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As the cost of computing per-pixel depth imagery from stereo cameras in 
real time has fallen rapidly in recent years, interest in using stereo vision 
for person tracking has greatly increased. Methods that attempt to track 
people directly in these "camera-view" depth images are confronted by 
their substantial amounts of noise and unreliable data. Some recent 
methods have therefore found it useful to first compute overhead, "plan-
view" statistics of the depth data, and then track people in images of these 
statistics. We describe a new combination of plan-view statistics that 
better represents the shape of tracked objects and provides a more robust 
substrate for person detection and tracking than prior plan-view 
algorithms. We also introduce a new method of plan-view person 
tracking, using adaptive statistical templates and Kalman prediction. 
Adaptive templates provide more detailed models of tracked objects than 
prior choices such as Gaussians, and we illustrate that the typical 
problems with template-based tracking in camera-view images are easily 
avoided in a plan-view framework. We compare results of our method 
with those for techniques using different plan-view statistics or person 
models, and find our method to exhibit superior tracking through 
challenging phenomena such as complex inter-person occlusions and 
close interactions. Reasonable values for most system parameters may be 
derived from physically measurable quantities such as average person 
dimensions. 
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1 Introduction

Many methods for real-time multi-person detection and tracking with video
cameras have been described in the literature. Unfortunately, few of these, if
any, produce reliable results for long periods of time in unconstrained environ-
ments. This poor performance stems from the many diÆcult challenges that
commonly beset the problem, among the most signi�cant of which are:

� Segmenting the novel or dynamic objects (\foreground") in the video from
the rest of the scene (\background")

� Distinguishing people from other foreground objects such as cars, shopping
carts, or curtains blowing in the wind

� Avoiding distraction and confusion due to lighting-related scene appearance
changes such as shadows, inter-re
ections, and global illumination variation

� Tracking people through temporary occlusions, either in part or in full, by
other people or by static objects in the scene

� Maintaining track integrity when people engage in close interactions, accel-
erate rapidly, or quickly change their body pose or appearance

Per-pixel depth or disparity imagery from stereo cameras o�ers much promise
for dealing with these issues. For example, the distance information inherent
in these images allows for straightforward assessment, in comparison with
techniques based on monocular video, of the 3D locations of tracked objects.
In addition, depth data

� Is a powerful cue for foreground segmentation

� Is relatively insensitive to lighting e�ects such as shadows and global illumi-
nation changes

� Provides shape and metric size information that can be used to distinguish
people from other foreground objects

� Allows occlusions of people by each other or by background objects to be
detected and handled more explicitly

� Permits the quick computation of new types of features for matching person
descriptions across time

� Provides a third, disambiguating dimension of prediction in tracking

In recent years, as hardware and software for computing depth imagery from
stereo cameras has become increasingly fast and cheap [2{4,1,5], several per-
son detection and tracking methods that make use of real-time depth data
have been presented. Most of these analyze and track features, gradients, and
smoothly connected regions directly in the depth images themselves [6{9].
When the depth images are accompanied by a spatially- and temporally-
registered color or grayscale video stream, the results of the depth-based analy-
sis are easily integrated with those extracted from the color or luminance data.
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Fig. 1. Example of color-with-depth video input, obtained using the Point Grey
Triclops camera [1]. In the depth image, brighter pixels indicate greater distance
from the camera, and invalid (unreliable) depth data is shown in black.

Many of the traditional frameworks for tracking in monocular views may then
be applied, but to the much richer per-pixel feature space of appearance (color
or luminance) plus shape (depth).

This methodology is not as fruitful as one might hope, however, because to-
day's stereo cameras produce depth images whose statistics are far less clean
than those of standard color or monochrome video. For multi-camera stereo
implementations, which compute depth by �nding small area correspondences
between image pairs, unreliable measurements often occur in image regions
of little visual texture, as is often the case for walls, 
oors, or people wearing
uniformly-colored clothing. This usually causes much of a depth image to be
unusable. Also, it is not possible to �nd the correct correspondences in regions,
usually near depth discontinuities in the scene, that are visible in one stereo
input image but not the other. This results in additional regions of unreliable
data, and causes the edges of an object in a depth image to be noisy and
poorly aligned with the object's color image edges. All of these problems are
evident in the typical color and depth image pair of Figure 1.

Even at scene locations where depth measurements are informative, the sen-
sitivity of the stereo correspondence computation to very low levels of imager
noise, lighting 
uctuation, and scene motion leads to substantial depth noise.
For apparently static scenes, the standard deviation of the depth value at a
pixel over time is commonly on the order of 10% of the mean - much greater
than for color values produced by standard imaging hardware. This noise
makes it diÆcult to apply typical image analysis and tracking methods to
depth data with the same con�dence to which we are accustomed for color
or monochrome video. For instance, a single person in a depth image is com-
monly split into multiple image regions not just by partial occlusions, but also
by patches of unreliable depth data. In addition, the depth image gradients
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dividing closely-spaced people are not unlike those that occur, for instance,
between a person's hand and his own body when he directs his arm toward the
camera. Methods that attempt to segment people based on depth gradients
therefore often have trouble separating one person from another without also
splitting individuals into pieces.

To combat all these problems, some very recent person tracking methods have
been based not on analysis of the raw depth images, but instead on images
of depth statistics that are more conducive to the tracking task. Speci�cally,
these methods have used the metric shape and location information inherent in
the original \camera-view" depth images to compute statistics of the scene as
if it were observed by an overhead, orthographic camera. In these \plan-view"
images, the representations of people are highly amenable to accurate spatial
localization and tracking under diverse and challenging conditions. Section 2
describes the computation of plan-view statistics from depth data in greater
detail, motivates their use in person detection and tracking, and outlines the
context of previous work in this area.

In this paper, we introduce a new combination of plan-view statistics that bet-
ter preserves object shape information than prior approaches, and therefore
provides superior features for tracking. We also present a person detection and
tracking method that has not previously been applied to plan-view images of
any kind. The method uses Kalman prediction on adaptive statistical tem-
plates, which provide a more detailed description of tracked people than the
models used by prior plan-view methods. The improved person models allow
for better tracking through complex inter-person occlusions and close interac-
tions, among other bene�ts. We also illustrate how the typical problems with
adaptive template tracking in camera-view images are easily avoided in our
plan-view framework. Our method enables high-quality, multi-person track-
ing with a single, compact, static stereo camera unit that may be mounted
on walls, ceilings, furniture, or desktop computers. However, the method is
also well-suited for incorporation into a multi-unit system that tracks people
throughout arbitrarily large, complex spaces. The method operates in an on-
line mode, rather than as a batch process, and therefore is appropriate for
real-time applications.

The remainder of the paper proceeds as follows. Section 2 leads up to the
introduction of our plan-view statistical substrate, whose computation is de-
scribed in Section 3. Section 4 details an approach for detecting and tracking
people in this substrate, using Kalman �ltering on adaptive statistical tem-
plates. In Section 5, we highlight a means of dealing with common adaptive
template issues such as drift and choice of template size. Section 6 discusses
the high-quality tracking results obtained by our method, and compares these
results to those obtained when more limited statistics or person models are
used.
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Fig. 2. To make a plan-view map, we project foreground into a point cloud in
the 3D camera body coordinate system, and then rotate our view of this point
cloud to a virtual, overhead camera position. The space is then divided into vertical
bins aligned with an axis pointed toward the sky, and one plan-view pixel value is
computed for each vertical bin.

2 Plan-View Statistics

The motivation behind using plan-view statistics for person tracking begins
with the observation that, in general, people tend to not overlap much in the
dimension normal to the ground. That is, in most contexts in which person-
tracking might be used, people typically do not have signi�cant portions of
their bodies above or below those of other people. We might therefore expect
to separate people more easily, and to reduce occlusion problems, by mounting
our cameras overhead and pointing them toward the ground. Several person
tracking systems that rely on monocular video exploit this idea and are de-
signed to operate with cameras mounted in this way [10,11]. However, such
methods usually either must continue to deal with signi�cant occlusion prob-
lems in all but the central portion of the image (particularly if wide-angle
lenses are used), or must accept a somewhat limited �eld of view (particularly
if the ceiling is relatively low). Furthermore, when mounted overhead, the
cameras used for tracking are not suitable for extracting images of people's
faces, which are desired in many applications that employ vision-based person
tracking. When tracking is required in an outdoor environment, an overhead
camera mount may not even be feasible.

With a stereo camera, we can produce orthographically projected, overhead
views of the scene that better separate people than the perspective images
produced by a monocular overhead camera. In addition, we can produce these
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\plan-view" images even when the stereo camera is not mounted overhead,
but instead at an oblique angle that maximizes viewing volume and preserves
our ability to see faces. All of this is possible because the depth data produced
by a stereo camera allows for the partial 3D reconstruction of the scene, from
which new images of scene statistics, using di�erent viewing angles and camera
projection models, can be computed. Plan-view images are just one possible
class of images that may be constructed, but are among those with the greatest
utility for person tracking.

Figure 2 illustrates the basic principles and coordinate systems underlying the
transformation of camera-view depth images into plan-view statistical images.
Every reliable measurement in a depth image can be back-projected, using
camera calibration information and a perspective projection model, to the
3D scene point responsible for it. By back-projecting all of the depth image
pixels, we create a 3D point cloud, in the XcamYcamZcam-coordinate frame of
the stereo camera, representing the portion of the scene visible to the camera.
We would like to analyze the 3D point cloud in terms of a world XWYWZW -
coordinate system in which the ZW -axis is aligned with the \vertical" axis
of the world - that is, the axis from the center of the Earth toward the sky,
normal to the XWYW -ground-level-plane in which we expect people to be
well-separated. (For simplicity, one may assume in this discussion that the
true scene ground is planar, but in Section 3 we discuss a simple modi�cation
of our method that compensates for scenes in which it is not.) We therefore
select such a coordinate system (which involves choosing a ground level plane,
a world origin in the plane, and the directions of the XW - and YW -axes in the
plane), and then measure the stereo camera's location and orientation within
it. This e�ectively tells us how to move the real, physical stereo camera into
a virtual, overhead, downwardly-directed con�guration, thereby aligning the
3D point cloud in the frame of the stereo camera with the world coordinate
frame.

Although one might implement a person tracking algorithm that operates
directly on this point cloud, we prefer to reduce the data dimensionality by
�nding 2D views or projections of it that are well-suited for person tracking.
We therefore discretize the 3D world space into vertical bins extending along
the ZW -axis and intersecting the XWYW -plane in a regular grid. A plan-view
image contains one pixel for each of these vertical bins, with the value at the
pixel being some statistic of the 3D points within the corresponding bin.

Plan-view projection of per-pixel depth from stereo has been applied to person
detection and tracking by Beymer [12], Darrell et. al. [13], and by researchers
at Interval Research Corp. [14]. All of these methods chose to image the same
statistic of the 3D points within the vertically oriented bins, namely the count
of points in each bin. In the resulting images, referred to as plan-view \oc-
cupancy" or \density" maps, people appear as \piles of pixels" that can be

6



tracked as they move around the ground plane. Although powerful, this repre-
sentation discards virtually all object shape information in the vertical (ZW )
dimension. In addition, the occupancy map representation of a person will
show a sharp decrease in saliency when the person is partially occluded by
another person or object, as far fewer 3D points corresponding to the person
will be visible to the camera.

To address these shortcomings, we image a second plan-view statistic, namely
the height above the ground-level plane of the highest point within each ver-
tical bin. This image, which we refer to as a \plan-view height map", is ef-
fectively a simple orthographic rendering of the shape of the 3D point cloud
when viewed from overhead. The notion of applying plan-view height maps to
person tracking has been explored preliminarily by Interval researchers [14],
and plan-view height maps from stereo have been used in other contexts such
as automatic military target recognition [15] and path-planning for the Mars
rover [16]. Height maps preserve about as much 3D shape information as is
possible in a 2D image, and therefore seem better suited than occupancy maps
for distinguishing people from each other and from other objects. This shape
data also provides richer features than occupancy for accurately tracking peo-
ple through close interactions and partial occlusions. Furthermore, when the
stereo camera is mounted in a high position at an oblique angle, the heads
and upper bodies of people often remain largely visible during inter-person
occlusion events, so that a person's height map representation is usually more
robust to partial occlusions than his occupancy map statistics.

Like occupancy maps, however, height maps are susceptible to some problems.
For instance, the movement of relatively small objects at heights similar to
those of people's heads, such as when a person places a book on an eye-level
shelf, can appear similar to person motion in a height map. Also, use of the
highest point within each vertical bin, rather than height-rank-�ltering for
the point at perhaps the 90th-percentile, allows for fast computation of height
maps, but makes these maps very sensitive to depth noise. The e�ects of
depth noise are often severe enough to counteract any bene�ts of constructing
plan-view height maps.

We largely overcome both of these problems, as well as those associated with
occupancy maps, through the novel strategy of 1) using occupancy statistics
to re�ne the height map, and 2) using occupancy and height statistics together
for tracking. This approach, described in Section 3, creates a rich and robust
plan-view basis for tracking. Sections 4 and 5 go on to describe a tracking
method, based on Kalman prediction on adaptive statistical templates, that
seeks to leverage as much of the detail in our plan-view maps as possible for
use as features in tracking.
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Fig. 3. Overview of person tracking algorithm.

3 Building Maps of Plan-View Statistics

An overview of our full person tracking method is shown in Figure 3. In this
section, we describe all the steps prior to the rightmost block. These steps
transform and re�ne camera-view color and depth data to create the plan-
view image input upon which the tracking methods of Sections 4 and 5 are
based.

3.1 Camera Setup and Video Input

The input to the method is a video stream of \color-with-depth"; that is, the
data for each pixel in the video stream contains three color components and
one depth component. Color and depth from one frame of such a stream is
shown in Figures 4a and 4b. We use depth instead of disparity for two reasons.
First, operations carried out in a metric depth space are usually easier to
understand, are more directly related to physically determinable parameters,
and are often simpler to compute than equivalent operations in a disparity
data space. This should become clearer as we explain our method. Second, we
would like our method to be applicable in systems that compute depth not
only by image area-matching techniques, but also by methods based on other
means, such as lidar, that do not produce disparities.

When multi-camera stereo is used to provide color and depth, calibrations
must be performed to determine three mappings between coordinate systems
that will be used in constructing plan-view images:

1. Calibration of each individual camera's intrinsic parameters and lens dis-
tortion function is needed to map each camera's raw, distorted input to
images that are suitable for stereo matching.

2. Stereo calibration and determination of the cameras' epipolar geometry is
required so that the set of individual cameras may be treated as a single
virtual camera head producing color-with-depth video. More speci�cally, we
must �nd the parameters for mapping disparity image values (u; v; disp),
using perspective back-projection, to 3D coordinates (Xcam; Ycam; Zcam) in
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Fig. 4. Example camera-view input. From left to right, (a) Current color, (b) Current
depth, (c) Foreground color. Unreliable (low con�dence) depth data is shown in
black.

the frame of the camera body. The perspective equations relating these
coordinate systems are given in Section 3.3, but we note here that the
parameters required from this calibration step are the camera baseline sep-
aration b, the virtual camera horizontal and vertical focal lengths fu and fv
(for the general case of non-square pixels), and the image location (uo; vo)
where the virtual camera's central axis of projection intersects the image
plane.

3. The rigid transformation relating the XcamYcamZcam camera body coordi-
nate system to the XWYWZW world space must be determined so that we
can align the 3D point cloud properly with the vertically-oriented bins and
the ground level plane. We speci�cally seek the rotation matrix Rcam and
translation vector ~tcam required to move the real stereo camera into align-
ment with an imaginary stereo camera located at the world origin and with
Xcam-, Ycam-, and Zcam-axes aligned with the world coordinate axes.

Many standard methods exist for accomplishing these calibration steps, and
any two or more of the above steps can be combined into a single parame-
ter optimization process. Since calibration methods are not our focus here,
we do not describe particular techniques, but instead set forth the require-
ments that, whatever methods are used, they result in the production of
distortion-corrected color-with-depth imagery, and they determine the param-
eters b; fu; fv; (uo; vo) ;Rcam

; and ~tcam.

To maximize the volume of viewable space without making the system overly
susceptible to occlusions, we prefer to mount the stereo camera at a relatively
high location, with the central axis of projection roughly midway between
parallel and normal to the XWYW -plane. Although our stereo camera typi-
cally consists of a planar array of imagers with a stereo baseline on the order
of 10-20cm, our method is applicable for any positioning and orientation of
the monocular cameras, provided that the above calibration steps can be per-
formed accurately. We use lenses with as wide a �eld of view as possible,
provided that the lens distortion can be well-corrected.
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3.2 Foreground Segmentation

Rather than use all of the image pixels in building plan-view statistical maps,
we restrict our attention to objects in the scene that are novel or that move in
ways that are atypical for them. These objects are segmented in the camera-
view space via a relatively sophisticated technique for background estimation
and removal, as detailed in [17,18]. In this method, the recent history of ob-
servations is modeled independently at each pixel, using Time-Adaptive, Per-
Pixel Mixtures Of Gaussians (TAPPMOGs) in a four-dimensional pixel ob-
servation space of depth, luminance, and two chroma components. An online
approximation to Expectation-Maximization is used to adapt the Gaussian
mixture parameters as new image observations arrive, with observations cor-
responding to older images receiving less weight in the modeling process. A
subset of the Gaussians in each pixel's mixture model is selected at each time
step to represent the background. At each pixel where the current color and
depth are well-described by that pixel's background model, the current video
data is labeled as background. Otherwise, it is labeled as foreground.

Connected components analysis is used to remove small, isolated foreground
regions and to �ll small foreground holes, but we have found in practice that
this is not critical to the success of our person tracking method. Figure 4c
shows an example result of foreground extraction. The imprecision in the
foreground edges is due to depth noise, but does not signi�cantly a�ect person
tracking performance.

\High-level" feedback is also used to further re�ne and guide the pixel-level
segmentation. The background model is not updated where the person tracker
believes that people are present, so that people who remain relatively static
for long time periods are not slowly incorporated into the background model.
Most of the remaining foreground is assumed to not correspond to people,
and is regarded as foreground segmentation \errors". Rapid lighting changes
are also detected, and the foreground associated with these changes are also
regarded as errors. The distribution of all such errors over time are, like the ob-
servation history, modeled using a TAPPMOG scheme. The error TAPPMOG
and observation history TAPPMOG are periodically merged, as described in
[17], so that the background model better re
ects these errors, thereby de-
creasing the likelihood that they will be segmented as foreground again in the
future. This error-correction via high-level feedback allows for rapid recovery
(in less than 2 seconds) from rapid lighting changes, and allows quick adap-
tation of the background model to uninteresting scene changes (such as the
moving of the chair), so that few of these types of events provide substantial
distraction to the person tracking system.
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3.3 Plan-View Map Construction

All camera-view image foreground pixels with reliable depth measurements
are used in building our plan-view statistical maps. This process begins with
construction of a 3D point cloud representing the foreground in the scene.
For a binocular stereo pair, two coordinate transforms are needed to convert
disparity image data to a point cloud aligned with our XWYWZW world coor-
dinate system. First, we project the disparity disp at camera-view pixel (u; v)
to a 3D location (Xcam; Ycam; Zcam) in the camera body coordinate frame:

Zcam =
bfu
disp

; Xcam =
Zcam(u� uo)

fu
; Ycam =

Zcam(v � vo)

fv
(1)

These equations assume a disparity image coordinate system in which the
u- and v-axes are oriented left-to-right along image rows and top-to-bottom
along image columns, respectively. The monocular cameras are assumed to be
separated along the image u-axis. In the camera body coordinate frame, the
origin is at the camera principal point, the Xcam- and Ycam-axes are coincident
with the disparity image u- and v-axes, and the Zcam-axis points toward the
scene imaged by the camera.

Next, we transform these camera frame coordinates into the (XW ; YW ; ZW )
world space by applying the rotation Rcam and translation ~tcam relating the
two coordinate systems:

�
XW YW ZW

�T
= �Rcam

�
Xcam Ycam Zcam

�T
� ~tcam (2)

Before building plan-view maps from the 3D point cloud, we must choose a
resolution at which to quantize the world space into vertical bins. We would
like this resolution to be small enough to represent the shapes of people in
detail, but we must also consider the limitations imposed by the noise and res-
olution properties of our depth measurement system. In practice, we typically
use vertical bins that intersect the XWYW -ground-level-plane so as to divide
it into a square grid with resolution Æground of 2-4cm/pixel.

We must also choose the bounds (Xmin; Xmax; Ymin; Ymax) of the ground level
area within which we will restrict our attention. This can be done by �rst
intersecting the stereo camera's �eld of view with the full volume of space
within which portions of people might be present, and then projecting this
intersection volume onto the XWYW -plane. The volume in which people may
exist is restricted by the 
oor and walls of the environment, as well as by the
surface at height Hmax above the ground, where Hmax is an estimate of the
maximum height at which we might expect to see human body parts (e.g. how
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high a very tall person might reach with his hands if he stands on his toes).

The ground plane discretization and bounds determine the size of our plan-
view images, and allow us to map 3D point cloud coordinates to their corre-
sponding plan-view image pixel locations (xplan; yplan) as follows:

xplan = b(XW �Xmin)=Æground + 0:5c (3)

yplan = b(YW � Ymin)=Æground + 0:5c

We can now describe how to compute plan-view height and occupancy maps,
denoted as H and O respectively, in a single pass through the camera-view
foreground data. Speci�cally, after setting all pixels in both plan-view maps
to zero, we do the following for each camera-view foreground pixel:

1. Compute the pixel's (Xcam; Ycam; Zcam)-coordinate via equation (1).

2. Compute the pixel's (XW ; YW ; ZW )-coordinate via equation (2).

3. Compute the pixel's plan-view image location (xplan; yplan) via equation (3).

4. If ZW > H (xplan; yplan) and ZW < Hmax, then update the height map:
H (xplan; yplan) = ZW .

5. Increment O (xplan; yplan) by Z2

cam=fufv, which is an estimate of the real
area subtended by the pixel at distance Zcam from the camera.

The scaling of the increments to the occupancy map compensates for the
dependence on distance of an object's size in a camera-view image. If our
plan-view occupancy map contained simply the count of pixels in each vertical
bin in the world, the \pile of pixels" representing an object would grow in size
as the object more closely approached the camera, since the object would
subtend more pixels. By instead using the sum of Z2

cam=fufv over the points
in each vertical bin, we make an object's representation in the occupancy map
relatively independent of distance to the camera, and we tie occupancy map
values to a physically meaningful quantity - namely, the total metric surface
area of foreground visible to the camera within each vertical bin.

Plan-view height and occupancy maps corresponding to the foreground of
Figure 4 are shown in Figures 5a and 5b, respectively. The plan-view location
of the stereo camera is at the middle of the bottom of these images, and the
lines indicate the bounds of the camera's �eld of view when projected onto the
ground plane. In the occupancy map, �ve \blobs" corresponding to the �ve
people in the foreground image are clearly visible. The two people facing each
other and talking to each other correspond to the two lowermost blobs in the
maps. In the height map, the data is less clearly separable into �ve distinct
blobs.
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Fig. 5. Plan-view maps corresponding to the extracted foreground of Figure 4. The
plan-view location of the stereo camera is near the bottom middle of the image, and
the lines indicate the camera �eld of view. From left to right, images are (a) Raw
height map Hraw, (b) Raw occupancy map Oraw, (c) Bitmap indicating where
smoothed occupancy is above threshold �occ, (d) Masked, smoothed height map
Hmasked.

If the true ground in the scene is not planar, we use the depth data asso-
ciated with the scene background model to construct a \height-o�set" map
Ho(xplan; yplan). This map estimates the deviation from planarity of the ground
at all locations in the plan-view images. When building the plan-view height
map for a given frame of foreground, we �rst subtract Ho(xplan; yplan) from
each ZW value before comparing it against Hmax and H(xplan; yplan).

3.4 Plan-View Map Re�nement

Given the rather substantial noise that is typical of depth imagery, it should
not be surprising that the plan-view maps constructed as described above are
also quite noisy. We therefore denote these maps as the \raw" data Hraw and
Oraw, and we convolve them with a Gaussian kernel to produce \smooth" maps
Hsm and Osm. Because plan-view map coordinates correspond to a metric
space (measured in centimeters in our case), and because we know the typical
metric size of the objects (people) in which we are interested, we can make
an intelligent choice of spatial extent for the Gaussian smoothing operator. In
particular, we choose a Gaussian variance in pixels that, when multiplied by
the map resolution Æground, corresponds to a physical size on the order of 1-
4cm. This smooths depth noise in person shapes, while retaining gross features
like arms, legs, and heads.

Although simple Gaussian smoothing produces relatively clean plan-view oc-
cupancy maps, it is inadequate for dealing with the substantial noise in our
raw height maps. Our Hraw contains the maximum height statistic for each
vertical bin; while this statistic may be computed very eÆciently, it is also
very sensitive to depth image noise. When this noise is located at \interest-
ing" heights, such as those typical of heads of upright people, it can severely
disrupt tracking. However, even if a more robust, rank �ltered height statistic
were used, and even if this statistic succeeded in completely eliminating height
map noise, tracking in plan-view height maps would still be confused by the
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movement of small, non-person foreground objects at these same \interesting"
heights. For example, when a person places a sweater on an eye-level shelf,
its appearance in a height map can resemble that of the person who placed
it there, since the height map gives only a partial indication of whether or
not there is a human body beneath any head-level object. These problems
help explain why no prior person tracking methods attempt to make use of
plan-view maps based on only height statistics.

A critical innovation in our method, therefore, is its use of the much less noisy
occupancy map statistics to re�ne the height maps so they can be used in
tracking with an acceptable level of con�dence. Speci�cally, we propose to
use the smoothed height map statistics only in 
oor areas where something
\signi�cant" is present, as indicated by the amount of local occupancy map
evidence. In other words, data in the height map is largely ignored where
the corresponding region of the occupancy map fails to indicate that a large,
person-sized foreground object is in the vicinity. This criterion may be imple-
mented in a number of ways, but here we use the relatively simple technique
of pruning Hsm (setting it to zero) wherever the corresponding pixel in the
smoothed occupancy map Osm is below a threshold �occ. We set the threshold
�occ to a relatively low value, because we do not want to remove from the height
map all evidence of people who are substantially occluded. Even with a low
value of �occ, the re�nement of the height map is signi�cant. One formula for
�occ based on physically measurable quantities is described in the Appendix.

Figure 5c shows the mask obtained by applying the threshold �occ to the
smoothed occupancy map of the foreground of Figure 4. The result of applying
this mask to Hsm is shown in Figure 5d. This masked height map Hmasked,
along with the smoothed occupancy map Osm, provide an excellent new basis
on which to build person detection and tracking algorithms. In Sections 4 and
5, we describe an example method that, as indicated by the results of Section
6, is particularly well-tailored to this basis.

4 Tracking and Adapting Templates of Plan-View Statistics

In the plan-view person tracking method of Beymer [12], people are modeled
with Gaussians applied to occupancy maps. Darrell et. al. [13] use an even
simpler model, namely the integral of the occupancy data within some plan-
view support region, and implement tracking as a batch process that relies
on dynamic programming to produce results for an entire sequence of video
frames at once. In this section, we describe a novel technique that employs
much more descriptive, template-based person models that can adapt quickly
over time. Furthermore, our method allows for online, real-time detection and
tracking of people with good accuracy. The detection and tracking components
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of our approach are detailed in Sections 4.1 and 4.2, respectively.

4.1 Person Detection

We begin to detect a new person in the scene by looking for a signi�cant \pile
of pixels" in the occupancy map that has not been accounted for by tracking of
people found in previous frames. More precisely, after tracking of known people
has been completed, and after the occupancy and height evidence supporting
these tracked people has been deleted from the plan-view maps, we convolve
the occupancy map Osm with a box �lter and �nd the maximum value of the
result. If this peak value is above a threshold �newOcc, we regard its location
as that of a candidate new person. The box �lter size is again a physically-
motivated parameter, with width and height equal to an estimate of twice the
average shoulder-to-shoulder torso width Wavg of adult people. We use a value
of Wavg around 40cm.

We apply additional tests at the candidate person location to better verify
that this is a person and not some other type of object. Currently, we require
that two simple tests be passed:

1. The highest value in Hmasked within a square of width 2 �Wavg centered at
the candidate person location must exceed some plausible minimum height
�newHt for people.

2. Among the camera-view foreground pixels that map to the plan-view square
of width 2 �Wavg centered at the candidate person location, the fraction of
those whose luminance has changed signi�cantly since the last frame must
exceed a threshold �newAct.

These tests ensure that the foreground object is physically large enough to be
a person, and is more physically active than, for instance, a statue. However,
these tests sometimes exclude small children or people in unusual postures, and
sometimes fail to exclude large, non-static, non-person objects such as foliage
in wind. We are therefore in the process of implementing more sophisticated
tests to be applied to the shape data available in the plan-view images. In
addition, some of these errors might be avoided by restricting the detection of
people to certain entry zones in the plan-view map.

Whether or not the above tests are passed, we delete, after the tests have been
applied, the height and occupancy map data within a square of width 2�Wavg

centered at the location of the box �lter convolution maximum. We then apply
the box �lter to Osm again to look for another candidate new person location.
This process continues until the convolution peak value falls below �newOcc,
indicating that there are no more likely locations at which to check for newly
occurring people.
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In detecting a new person to be tracked, our philosophy is that we would like to
see him without substantial occlusion for a few frames before we oÆcially add
him to our \tracked person" list. We therefore aim to set the new person occu-
pancy threshold �newOcc so that half of an average-sized person must be visible
to the stereo pair in order to exceed it. This is approximately implemented
using �newOcc =

1

2
� 1

2
�WavgHavg, where Wavg and Havg denote average person

width and height, and where the extra factor of 1

2
roughly compensates for the

non-rectangularity of people and the possibility of unreliable depth data. We
also do not allow the detection of a candidate new person within some small
plan-view distance (e.g. 2 �Wavg) of any currently tracked people, so that our
box �lter detection mechanism is less susceptible to exceeding �newOcc due to
contribution of occupancy from the plan-view fringes of more than one person.
Finally, after a new person is detected, he remains only a \candidate" until
he is tracked successfully for some minimum number of consecutive frames.
No track is reported while the person is still a candidate, although the track
measured during this probational period may be retrieved later.

4.2 Tracking with Plan-View Templates

Kalman �ltering is used to track patterns of plan-view height and occupancy
statistics over time. Much prior work on multi-target tracking with Kalman
�lters exists both within and outside the computer vision literature; see, for
example, [19{21]. Also, Beymer [12] applies a Kalman framework to tracking
multiple Gaussian models of people in plan-view occupancy maps. Our focus
here is not on innovation in Kalman �ltering, but rather on adapting the
standard methodology to our plan-view statistical substrate. In the future, we
are interested in exploring more powerful tracking methods such as particle
�ltering, which can estimate non-Gaussian, non-linear dynamic processes and
which has recently been extended to track multiple targets [22,23].

The state representation and dynamical models underlying our Kalman �lters
are described in Section 4.2.1. Section 4.2.2 details the core of the algorithm
for tracking people from one frame to the next. Finally, in Section 4.2.3, we
outline simple \long-term" tracking methods that help compensate for possible
failures in inter-frame tracking.

4.2.1 Kalman State and Prediction

The Kalman state maintained for each tracked person is the three-tuple
D
~x;~v; ~S

E
,

where ~x is the two-dimensional plan-view location of the person, ~v is the two-
dimensional plan-view velocity of the person, and ~S represents the body con-
�guration of the person. While one might think it preferable to parameterize
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body con�guration in terms of joint angles or other pose descriptions, we �nd
that simple templates of plan-view height and occupancy statistics provide
an easily computed but powerful shape description. Hence, we update the ~S
component of the Kalman state directly with values from subregions of the
Hmasked and Osm images, rather than �rst attempt to infer body pose from
these statistics, which is likely an expensive and highly error-prone process.
Our Kalman state may therefore more accurately be written as h~x;~v; TH ; TOi,
where TH and TO are a person's height and occupancy templates, respectively.
The observables in our Kalman framework are the same as the state; that is,
we assume no hidden state variables.

For Kalman prediction, we use a constant velocity model, and we assume that
person pose varies smoothly over time. At high system frame rates, we there-
fore would expect little change in a person's template-based representation
from one frame to the next. For simplicity, we predict no change at all. Be-
cause the template statistics for a person are highly dependent on the visibility
of that person to the camera, we are e�ectively also predicting no change in
the person's state of occlusion between frames. These predictions will obvi-
ously not be correct in general, but they will become increasingly accurate
as the system frame rate is increased. Fortunately, the simple computations
employed by our method are well-suited for high-speed implementation, so
that it is not diÆcult to construct a system that operates at a rate where our
predictions are reasonably approximate.

4.2.2 Kalman Measurement and Update Steps

The measurement step of the Kalman process is carried out for each person
individually, in order of our con�dence in their current positional estimates.
This con�dence is taken to be proportional to the inverse of �2

~x, the variance for
the Kalman positional estimate ~x. To obtain a new position measurement for
a person, we search in the neighborhood of the predicted person position ~xpred
for the location at which the current plan-view image statistics best match
the predicted ones for the person. The area in which to search is centered
at ~xpred, with a rectangular extent determined from �2

~x. A match score M
is computed at all locations within the search zone, with lower values of M
indicating better matches.

The value of the match scoreM for the ith person at some plan-view location
~x is linearly proportional to four metrics that are easily understood from a
physical standpoint:

1. The di�erence between the shape of the tracked person when seen from
overhead, as indicated by the ith person's height template TH , and that
of the current scene foreground, as indicated by the masked height map
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Hmasked, in the neighborhood of ~x.

2. The di�erence between the amount of the tracked person's visible surface
area, as indicated by the ith person's occupancy template TO, and that of
the current scene foreground, as indicated by the smoothed occupancy map
Osm, in the neighborhood of ~x.

3. The distance between ~x and the predicted person location ~xpred.

4. The closeness of ~x to the measured locations of all people previously tracked
in this frame.

The �nal component attempts to enforce the physical principle that two people
cannot occupy the same space at the same time, and discourages the matching
of more than one person to nearly the same location in the plan-view maps.
For the ith person, we compute the above match score at location ~x as follows:

M(i; ~x)=� � SAD(TH ;Hmasked(~x)) +

� � SAD(TO;Osm(~x)) + (4)


 �
q
(x� xpred)2 + (y � ypred)2 +

� �
X
j<i

� (~xj;Wavg; ~x)

SAD refers to \sum of absolute di�erences", but averaged over the number
of pixels used in the di�erencing operation so that all matching process pa-
rameters are independent of the template size. � (: : :) denotes the Gaussian
function evaluated at location ~x, where the Gaussian has a mean equal to the
position estimate ~xj of a previously tracked person, and a variance equaling
the average person torso width. Appropriate relative weightings for the various
terms in equation (4) can be determined from physical principles, as discussed
in the Appendix.

When comparing a height template TH to a portion of Hmasked via the SAD
operation, it is not desirable to include di�erences at pixels where either TH or
Hmasked has been masked out but the other has not, as this might arti�cially
in
ate the SAD score. We should not simply ignore these pixels, however,
because we would like the SAD to be high (bad) when a data-rich template
is compared with a largely empty portion of Hmasked. Therefore, we modify
the SAD process, for the height comparison only, to substitute an arti�cial
height di�erence wherever either, but not both, of the corresponding pixels
of Hmasked and TH are zero. The arti�cial di�erence is chosen to be Hmax=3,
which is the expected di�erence of two random variables uniformly distributed
between 0 and Hmax.

If the best (minimal) match score falls below a threshold �track, we update the
person's Kalman state with new measurements. The location ~xbest at which
M(~x) was minimized serves as the new position measurement, and the new

18



velocity measurement is the inter-frame change in position divided by the
time di�erence. The image values of Hmasked and Osm in the area surrounding
~xbest are used as the new body con�guration measurements for updating the
templates. (The extent of this area is discussed in Section 5.) This image data
is cleared before tracking of another person is attempted. A relatively high
Kalman gain is used in the template update process, so that templates adapt
quickly. To reduce computation, one might simply copy the current plan-view
map statistics into the person templates TH and TO, rather than maintain
Kalman covariance matrices for them and use the standard Kalman update
equations. We use this simpli�cation, and have found in practice that it causes
little degradation in tracking performance.

If the best match score from equation (4) is above �track for some person, we do
not update that person's Kalman state with new measurements, and we report
~xpred as the person's location. The positional state variances are incremented,
re
ecting our decrease in tracking con�dence for the person. The person is
also placed on a temporary list of \lost" people, which is used as described in
the next section.

4.2.3 Long-Term Tracking Techniques

When someone exits the scene temporarily or is substantially occluded for an
extended time, he may remain on the \lost" person list for many frames, with
his position being reported solely on the basis of Kalman prediction. When
the person becomes visible again, it is often the case that the Kalman position
prediction will be far from correct, especially when the person has been lost
for signi�cant time. The person's plan-view templates will also probably not
match well with his new appearance. We therefore resort to secondary, \long-
term" tracking methods, as described below, in order to link the tracks of lost
people to their reappearances in the scene.

After tracking (as described in Section 4.2.2) and new person detection (as
described in Section 4.1) have been completed, we determine, for each lost
person, whether or not any newly detected person is suÆciently close in space
(e.g. 2 meters) to the predicted location of the lost person or to the last place
he was sighted. If so, and if the lost person has not been lost too long, we
decide that the two people are a match. In the future, we will apply more
sophisticated matching criteria based on person shape and appearance. If the
new and lost people are declared a match, we set the lost person's Kalman
state to be equal to that of the newly detected person. If a lost person cannot
be matched with any newly detected person, we consider how long it has been
since the person was successfully tracked. If it has been too long (above some
time threshold such as 4 seconds), we decide that the person is permanently
lost, and we delete him from the list of people we are trying to track.
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5 Avoidance of Adaptive Template Problems

A variety of tracking schemes based on adaptive templates have been used
in prior, \camera-view" tracking systems; recent examples include [24,25]. As
models of tracked objects, adaptive templates would seem to o�er, in theory,
the advantages of simplicity, 
exibility, and descriptive power. In practice,
however, adaptive template descriptions of objects have proven suÆciently
problematic to cause them to be abandoned, in most current systems, in favor
of parameterized models such as \blobs", Gaussians, or linear combinations
of basis shapes. In this section, we discuss how the typical problems with
camera-view, adaptive template tracking are easily side-stepped in our plan-
view approach.

5.1 Choice of Template Size

Most template-based tracking methods that operate on camera-view images
encounter diÆculty in selecting and adapting the appropriate template size
for a tracked object, because the size of the object in the image varies with
its distance from the camera. In the plan-view framework described above,
however, we are able to obtain good performance with a template size that
remains constant across all people and all time. Speci�cally, we employ square
templates whose sides have a length in pixels that, when multiplied by the
plan-view map resolution Æground, is roughly equal to 2 �Wavg. As discussed in
Section 4.1, Wavg is an estimate of the average torso width (from shoulder to
shoulder) of adult people, and we use Wavg � 40cm.

Use of a constant template size is reasonable because of a combination of two
factors. First, people spend almost all of their waking time in a predominantly
upright position (even when sitting), and the spatial extents of most upright
people, when viewed from overhead, are con�ned to a relatively limited range.
Second, our plan-view representations of people are, ideally, invariant to their

oor locations relative to the camera. In practice, the plan-view statistics for
a given person become more noisy as he or she moves away from the camera,
because of the smaller number of camera-view pixels that contribute to them.
Nevertheless, some basic properties of these statistics, such as their typical
magnitudes and spatial extents, do not depend on the person's distance from
the camera, so that no change in template size is necessitated by the person's
movement around the room.

Our template width of 2 �Wavg � 80cm is large enough to accomodate the
torsos of nearly all upright people, as well as much of their outstretched limbs,
without being overly large for use with small or closely-spaced people. For

20



Fig. 6. Evolution of height and occupancy templates TH and TO for a single tracked
person over the course of 1.5 seconds (every other frame shown). Top row: Color
video of person taking a step toward camera and then turning to his right (depth
not shown); Middle row: Extracted, re-centered height templates TH ; Bottom
row: Extracted, re-centered occupancy templates TO.

people of unusual size or in unusual postures, this template size still works well,
although perhaps it is not ideal. As we develop more sophisticated methods
of analyzing person shape and activity, we may allow our templates to adapt
in size when appropriate.

5.2 Reduction of Template \Slippage"

Templates that are updated over time with current image values inevitably
\slip o�" the tracked target, and begin to re
ect elements of the non-target
image background. This is perhaps the primary reason that adaptive templates
are seldom used in current tracking methods. Our method, as described thus
far, also su�ers from this template \slippage". However, with our plan-view
statistical basis, it is relatively straightforward to counteract the problem in
ways that are not feasible for other image substrates.

Speci�cally, we are able to virtually eliminate template slippage through a
simple template \re-centering" technique that relies on our knowledge of typ-
ical person sizes in plan-view maps. On each frame, after tracking according
to Section 4.2 has completed, we compute for each person the location in Osm

of the occupancy center-of-mass ~xcom for the pixels within a square of width
Wavg centered at the person's estimated location. This provides an estimate
for each person of where the bulk of his or her associated plan-view statisti-
cal data is currently centered. New templates TH and TO are then extracted
from Hmasked and Osm at ~xcom for each person. Also, each person's location
in the Kalman state vector is shifted to ~xcom, without changing the velocity
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estimates or other Kalman �lter parameters. Re-centering is not applied to
people whose best match score from equation (4) is above �track, and whose
current location estimate is therefore simply the Kalman prediction.

We have found this re-centering technique to be very e�ective in keeping
templates solidly situated over the plan-view statistics representing a per-
son, despite depth noise, partial occlusions, and inter-person interactions. It
also serves to well align the templates extracted for a given individual across
successive frames. An example of the evolution in time of the extracted, re-
centered height and occupancy templates TH and TO for a tracked person
is shown in Figure 6. The robustness provided by the re-centering technique
arises from its ability to use the average person size Wavg to constrain the
search window for �nding a corrected template location. Without this con-
straint, it is diÆcult to prevent templates for a given person from \jumping"
to other nearby people and other foreground objects in the plan-view maps.

6 Experimental Results

We have implemented our method in C++ on a standard PC platform. Live
color and depth video input, at 320x240 resolution and with subpixel disparity
interpolation, is provided by a Point Grey Triclops stereo module [1]. With
little attempt at optimization of our code, the overall system runs at 8Hz
on a dual 750MHz-processor PC. Good tracking performance is obtained at
this frame rate, but because of our method's underlying assumption of slow
inter-frame evolution of plan-view statistics, we expect our tracking results to
improve as the system frame rate is increased. This frame rate can obviously be
increased through use of faster processors and better-optimized code, but one
should also note that the Triclops' software computation of depth is the most
computationally expensive component of our system. Use of a stereo camera
head with hardware-assisted depth computation, such as that available from
Tyzx Inc. [5], would therefore dramatically improve the system speed, and
thereby lead to gains in real-time person tracking performance.

The sophisticated background estimation and removal method of [17] is the
next most costly system component, and hence the frame rate could also be
increased by substituting simpler methods that, for instance, rely on depth
alone [26,27], assume a static background, or employ simpler per-pixel back-
ground models. We have found our tracking results to be largely una�ected by
minor foreground errors such as holes in foreground objects, imprecise object
boundaries, shadows, and isolated regions of foreground noise, so use of sim-
pler background removal methods is not detrimental in many situations. This
is due largely to our use of plan-view image statistics rather than camera-
view foreground analysis. However, simpler foreground estimation methods
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Fig. 7. Example frames from tracking test sequences. Tracking was successful in
the leftmost four frames, but failures occurred on the rightmost two. From left
to right: (a), (b): Typical frames. (c): Three people lined up in the direction
away from camera; note successful tracking of most distant person (inside square)
behind cubicle wall. (d): Multi-person occlusions and non-person foreground object
(chair). (e): Failure occurs where three people are in frame, but third is completely
occluded by another (inside box, not visible) for a long period of time. (f): Failure
occurs where person (inside box) crouches behind a newly opened cabinet door while
multiple people pass in front and nearby.

often fail to adequately handle global lighting changes, slow-moving or sta-
tionary foreground objects, dynamic background objects such as foliage in
wind, movement or addition of \background" objects such as chairs, and other
phenomena. The resulting erroneous omission or inclusion of large foreground
objects may substantially degrade the performance of our, and most other,
tracking methods. Hence, for systems intended to run for long periods of time
in real-world conditions, we recommend use of robust, adaptive foreground
extraction, despite the extra computation this may entail.

We have quantitatively evaluated our method on several color-with-depth
video sequences captured at 12-15Hz and 320x240 resolution. Across all se-
quences, the stereo camera was statically mounted between 2.2m and 3m above
the ground, with a view like that shown in Figure 4. Tracking results were ex-
amined for \signi�cant" errors, de�ned as any of 1) losing track of a person, 2)
failing to detect a person, 3) swapping the identities of two tracked people, and
4) tracking a non-person object. The test sequences, totaling about 10 minutes
in duration, are very challenging: they contain dozens of majority or complete
occlusions of people by one or more other people or static objects, and contain
many close inter-personal interactions of extended duration. Rolling chairs are
pushed around the room and left in new places, other objects are deposited
into or removed from the scene, and large dark shadows appear when people
stand in certain places. Some people walk behind cubicle walls so that only
their heads are visible, others sit down on chairs or on the 
oor, and another
performs a cartwheel. Many unusual postures and actions are observable.

Despite these challenges, and without requiring extensive parameter tuning,
our method made only two signi�cant errors. In one case, a person who hid
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Table 1: Performance Comparison for Tracking Methods

Person Model Plan-View Statistics Used

Occ+Height Height Only Occupancy Only

Adaptive Template 2 10 13

Gaussian 17 33 28

Numbers indicate count of \signi�cant" errors made, as de�ned in Section 6, on a

set of challenging test sequences.

behind another was not correctly linked to her re-appearance after a long
time; in the other, confusion occurred when a person crouched behind a cab-
inet door opened by another occluding person. Use of secondary, long-term
tracking techniques more sophisticated than those described in Section 4.2.3
would likely remedy these problems. Nevertheless, this performance is remark-
able considering that it was obtained with no long-term person appearance
models and no use of color beyond the foreground segmentation stage. Sev-
eral frames from the test sequences are shown in Figure 7, including frames
indicating the two failures. An example movie of results may be found at
http://www.hpl.hp.com/personal/Michael Harville/movies/ptrack02 1.mpg.

To better assess the value of the combination of plan-view height and occu-
pancy statistics for tracking, we compared our results against those obtained
for modi�ed versions of our method that omit either height or occupancy.
Without occupancy data, only height templates are used in equation (4), and
we cannot prune noise and small foreground objects from our height maps as
described in Section 3.4. In addition, we must use height data alone to detect
new people, and the template re-centering method of Section 5.2 is modi�ed
to move templates to the local (withinWavg) peak in the height data. Alterna-
tively, when height data is omitted from tracking, only occupancy templates
are used in equation (4), and the \minimum height" test of Section 4.2 is not
used in distinguishing whether a plan-view \pile of pixels" is a person or some
other type of foreground object.

The �rst row of Table 6 shows that tracking performance declines signi�cantly
when either occupancy or height data is neglected. For the same challenging
test sequences on which our method made only a single error, 10 signi�cant
errors occurred when height statistics alone were used, and 13 such errors
occurred when only occupancy data was used. Many of these errors involved
people far from the camera, where noise in the plan-view statistics becomes
more signi�cant. Other errors included confusion of rolling chairs with peo-
ple when height data was not used to distinguish the two, and swapping of
identities of closely interacting people when occupancy was not used to prune
height map noise.
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We also sought to evaluate the merit of our choice of template-based person
models. To this end, we compared our results to those obtained when a simple
parametric model of a person, namely a plan-view Gaussian, is used instead.
Tracking of Gaussian mixtures on height and occupancy statistics was imple-
mented primarily through replacement of the Kalman measurement step of
equation (4) with a method for �tting competitive mixtures of Gaussians to
plan-view data, similar to that used in [12]. For completeness, we applied this
technique to occupancy data alone, height data alone, and to the combination
of the two. When both height and occupancy were used, separate Gaussian
�ts were done on each statistic in isolation, and the mean of the two results
was used as the new measurement.

The second row of Table 6 shows that the simpler, Gaussian person model
does not perform as well as the adaptive template. The number of signi�cant
errors increased for all choices of plan-view statistical substrate, and the per-
centage of this increase was especially high for the combination of height and
occupancy data. Many of the new errors occur when close interactions and
substantial inter-person occlusions happen, as Gaussians for di�erent people
would sometimes swap places, or would attach to parts of the same person
and other objects the person might be moving (such as a chair). It is possible
that the Gaussian performance could be improved through modi�cation of the
�tting process, but we believe the template-based approach o�ers a simple,
fast alternative.

Finally, we have attempted to estimate the positional accuracy of our method's
tracks, by comparing result tracks to manually estimated ground truth. For
each of 8 person tracks obtained from the above test sequences that did not
contain signi�cant errors (e.g. the person was not lost, or swapped with another
person), the measured track was di�erenced on a point-by-point basis with the
ground truth estimate of the plan-view location of the person's head. Track
sections for which the ground truth was outside the �eld of view of the camera
- for instance, for a person who brie
y exited the scene - were excluded from
the comparison. The mean positional error was found to be 18cm, with a
standard deviation of 14cm.

Figure 8 shows some example comparisons of result tracks against manually
estimated ground truth. The rightmost example shows a very long (nearly
1 minute) track that maintained its integrity despite multiple inter-person
occlusions, the person's brief scene exit, and his temporary, complete occlusion
by a static object.

In general, across all testing, we found the method to be relatively insensitive
to the quality of both the foreground segmentation and the depth data itself.
We observed good tracking performance despite signi�cant holes and noise in
depth and foreground images. Also, the method proved very adept at linking
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Fig. 8. Comparisons of �ve individual result tracks with estimated ground truth.
Results are shown in solid lines, ground truth in dotted lines. Field of view of stereo
pair at the Hmax level is shown in dashed lines. Plan-view position of stereo pair is
near lower-left corner of the images. Ground truth was obtained by manual labeling
of raw plan-view height maps.

the tracks of \lost" people to the correct new sightings of these people when
they re-emerge from a complete occlusion. This is due in large part to the
success of Kalman trajectory prediction in the plan-view image space.

Much work has been done recently to compare the performance of person
tracking systems operating on color or grayscale video from one or more widely
spaced cameras. This has been made possible largely through the collection
and publicization of standard monocular test image sequences, together with
the organization of forums for presenting comparison results [28]. Unfortu-
nately, at the present time, these standard data sets do not include color-
with-depth test sequences, so it is diÆcult to compare our method directly to
the best monocular techniques. Instead, we have attempted to demonstrate
signi�cant improvement over the best methods operating on color-with-depth
video. Because monocular methods operate on only a subset of the data used
by ours, we expect that the proper combination of techniques from the best
monocular systems and from our method (or related plan-view trackers) would
produce a new method whose performance signi�cantly surpasses that of all.
We plan to continue work in that direction.

7 Conclusions

We have presented a technique that allows for accurate measurement and
tracking of the 3D spatial locations associated with events involving people.
An important contribution of this paper is its methods for combining and
re�ning plan-view statistical maps to produce an excellent substrate for per-
son detection and tracking. We believe that this transformation of the depth
data is suÆciently clean and compelling that many standard tracking methods
could be built upon it and would obtain state-of-the-art performance.

26



We introduce a novel template-based scheme for tracking in plan-view that
takes great advantage of the detail in these plan-view maps, and we demon-
strate that the typical diÆculties with adaptive template tracking are easily
avoided in our plan-view framework. The resulting method is highly amenable
to real-time implementation, and exhibits more robust performance under
challenging conditions, such as in crowded environments with many inter-
person occlusions and close interactions, than do methods that rely upon more
limited scene statistics or person models. Also, little tuning of system parame-
ters is required, as reasonable values for most can be computed from physically
measurable values, such as depth sensor resolution or average person size, via
simple formulae.

A Appendix: Relation of System Parameters to Physical Quaniti-

ties

A common problem with many complex engineering systems, including vision-
based person detection and tracking systems, is their dependence on and sen-
sitivity to the values of a large number of tunable parameters. As the number
of system parameters increases, the capabilities of the system grow, but so
may the e�ort required to determine a set of parameter values that allow
for satisfactory system operation in one or more contexts of interest. When
adapting a system to operate in a new context, it is highly desirable that the
process of selecting system parameters not require substantial human labor.

The preceding description of our person detection and tracking method enu-
merated its reliance on a number of tunable parameters. Unlike many other
such tracking systems, however, our method's operation in a metric, plan-view
space allows reasonable values for nearly all system parameters to be expressed
in terms of simple formulae involving physically measurable quantities. Hence,
when adapting our person tracking system to a new context, little work is re-
quired other than the sorts of physical camera calibration described in Section
3.1.

Our method for choosing �occ, the threshold for converting the smoothed oc-
cupancy plan-view map Osm into a bitmap for masking out noise in the height
map, illustrates our reliance on physical principles in setting system param-
eters. First, one should recall that the values in the occupancy map re
ect
the visible surface area of foreground objects within each vertical bin of world
space. Next, we note that the surface area of one face of a vertical bin, from
the 
oor to the maximum person height Hmax, is simply ÆgroundHmax. Finally,
we derive a formula for �occ by setting forth the requirement that, for us to
consider the occupancy of some vertical bin to be \signi�cant", at least some
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fraction � of the viewable area of the bin must be occupied by foreground:

�occ = � � ÆgroundHmax (A.1)

Of course, � itself is a tunable parameter, and we are now left with the task
of choosing its value instead of that for the original parameter �occ. The above
equation, however, provides us with a rational justi�cation for reasonable val-
ues of �, which we did not have for �occ. For instance, a choice of � = 0:05
provides reasonable performance, and comes with the interpretation that we
require a relatively low fraction of a vertical bin to be occupied before we
consider this occupancy to be \signi�cant".

The match score equation (4),

M(i; ~x)=� � SAD(TH ;Hmasked(~x)) +

� � SAD(TO;Osm(~x)) +


 �
q
(x� xpred)2 + (y � ypred)2 +

� �
X
j<i

�
�
~xj;

1

2
Wavg; ~x

�

used in tracking person templates from one frame to the next, also requires
several parameters to be selected, namely the relative weightings among the
di�erent equation terms. After choosing an arbitrary value (e.g. 1) for �, we
scale the other weights as follows:

�=� � �1=Æ
2

ground


=� �Hmax=9�~x (A.2)

�=� �Hmax=3

Again, these formulae arise from criteria based on physical principles. Our
formula for � arises from our desires to 1) give height and occupancy equal
weighting in the matching process, and 2) make the scaling of � to � insensitive
to our choice of Æground for plan-view spatial discretization. If we note that
occupancy SAD levels increase with the square of Æground, while height SAD
levels are relatively independent of it, we see that we should make the ratio of
� to � proportional to Æ2ground. The proportionality constant �1 must only be
calibrated once for a given experimental setup (perhaps by comparing peak
occupancy map values for people with their peak height map values, across
di�erent people and 
oor locations), and depends on factors such as the imager
resolution and the depth noise level. In practice, calibration of �1 for a given
stereo camera only needs to be done once, regardless of changes in its mounting
or the external environment.
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The expression for � is derived from our desire that, when the proposed position
~x of the ith person is precisely that of ~xj for some jth person previously tracked
in this frame, the value of the fourth term is comparably large, and therefore
comparably discouraging of a match, as is the �rst term in equation (4) when
the height template match is extremely poor. As described in Section 4.2.2,
the expected di�erence of two random variables uniformly distributed between
0 and Hmax is Hmax=3, and the SAD is averaged over the number of pixels
used in creating the di�erence. Hence, the expected value of our SAD measure
between two completely di�erent templates is Hmax=3. When ~x = ~xj for some
Gaussian in the fourth term, the fourth term will evaulate to 1, and so we
wish to scale this by Hmax=3 to make it comparable to a bad height template
match.

We also attempt to set 
 such that when the person is \far" from his Kalman-
predicted position, the contribution of the third term above is comparable
to that supplied by the �rst when the height template match is very poor.
Hence, we again wish to scale 
 such that this term is around Hmax=3 when
the proposed location ~x is far the predicted location ~xpred. We de�ne \far"
dynamically for each person at each time step, as being 3 times the standard
deviation �~x in the Kalman-predicted position. Hence, we make 
 proportional
to (Hmax=3) =3�~x. In practice, we sometimes lower this proportionality con-
stant, so that this distance term has a lesser e�ect on tracking than do the
template terms.
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