfitting one test set: If selecting the best
algorithm via a single test set held-out during the
experimentation phase, one runs the risk of
overfitting the test set if there are many algorithms
being evaluated and/or the test set is small (relative to
the complexity of the true concept). The evaluation
of data mining competitions in classification can be
particularly prone to this pitfall, but unlike the first
scenario, they do not suffer for method diversity.

C. Overfitting despite cross-validation: N-fold or
leave-one-out cross-validation is regularly used to
determine good estimates for the generalization
performance of a classification method on future,
unseen instances (Kohavi 1995). Nonetheless, if
many methods are tested, cross-validation does not
provide immunity from overfitting (e.g. Ng 1997).

D. Unlearnable tasks- concept drift, unpredictability:
In situations where the training set may come from a
very different distribution than the ultimate test set
(e.g. if drawn from an earlier time period with
substantial concept drift), or instead the training set
features are not predictive of the class variable, then
choosing the best method based on the training set
will ultimately result in unpredictable testing
performance. This may be viewed as a form of
“overfitting” in that, if the chosen classifier matches
the shape of the training set concept very precisely,
then it will be sure not to match the deformed testing
concept precisely. While most machine learning
researchers avoid working with datasets of this
nature, in real-world industrial settings, unlearnable
classification tasks are regularly attempted and new
techniques to identify these situations are called for.
Such techniques could save others a great deal of
wasted effort, much like NP-hard reductions do in
theoretical computer science.



Overfitting is akin to the familiar risk in statistical testing
when many hypotheses are tested: some may show
statistical significance just by chance, without a
repeatable, causal mechanism (e.g. Jensen & Cohen
2000). There are three central approaches for attempting
to safeguard against this persistent issue:

1. Data-oriented safeguards, such as the bootstrap and
cross-validation (Kohavi 1995).

2. Representation-oriented safeguards, penalizing
complex models as in statistical learning theory and
specifically support vector machines (Vapnik 1995).

3. Process-oriented safeguards, penalizing models the
more one searches (Domingos 1999), or avoiding
extensive search altogether.

None of these can prevent the possibility of overfitting,
and each has its limitations. Ng (1997) and Domingos
(1999) each lay out a case against methods 1 and 2.
Domingos states in particular that representation-oriented
penalties are “only appropriate when the simpler models
are truly the more accurate ones, and there is mounting
evidence that this is typically not the case.” Finally, even
with the process-oriented approach, there is certainly no
guarantee that a greatly overfit model will not be hit upon
early in the search process.

To these safeguards against overfitting, we contribute an
analysis method that in some situations will reveal if
overfitting could be a likely explanation for the apparent
good performance of the best classifier obtained. The
analysis can also expose the insignificance of one’s best
classifier in scenarios A and D above. These problems
may be not be readily apparent, e.g. if benchmark results
are not available for the classification task. Surprisingly,
the problem can surface even when they are available, as
we demonstrate for one of the three 2001 KDD Cup
competition tasks (Cheng et al. 2001).

This work came about because of the unusual properties
of the KDD Cup thrombin task. For the purpose of
sharing lessons learned, we begin by presenting the clues
that led us to the analysis, which is then demonstrated in
Section 3 and described more abstractly in Section 4.

2. Clues from ROC Analysis

The 2001 KDD Cup thrombin task was a binary
classification of a genomic dataset having 139,351 binary
features. The training set was composed of 1909 cases,
42 being positive, yielding a class skew of 1:44. The
contest clearly stated at the beginning that the test set
would come from a somewhat different distribution—a
set of 634 chemical compounds predicted by chemists to
be active in binding (positive class) after they had
analyzed the training set. One might suppose this would
make the competition more difficult, but the effect was
more dramatic than anyone had anticipated, as shown in
the subsequent section.

The main clue we encountered that something was amiss
with the test set was that our chosen classifier method
exhibited a good ROC curve when cross-validating on the
training set, but exhibited a nearly flat ROC curve on the
official test set after the answer key was posted—i.e. as
bad as random performance1. (See Figure 1.) Naturally, if
a classifier has overfit the training set, one expects its
ROC curve to degrade somewhat, but not to that extent.
We did not attribute this to enormous overfitting because
we had employed all three safeguard methods mentioned
in the introduction: our search for a good classifier
method (1) was guided by 20-fold cross-validation, (2)
settled on using support vector machines, and (3) did not
consider more than a dozen alternate methods. After this
surprise, we tried a variety of other classifier methods and
witnessed the same remarkable flattening of the ROC
curve. This would suggest scenario D, a drifted task, or
perhaps scenario A, since the winning entry was
apparently able to learn the concept.
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Figure 1. ROC curves for the SVM classifier.

3. A Randomized Distribution Analysis
Applied to the Thrombin Task

There were 114 contest entrants for the thrombin task,
which were to be judged by the average of their true
positive rate and true negative rate. At the end of the
competition, it had been a surprise to many that the best
classifier for the task was a simple Bayes network
involving only four binary features and arrived at without
cross-validation. Further, it was nearly naïve Bayes—
only one node had two parents. The final report showed a
mediocre ROC curve, but it clearly had substantial lift
over random. However, being chosen as the best of the
contestants, it must show some degree of lift.

This observation opened a key question: how good would
one expect the performance of the best classifier to be if
the 114 entrants were all poor classifiers for the test set.

—————
1 Our first response was to manually validate that the software was
working as intended, which is difficult for data mining on large sets—
manually spot-checking format conversions, feature selection and other
processes on the 139,000 binary features in the dataset.



To address this, we randomly generated thousands of
naïve Bayes classifiers with four randomly selected
features (for convenience, selecting from among 1200
predictive features we had pre-filtered to reduce the size
of the dataset). We evaluated each of these according to
the KDD Cup scoring metric using the labeled test data,
and generated a cumulative distribution of the scores. We
present the result in Figure 2, overlaid on top of the
cumulative distribution of the actual contestant scores as
provided in the final KDD Cup presentation (Haztis &
Page 2001). The curves are a very close match, e.g. the
median contestant performed about as well as the median
random Bayes classifier. We then repeated this analysis,
generating trivial classifiers that worked from a single,
randomly chosen binary feature. This resulted in an S-
curve with the same median score, but with a slightly
steeper slope, as one might expect from the simpler
decision function.

Figure 2. Cumulative distribution of contestant scores (thick
curve) and random Bayes classifier scores (thin curve).

The vertical line marks the score of the winning entry,
having a score of 68.444%. Of the 3500+ random
pseudo-competitors we tested, 1.9% scored as well or
better than the actual winning entry. So, given that the
contest had 114 entrants, one would expect 2 entrants on
average to score as well or better than the actual winner, if
the classifiers had very little predictive power on the test
set, e.g. concept drift. If this is the case, then sophisticated
low-bias methods that carefully matched the training
concept would actually be at a disadvantage to a variety
of higher-bias methods that did not match the training
concept precisely and therefore may stand a better chance
of matching the drifted test concept.

(For contrast, we trained a SVM on half of the test set and
tested on the other half, yielding a 78% performance
score. Supposing for a moment this had been a
contestant’s entry, we compare it to the cumulative
distribution of the randomized classifier scores and find

this exceeds the performance of all of them. In this case
we could have been reasonably confident in its validity.)

Considering the results of the analysis for the actual
winner, we cannot safely reject the null hypothesis that it
is merely the best of a set of poor classifiers, i.e. scenarios
A or D. Given the diversity of methods used by the 114
competitors, it is reasonable to rule out scenario A. We
infer that the thrombin test set was a nearly unlearnable
task from the given training set using known classification
algorithms, scenario D. The chemists, however,
demonstrated the power of domain knowledge—although
the training set only contained 42 positives (2.2%), the
chemists were able to successfully identify 150 positives
out of 634 attempts (24% positives, a factor of 10x more).

An alternate hypothesis for the consistently poor
performance of the contest entries is that the high class
skew defeats known induction algorithms. This can be
ruled out by cross-validation on the training set alone.
For example, the good quality ROC curve in Figure 1 was
actually generated by training on a particularly difficult
split of the training data: 25% of the positives and 75% of
the negatives were used for training, leading to a much
worse skew of ~1:120! Yet by the good ROC curve
illustrated in the figure and other experiments we
conducted, SVMs were clearly able to transfer the
concept learned to this concocted testing set having a
higher positive rate. Hence, the high degree of class skew
would not account for the poor performance on the
official test set.

4. General Randomized Distribution Analysis

Conventional wisdom about process-oriented safeguards
suggests that one avoid testing many methods on the final
testing set. However, once the best performing
classifier(s) have been chosen, we propose comparing its
performance against the distribution of performance
scores that can be obtained on the test set by generating
many simple classifiers. In contrast to Holte's (1993)
work that generated a single trivial classifier for
comparison, we generate many in order to consider their
distribution. In fact, we generate so many that we fully
expect some to overfit the testing set. These are not to be
used in production for the ultimate classification task, but
to provide a litmus test as to whether the best result
obtained by traditional methods is in fact substantially
better than simple methods (scenario A) and to check that
the best result is not trivially explained by overfitting.

As with any data mining method, many variations can be
constructed, but as an aid, we propose a specific method
as a baseline: After the best classifier algorithm has been
selected, generate a thousand simple naïve Bayes
classifiers each with four randomly selected features. For
each of these classifiers, measure its performance on the
test set, using whatever scoring metric is appropriate for
the project goal, e.g. accuracy, precision, recall, F-



measure, cost-sensitive evaluation, or area under the ROC
curve. From these scores, generate a cumulative
distribution curve, as in Figure 2, and compare to the
distribution curve of the actual classifiers considered.
(Alternately, traditional histograms may be more readable
for some audiences.)

If the sophisticated algorithms are worthwhile for the
dataset, their distribution curve will be shifted
substantially to the right of the randomized classifier
curve. On the other hand, if the curves coincide, they are
either being defeated by an unlearnable task (scenario D)
or are somehow inappropriate for the dataset (A).

Finally, consider also the number of different algorithms
that were compared in selecting the best, or a rough
estimate thereof. Multiply this by the percentage of
randomized classifiers that exceeded the performance of
the best algorithm. If this number is greater than one or
two, consider the real possibility that the performance of
the best classifier can be explained well by the null
hypothesis. (Even if the number is less than one, this
cannot rule out overfitting.)

Variations: Certainly one could use a different number of
features as their baseline. For a text classification
problem, 50 or 100 features may be appropriate. If the
domain problem has only 5 features, it may be appropriate
to use just one or two, and to consider another source of
simple random variation in the classifiers (otherwise
many of the 1000 classifiers would be identical). Another
source of variation could be in discretization or the
induction algorithm itself; however, it can be more
difficult to generate 1000 variations.

5. Related Work

More generally, the randomized distribution analysis
method forwarded here might be considered an
instantiation of the randomization method discussed in
Jensen & Cohen’s (2000) paper on multiple comparisons.
The generalized method constructs a collection of
performance scores based on the null hypothesis
(typically by randomly re-writing the labels of the training
set), and rejects the null hypothesis only if the best
performing system found is substantially better than the
best of the random classifiers. Our method might then be
viewed as an instantiation, where the null hypothesis is
more elaborate: that the performance scores found in
practice are no better than Naïve Bayes classifiers using
four random features.

One disparity in this instantiation view is that the
generalized method of Jensen & Cohen does not consider
the number of different systems that have been considered
in selecting the best. Suppose that the true model for a
given dataset were actually Naïve Bayes using four of the
features plus an additional fifty noise features. Their
method would likely reject the correct classifier, whereas
if the correct model were obtained in just one or a few

trials due to the effectiveness of the induction algorithm,
then the method in this paper would not consider it to be
overfit. Additionally, their method only considers the
performance of the best classifier, not the distribution
curve of its competitors, which yields additional insight
into their relative performance.

6. Discussion and Conclusion

Hindsight is 20-20—or at least 20-40 in data mining—and
can lead to valuable lessons learned. The KDD Cup
thrombin competition task is useful to sharpen us as a
field to take greater heed of statistical significance when
testing many alternatives, and it yielded the analysis
method above for aiding us in knowing when our best
result is actually mediocre. In short, it asks how
reasonably can we reject the null hypothesis that the best
obtained classifier’s performance is what one would
expect from a large sample of trivial classifiers?

Data mining competitions in classification are particularly
prone to overfitting, since the winner is selected over
many competitors based on a single test set—in some
sense, the promoted result has the unfair advantage of
learning on the test set, and likely does not have the best
generalization error. We propose that future data mining
competitions apply the analysis technique given in this
paper in order to provide a baseline. With this, we can see
what fraction of the contestants performed much better
than trivial classifiers would. We also propose that some
future data mining competition score the results based on
ROC area analysis, partly to increase the awareness of
this powerful technique, which yields much more
information than a single accuracy score or a confusion
matrix can. We hypothesize that the difficulty with the
test set would have been more widely discovered if ROC
analysis were more commonly used.

Furthermore, in this paper we addressed the situation
where a classification task is very difficult or nearly
unlearnable, and yet by trying many different methods,
one can find a classifier that appears to have good
performance. Real-world data mining efforts in industrial
settings often have this property, and may go
undiscovered. This calls for new research methods to
detect and avoid spending effort on them, e.g. see Zhang
et al. (2000) for a result on unlearnable regression tasks.

Finally, we must acknowledge the importance of
leveraging domain knowledge. Much of the supervised
machine learning research avoids using domain
knowledge, because of the effort to obtain and integrate it
and because one’s research results are then open to the
criticism that the discrimination power of the classifier is
due largely to applying “just the right” domain
knowledge. Nonetheless, significant advances in AI have
come about through incorporating domain knowledge,
especially in selecting the best problem representation.
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