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Voting is a well-known technique used to combine decisions of peer experts. It 
has wide application in many domains. Voting is used in fault tolerant 
applications to mask errors from one or more experts using N-Modular 
Redundancy (NMR) and N-version Programming. It is also used in pattern 
recognition applications where decisions from several classifiers can lead to 
better recognition results.  
 
There are several strategies for voting including: majority, weighted voting, 
plurality, instance runoff voting, threshold voting, and the more general weighted 
k-out-of-n systems. To use a voting schema in any application domain, we have 
to understand the various tradeoffs and parameters and how they impact the 
correctness, reliability, and confidence in the final decision made by the voting 
system. In this paper, we analyze the behavior of two voting schemas: majority 
voting and plurality voting. We conduct synthetic studies using a simulator that 
we developed to analyze results from each expert, apply a voting mechanism, and 
analyze the voting results. The simulator builds a decision tree and uses a depth-
first traversal algorithm to obtain reliability of the system and other factors that 
describe the voting behavior. For this analysis, we define and study the following 
behaviors of a voting system: 1) the probability of reaching a consensus, “Pc”; 2) 
reliability of the voting system, “R”; 3) certainly index, “T”; and 4) the 
confidence index, “C”. The parameters controlling the analysis are the number of 
participating experts (or units), the number of possible output symbols that can be 
produced by an expert, the probability distribution of each expert’s output, and 
the voting schema. This study unleashes several behaviors of a voting system and 
introduces a synthetic approach to compute its reliability. 
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1 INTRODUCTION 

Voting is a general technique that finds application and acceptance in many domains including 

software systems.  Voting systems are often used in distributed systems to control mutual exclusion 

[e.g. Paris 1986]. They are used to control the update procedure when clusters of workstations are 

isolated due to network problems and to vote on data replication [Ahammad et.al. 1987].  A later study 

of voting in distributed applications is discussed in [Kumar et.al. 1991].  Voting systems are also used 

in fault tolerant applications to achieve reliability [Nordmann et.al. 1999].  It is a widely used 

technique for combining classifiers in the pattern recognition field [Ho et.al. 1994, Xu et.al. 1992, 

Yacoub et.al. 2002]. 

Voting systems work for various purposes and in various domains.  The analysis of such systems is 

useful in understanding their theory of operation and the underlying assumptions made by several 

researchers to simplify their deployment.  Theoretical and experimental analysis of the behavior of 

voting schemas is thus an important research topic.  There have been several investigations on the 

theoretical analysis of voting systems. For example, in the pattern recognition domain, theoretical 

analysis of the behavior of voting system is discussed by Lam and Suen [Lam et.al. 1997]. 

Experimental analysis of plurality and majority voting with application to pattern recognition is 

discussed in [Lin et.al. 2002]. In the reliability analysis domain, a general mathematical model for k–

out-of-n systems is discussed in [Nordmann et.al. 1999, Parhami 1994b, and Parhami 1994a]. An 

investigation of the various types of voting systems is given in [Lorczak et.al. 1989].  Weighted k-out-

of-n is a well-known generalized technique for voting. An investigation of reliability optimization for 

weighted voting systems is discussed by Levitin et.al. in [Levitin et.al. 2001, Levitin 2001].  

The general setup for a voting system is illustrated in figure 1, where we have several experts 

producing data to be voted on by a voter component. As opposed to the traditional 3-mode decision 

models [as in Levitin et.al. 2001], where the expert produces a binary decision “1” or “0” or abstain 

from voting “x”, we use a general framework where the output from each expert can take “K” values 

in response to an input and the expert has a predefined probability distribution function for the “K” 

symbols. We then study the behavior of voting schemas experimentally.  Application of this technique 

to units with the tri-state model is discussed in [Yacoub 2002]. 
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Figure 1 The scope of experimental analysis discussed in this paper. 

In this paper, we take a synthetic approach to study the behavior of two well-known types of voting 

schemas: majority and plurality. The objective of this analysis is to experimentally find answers to the 

following questions: 

1) What is the actual gain in terms of system reliability that we get when we use more experts? 

2) How does the number of experts used in voting affect the likelihood of reaching a consensus 

between the experts? 

3) How is the reliability of the voting system affected by changes in the number of experts or the 

number and distribution of the symbols produced by each expert? What is the effect of the 

number of possible symbols produced by an expert on the voting behavior?  

4) What are the tradeoffs between confidence in results, chances of reaching a consensus, and 

reliability of the system? 

5) Which voting schema to select? We would like to study what benefits and what penalties do 

we get from using different voting schemas. 

To be able to answer these questions, we developed a simulator that creates a decision tree using the 

possible decisions of each expert and their probability distributions. The simulator uses a depth first 

traversal algorithm to obtain results for the selected voting schema. These results are then analyzed to 

obtain the behavior and the reliability of the voting system.  We study the following behaviors: 

reliability, probability of reaching a consensus, certainty, and confidence.  The definitions governing 

these terms are discussed in section 2. Section 3 describes decision tree, synthesis process, the 

simulator, and the experiment setup and procedure.  Sections 4 and 5 describe the results of several 

studies. Section 5 is dedicated to reliability analysis. Finally we conclude the paper and summarize the 

findings in section 6. 
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2 DEFINITIONS AND ASSUMPTIONS 

Definition 1:  An Expert 

Voting is used to combine data that is produced from multiple experts. The words “experts”, 

“engines”, “classifiers”, and “units” are used interchangeably. The word “classifier” is often used in 

the pattern recognition domain, “expert” and “unit” are used in the reliability analysis domain, and 

“engine” and “algorithm” is used in the algorithm combination domain. Usually several experts are 

used and their results are combined to produce data that is more accurate (or of higher confidence) 

than data produced from one individual expert. 

Definition 2: Number of Experts,  N 

We use “N” as the number of experts used in the voting system.  We will study the behavior of the 

voting component as a function of N. 

Definition 3: Symbols 

Each expert produces data that belongs to a specific range of data symbols or data classes. We use the 

term “symbol” to refer to an individual output from the expert which belongs to a range of values (or 

set of symbols) that the expert output can take. 

Definition 4:  Number of Symbols,  K 

We define “K” as the total number of the possible symbols that can be produced by an expert.  We 

will study the behavior of the voting system as a function of K. We use kj to refer to the jth symbol 

from the possible data set K. 

Definition 5: Probability Mass Function of an Expert, PMFi 

We define PMFi as the probability mass function that captures the probability distribution of the 

symbols produced by the ith expert.  Experts can have similar or different output data PMFs.  PMFi is a 

discrete probability function. For instance, we can use uniform distribution (i.e. the expert is equally 

likely to produce any symbols) or Poisson distribution (i.e. the expert would favor certain symbols 

over others) or geometric (i.e. the expert would favor one symbol over the others). 

Definition 6: Probability that an Expert Produces a Correct Output. 

This is the probability that an expert will produce a correct output (irrespective of the voting context in 

which it is used).  For a given input data, each expert (unit) will produce one or more symbols with a 

given PMF. One of these symbols is the correct one and the rest are wrong (the expert could make 
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mistakes).  If the expert always produces the correct symbol then its reliability Ri=1.  However, in 

practical applications the expert makes mistakes and hence its reliability is not unity.  The PMF 

models the probability distribution governing the experts output symbols and hence its reliability 

(when the most probable symbol is the correct one).  

Definition 7: Majority Voting 

Majority voting is a voting schema that has the following consensus rule: 

Consensus   iff  N/2 +1 experts agree (produce the same output symbol) 

No Consensus   otherwise. 

Definition 8: Plurality Voting 

Plurality voting is a voting schema that has the following consensus rule: 

Consensus   iff   (L experts agree) && !(M experts agree where M>=L) 

No Consensus  otherwise. 

Definition 9: Reliability of the Voting System “R” 

We define “R” as the probability that the output from the voting system is correct.  To measure 

whether the output is correct or not it has to be known a priori that a specific output symbol is the 

correct one and hence we are able to judge that the system output if correct. In our experiments, we 

assume that for a given input there is one correct symbol that each expert should produce. When the 

voting result among the expert outputs is that correct symbol, we have a correct output for the voting 

system and R is calculated using the probability of reaching consensus on that correct symbol.  

Definition 10: Probability that a Consensus is reached “Pc” 

We define “PC“ as the probability of reaching a consensus.  We note here that the probability of 

reaching a consensus is not the same as the probability that the output is correct.  For example, assume 

that we are using a majority voting of three experts A, B, C.  Experts A and B produce the same results 

say “x” and expert C produces a different result say “y”.  The output from the majority voting in this 

case is the “x” symbol. However, if the correct result is “y” (as measured against a ground truth) then 

the result of the voting system is not the same as the correct result. Hence, Pc and R are different 

random variables.  Therefore, we study the behavior of the voting system in terms of both “Pc” and 

“R”. In the case where all symbols are equally probable, we can posit one of the symbols to be the 

correct one, and then study what percentage of the consensus cases map to the consensus on correct 

symbol. If we use uniform probability distributions, for example, each of the symbols equally likely to 

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 1

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 2
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be the consensus—and thus (1/K)x100% of the consensus cases will be the actually “correct” output, 

hence R and Pc are related.  However, for other distributions, the relationship between Pc and R is not 

that obvious and they have to be studied separately. 

Definition 11: Certainty Index (Weighted Consensus),  T 

We define “T” as the certainty index.  T is a function of the following factors: 

- Probability that a specific consensus case is reached. A consensus case is defined as a case 

where we have a set of votes sufficient to make a consensus according to the voting strategy and 

its consensus rule (see equations 1 and 2). For instance, with three experts A, B, C and a 

majority voting, the case where A and B agree and differ from C is a consensus case. 

- Number of experts participating in making a specific consensus.  An expert is said to participate 

in making a consensus if the output of the expert is the same as the consensus results.  

For example, assume that we have three experts, A, B, and C. Two experts produce the same result 

and the third produced a different result. The result of the majority voting for this case will be the 

symbol agreed upon by the two experts.  Then the number of experts participating in reaching the 

consensus is 2 out of 3.  If we expand the decision tree as shown in the following section using the 

PMFi for all experts, we calculate the probability of this case, assume 6/9.   Now consider another case 

where the three experts produce the same result then we have 3 out of 3 experts producing the 

consensus.  The probability of the case where the three experts agree can be calculated from the 

decision tree with uniform PMF, which is 1/9.  For several consensus cases, the general formula for T 

is given by: 

∑ ∑
∈ ∈

==
Cases} {Consensuss Cases} {Consensuss

N

 NEs
 x 

Pc

c)P(s,
  

N

 NEs
 x P(s/c)    T  

where P(s/c) is the probability of the case “s”  given that consensus is reached, “NEs” is the number of 

experts making a consensus in the case “s”, and Pc is the consensus probability. Using the previous 

example, certainty T is calculated as (6/9 * 2/3  + 1/9 * 3/3)/( 6/9 + 1/9). 

Note that the certainty index that we calculate means how certain we are about the consensus reached 

but it does not say whether we are certain it is “correct” or “wrong”. If T is calculated for those cases 

only where a consensus is reached on the correct symbol, then T measures the certainty in the correct 

result as opposed to certainty in the consensus. We will use the two variables T(Pc) and T(R) to 

distinguish the two cases.  

       . . . . .. . . . .. . . . Eq. 3
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Definition 12: Confidence Index,  C 

The confidence index “C” represents how confident we are in the results produced by the voting 

system. It takes into consideration an important factor, which is how many experts are participating in 

reaching a consensus.  In this case it is similar to the certainty index but it is NOT normalized to the 

total number of experts.  The formula for calculating C is:  

TNC ×== ∑
∈ Cases} {Consensuss

NEs x P(s/c)  

Since this factor is not normalized to the number of experts, then it will be bigger than unity. The 

number is significant in comparing confidence produced using several N-experts systems. Note that C 

is calculated for all consensus case, which does not distinguish between the correct or wrong symbols.  

To calculate the confidence in the correct symbol we consider the consensus cases in which the system 

reaches consensus in the correct symbol. We use the two variables C(Pc) and C(R) to distinguish 

confidence in the voting system consensus and confidence in the voting system reliability respectively. 

3 SYNTHETIC EXPERIMENT SETUP 

We built a simulation system for the purpose of conducting various experiments to study the behavior 

and reliability of the majority and plurality systems as a function of several parameters. In this section 

we describe the inputs, outputs, and the operation of the simulator.  

 

 

 

 

 

 

 

 

 

 

Figure 2 The simulation system 
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The simulator accepts three inputs: 

a) the number of experts participating in the experiment (previously defined as N),  

b) the number of possible symbols that an expert can produce (previously defined as K), and the 
PMF for the K values for each expert (defaulted to uniform if not provided)  

c) the type of voting system (currently, the simulator supports only two types: majority and 
plurality). 

For every input tuple (N, K & PMF per expert , Schema), the output of the simulation is: 

a) the reliability of the voting system, R (see definition 9) 

b) the probability of reaching a consensus, Pc  (see definition 10) 

c) the certainty index, T(Pc) and T(R)  (see definition 11) 

d) the confidence index, C(Pc) and C(R) (see definition 12)  

 

The simulator is executed for each experiment using the tuple: (N,K,Schema). For example, if we 

want to study the effect of the parameter N on Pc, T, R, and C, then the simulator will run several 

experiments fixing K and the Schema and varying N for some predefined range.  

The results from the simulator are exactly the same results that we obtain if we do the mathematical 

calculations by hand with the advantage of having an automated algorithm to perform the task on the 

analyst’s behalf. This is because the simulator expands all possible combinations (100% coverage) and 

will not miss any combination case. To illustrate this, the following procedure explains the operation 

performed by the simulator to calculate Pc, T, R, and C. 

a) Creating a Decision Tree 

First, the simulator uses the number of experts N, the number of possible values that an expert can 

produce K, the set of PMFi for each expert, to build a decision tree. The tree explores all possible 

combinations of the experts’ output and is thus equivalent to any analytical (mathematical) result. 

The number of experts defines the depth of the tree.  Each node at one level will be expanded to K 

nodes in the lower level.  Going from one level to another is the same as exploring all possible outputs 

from an expert. At the lowest level of the tree, we have all possible combinations that can be produced 

by N experts for K possible symbols. The nodes at the lowest level are called terminal nodes. The arcs 

in the decision tree is labeled with the probability that the expert produces the next level output 

symbol.  This is usually specified in the PMF distribution for each expert. 

As an example, consider the case where we have three experts (N=3) and two possible output symbols 

for an expert (K=2).  We have two possible symbols, lets assume they are “x” and “y”.  The PMF 

distribution is uniform for the first and third experts and one symbol “x” is favorable for the second 
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expert compared to “y”, PMF2(x)=2/3, and PMF2(y)=1/3.  We have three experts; hence the depth of 

the tree is three. The following figure illustrates the expansion of the tree. 

  

 

  

 

 

 

 

 

Figure 3 Decision tree for three experts with two possible decisions (x or y) 

Note: Order is Irrelevant 

The order of the experts in the tree is not relevant. This is because: a) there is no explicit dependency 

between experts, b) the decision made by one expert does not affect the decision made by the other 

(experts are not collaborative), and c) the order of symbols at the terminal nodes is not the one 

affecting the decision, instead it is the count (score in case of weighted experts) of the symbols that 

matters. 

Note: Number of Terminal Nodes 

The number of terminal nodes obtained from the decision tree is function of the number of experts N 

and the number of possible symbols produced by each expert K.  The total number of terminal nodes 

will be given by: 

NKMalNodesrNumberOfTe ==min  

b) Assigning probability to various combinations. 

For each terminal node, we calculate the probability of reaching that node by back propagating the tree 

and accumulating the probability of each branch. Since independence between experts is assumed, the 

probability of reaching a terminal node is the product of the probability of all branches traversed to 

reach that node. Hence: 

(Start) 

(x) (y) 

(x,x) (x,y) (y,x) (y,y) (x,x) 

(x,x,y) (x,x,x) (x,y,y) (x,y,x) (y,x,y) (y,x,x) (y,y,y) (y,y,x) 

Level 1:  
Decision made by expert #1 

Level 2:  
Decision made by experts 1,2 

Level 3:  
Decision made by experts 1,2,3 

Terminal nodes 

1/2 1/2 

2/3 1/3 2/3 1/3 

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 5
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where Sm(i) is the ith symbol in the mth terminal node result. For instance if the results in the second 

terminal node is (x,x,y), then S2(1)=S2(2)=”x” and S2(3)=”y”. 

For the above decision tree, the probability of the terminal node (x,x,y) is: ½*2/3*½. 

Special case: Uniform Distribution  

In a simple situation, all symbols might be equally probable for all experts. Hence, the probability that 

the ith expert produces a symbol kj from the set of symbols R is given by: 

K
tributionUniformDiskPMF ji

1
)/( =  

This means that all the terminal nodes are equally probable and hence each decision has a probability 

of 1/8 for the case shown in figure 2. Note that the number of terminal nodes according to equation 5 

is : KN , hence the probability of the mth terminal node PT(m) will be 1/ KN: 

NK

1
  )( =mPT  

Note: Practical Considerations 

The PMF distribution depends on the domain in which the system is used.  For instance, for pattern 

recognition applications, a uniform distribution is not a practical assumption since all symbols are not 

normally equally probable (experts are not really doing any recognition).  For elections, one might 

assume uniform distribution between candidates. For reliability analysis, one might start with equal 

probability of success and failures for a particular expert before building history for its operation. 

c) Evaluating Probability of reaching a consensus (Pc). 

Each one of the terminal nodes is checked against the consensus rule for the required voting schema.  

Consensus rules for majority and plurality voting are given in equations 1 and 2. The probability of 

reaching a consensus is then calculated as follows: 

(m)PT(m) 
1
∑

=

×=
M

m

Pc δ  

where PT(m) is calculated using equation  6 and δ(m) is given by: 

  (m) =δ  

. . . . . . . . . . . . . . . . . . .. . . . Eq. 8

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 7

. . . . . . . . . . . . . . . . . . .. . . . Eq. 9

       . . . . .. . . . . . . . . . . . . . . . .. . . . Eq. 6

1  iff m is a consensus terminal node 

0  otherwise 
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Special case: Uniform Distribution  

In a simple situation when all symbols might be equally probable, we evaluate the number of nodes 

reaching a consensus and the probability of reaching a consensus is simplified to (and, under these 

special assumptions, it can be deduced from the binomial distribution): 

N

C

K

N
Pc ==

nodes  terminalofnumber  Total

consensus a reaching nodes  terminalofNumber 
   

d) Evaluating the certainty index T. 

To calculate the certainty index, we only consider the terminal nodes labeled in procedure (c) above as 

reached a consensus.  For each terminal node we calculate the percentage of experts participating in 

the consensus relative to the total number of experts. As an example, consider the terminal node 

(x,x,y).  The consensus result in this case is “x”.  Hence the certainty in this particular consensus 

decision is 2/3.  Certainty index is then calculated by summing all consensus cases and weighing it 

with the probability that the consensus case is reached (i.e. weighted or normalized consensus). 

)(
)(

1

m
Pc

mPT

N

NEm
T

M

m

δ××=∑
=

 

where: NEm is the number of experts making a consensus for the mth consensus case, PT(m) is 

calculated from equation 6 and  δ(m) is given from equation 9. 

Special case: Uniform Distribution 

In a simple situation when all symbols might be equally probable, we evaluate the number of nodes 

reaching a consensus and the certainty index is simplified to: 

)(
1

    
Pc

1
)(

1

11

mNE
NcN

m
KN

NE
T

M

m

m

M

m
N

m δδ ××
×

=×××= ∑∑
==

 

Note equations 11 and 12 are calculated for the all consensus cases, hence the values obtained there 

are T(Pc).  To calculate T(R) we consider a subset of the consensus cases in which the consensus is 

reached on a correct symbol only. 

e) Evaluating the confidence index C 

To calculate the confidence index, we only consider the terminal nodes labeled in procedure (c) above 

as reached a consensus.  For each consensus case, we count the number of experts participating in the 

consensus. As an example, consider the terminal node (x,x,y).  The consensus result in this case is “x”.  

. . .. . . . Eq. 10

. . .. . . . . . . . . . . . . . . . .. . . . Eq. 11

 . . . . . . . . . .. . . . Eq.12
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Hence the confidence in this particular consensus decision is the absolute number 2.  The confidence 

index is then calculated by summing all consensus cases and weighing it with the probability that the 

consensus case is reached. 

)()(
1

1

mmPT
Pc

NEmC
M

m

δ×××=∑
=

 

Special case: Uniform Distribution  

In a simple situation when all symbols are equally probable, we evaluate the number of nodes reaching 

a consensus and the confidence index is simplified to: 

)(
1

          )(
1

11

mNE
Nc

m
Nc

K

K
NEC

M

m

m

M

m

N

N
m δδ ××=×××= ∑∑

==

 

From equations 12 and 14, then 

TNC ×=  

Hence C and T are tightly related. The certainty index T measures the confidence we have in the 

consensus given that we know the best result will be produced by all experts agreeing on the output. 

The confidence index C is an absolute measure for confidence used to compare confidence in the 

results produced by multiple N-expert systems. 

Note equations 14 and 15 are calculated for the all consensus cases, hence the values obtained there 

are C(Pc).  To calculate C(R) we consider a subset of the consensus cases in which the consensus is 

reached on a correct symbol only. 

f) Evaluating Reliability, R 

Each one of the terminal nodes is checked against the consensus rule for the required voting schema.  

For those nodes that reached a consensus, we determine the consensus symbol and compare with the 

correct symbol. R is then calculated using equation 9 for those cases where the consensus symbol is 

the correct one.  

Note: Since the number of terminal nodes is exponentially related to the number of experts (N) given 

to the simulator, the expansion of all possible branches in the tree is impractical due to the extensive 

memory requirements. To enable the simulator to work with any value of N, we have taken a traverse-

while-build approach by keeping track of indexing while traversing the tree. In this case we use a 

depth first traversal algorithm and at one point in time only N-1 nodes of the tree are kept in memory. 

 . . . . . . . . . . .. . . . Eq. 14

. . .. . . . . . . . . . . . . . . . .. . . . Eq. 15

 . . . . . . . . . .. . . . Eq.13
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4 SYNTHETIC EXPERIMENTAL RESULTS 

The results produced in this section are obtained for uniform distribution of symbols produced by each 

expert. Results from other PMF functions are not shown. These results illustrate the types of behaviors 

and reliability analysis that we can perform using the synthetic analysis approach and simulator. 

4.1 Prob. of a reaching consensus for Plurality and Majority voting as function of N 

4.1.1 Purpose 

The purpose of this experiment is to study the effect of changing the number of experts “N” on the 

probability of reaching a consensus “Pc”.  We conduct the study for both majority and plurality voting.  

For a given number of possible output symbols “K” (i.e. the output from each expert could be any of 

K-symbols), the simulator expands the decision tree and assesses the consensus rule at the terminal 

nodes.  Assuming uniform PMF, the probability of reaching consensus is calculated using equation 10. 

We have conducted the experiments for values of K=2,3,4,5 and for various number of experts N. 

Results are shown in the following figure. 

4.1.2 Results 

 

 

 

 

 

 

 

 

 

 

Figure 4 Pc for Majority and Plurality voting for various K values. 

For the simple case where we only have one expert, we will always (100%) reach a consensus since 

there is only one expert and hence its vote is the consensus.  
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For two and three experts, the results for the majority and plurality voting are the same irrespective of 

the number of possible output symbols. This is because for two and three experts, the consensus rules 

for the two voting schemas are equivalent.  

4.1.3 Analysis 

a) For a majority voting system, the even number of experts (assume L) decreases the chance of 

reaching a consensus when compared to the probability of reaching a consensus using L-1 (the 

smaller odd number) experts.  This experimental result confirms the theoretical conclusions 

found by Lam and Suen [Lam et.al. 1997]. Whereas Lam et.al. study the probability of 

reaching a correct result “R” as a function of the probability that an expert is correct, we study 

the probability of reaching a consensus “Pc”. We come with the same conclusion that for 

majority voting the even number of experts can be substituted with a lower odd number of 

experts and as a result we get higher probability of reaching a consensus (or higher probability 

of getting a correct output according to Lam) 

b) The probability of reaching a consensus using plurality voting is always greater than or equal 

to the probability of reaching a consensus using majority voting. This is because the consensus 

condition for plurality voting is more relaxed than the consensus condition for the majority 

voting. However, this does not mean that we should always use plurality voting instead of 

majority because confidence in the voting results is another important factor to consider (as 

discussed later). 

c) The oscillation in the values of “Pc” as a function of the number of experts is very obvious for 

the majority voting. We can define another term that we call “oscillation period of Pc”, which 

is the number of experts between two consecutive peak values of “Pc” where only peak values 

for N>3 are considered. For majority voting, the oscillation period of Pc is “2”, since the even 

expert would usually produce a lower Pc value than the Pc values produced by the enclosing 

odd number of experts.  

d) The “Pc” value for majority voting is asymptotically decreasing as the number of experts 

increases. This also confirms the theoretical analysis by Lam et.al. where because of uniform 

distribution the probability of each symbols would be < 0.5 (p<0.5 in [Lam et.al. 1997]). 

e) The “Pc” value for plurality voting is asymptotically increasing as the number of experts 

increases. 
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f) Plurality voting also experiences a similar oscillation. From experimental results shown in the 

previous figure, the oscillation period for a plurality voting is dependent on the number of 

symbols K.  Our simulation shows that the oscillation period for plurality vote systems is:    

“K”. This is a note-worthy behavior that should be further studied theoretically. 

4.2  Certainty Index (T) for Plurality and Majority voting as function of N 

4.2.1 Purpose 

The purpose of this experiment is to study the certainty in the consensus reached by a voting schema 

as a function of the number of experts “N”.  We conduct the study for both majority and plurality 

voting.  For a given number of possible output symbols “K”, the simulator expands the decision tree 

and assesses the certainty index for all consensus cases as discussed in equations 1 and 2.  We can also 

calculate certainty for consensus case were the consensus is correct T(R), however we limit the 

discussion here to T(Pc).  T is then calculated using the equation 12. We have conducted the 

experiments for values of K=2,3,4,5 and various numbers of experts N. Results are shown in figure 5. 

4.2.2 Results 

 

 

 

 

 

 

 

 

 

 

Figure 5 Certainty T for Plurality and Majority Voting for various K values. 

4.2.3 Analysis 

From figure 5 we find that: 
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a) The certainty index in the consensus produced by a majority voting schema is higher than or 

equal to the certainty index that we have in the results of a plurality voting.  The logical 

interpretation of this result is that the consensus rule of a majority voting is more strict in 

terms of the requirements on the number of experts participating in reaching a consensus as 

compared to the plurality voting. 

b) As the number of experts increases, the certainty in the result decreases!  This is true because 

the addition of another expert is interpreted by the voting system as another source of 

information and another factor against consensus because all symbols are equally likely. The 

certainty index is a measure of the mean number of experts voting towards a consensus 

normalized to the total number of experts participating in the voting and hence, the decrease in 

the certainty index. 

c) For the majority voting case, the certainty index for an even number of experts is higher than 

the certainty index for the previous and following odd number of experts.  For instance T4 is 

greater than T3 and T5 for any values of K.  

d) Trade-off between T and Pc in majority voting.  From section 4.1, we concluded that 

probability of reaching a consensus Pc for “odd” number of experts is higher than the 

probability of reaching a consensus for the previous and the following “even” number of 

experts, for example: Pc(4 experts) < Pc(3 experts) and Pc(4 experts) < Pc(5 experts) for all 

values of K.  However as we concluded in ”c” above, T4 > T3 and T4 > T5.  Thus we 

conclude that with the transition from odd number of experts to even number of experts the 

probability of reaching a consensus decreases but the certainty in the consensus reached by the 

system increases.   

e) The plurality voting does not have the same tradeoff between probability of reaching 

consensus and the certainty index as the case for majority voting. T for plurality voting is 

asymptotically decreasing as function of N (mean number to have a simple plurality drops as 

we make it more analog as N>>K). 

4.3  Confidence Index (C) for Plurality and Majority voting as function of N 

4.3.1 Purpose 

The purpose of this experiment is to study the confidence we have in the results of a voting schema 

with “N” number of experts.   We would like to study how the confidence changes as we add new 

experts to the voting system.  We conduct the study for both majority and plurality voting.  For a given 
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number of possible output symbols “K”, the simulator expands the decision tree and assesses the 

confidence index “C” for all consensus situations as discussed in equations 1 and 2.  C is calculated 

according to equation 14 in the previous section. We have conducted the experiments for values of 

K=2,3,4,5 and for various values of number of experts N. Results are shown in figure 5. 

4.3.2 Results 

 

 

 

 

 

 

 

 

 

 

Figure 6 Confidence index C for Plurality and Majority voting for various K values. 

4.3.3 Analysis 

From figure 6, we find that: 

a) The confidence index C(Pc) that we have in the results produced by a majority voting schema 

is higher than or equal to the confidence index that we have in the results of a plurality voting.  

Same result and explanation concluded for the certainty index T. 

b) The ratio between C for majority voting and C for plurality voting is proportional to the 

number of possible output symbols K.  For instance assume N=7, then for K =3, C(Pc) 

(majority)/C(Pc)(plurality) = 4.3/3.84 = ~1.12 .  While in case of K=5, 

C7(majority)/C7(plurality) = 4.2/3.4 = ~ 1.24.  Hence, we conclude that as the number of 

possible outcome symbols increases, the majority voting will have higher confidence in the 

results than the plurality voting. 
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c) The confidence index is linearly increasing.  This means that as we add more experts to the 

voting system, whether it is “majority” or “plurality” voting, we gain more confidence in the 

output. This is because when a consensus is reached, we will probably have more experts 

participating in reaching the consensus than the case of fewer experts. Note that confidence 

index C(Pc) is not normalized to the number of experts participating in the voting and that is 

why it provides a good measure for the user’s confidence in the results of a particular voting 

schema 

4.4 Probability of reaching a Consensus as function of N and K 

4.4.1 Purpose 

The purpose of this experiment is to study the probability of reaching a consensus as function of the 

number of experts N and the number of possible output symbols that an expert can produce K.  We 

conduct the study for both majority and plurality voting.  For a given number of possible output 

symbols “K”, the simulator expands the decision tree and assesses the probability of reaching a 

consensus (based on the consensus rule for a voting schema) as discussed in section 4.1.  We have 

conducted the experiments for values of K=2 through 9 where the number of experts N varies from 1 

to 6. Results are shown in figures 7 and 8. 

4.4.2 Results 

 

 

 

 

Figure 7 Pc as function of N and K for plurality voting 

 

 

 

 

 

Figure 8 Pc as function of N and K for majority voting 
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4.4.3 Analysis 

a) For majority voting, the probability of reaching a consensus Pc for an odd number of experts 

is usually higher than Pc for an even number of experts for a give value of “K”.  For example, 

in figure7, the results for N=3 and N=5 are always larger than the Pc values for N=2, N=4, or 

N=6.  

b) For majority voting, a voting system with three experts always outperforms any number of 

experts in terms of the probability of reaching a consensus. 

c) For plurality voting, Pc is proportional to the number of experts used. However, these results 

are correct for comparing N for number of symbols K, where K>=N. Hence, for large values 

of “K” the more experts N>K the higher the chance of reaching a consensus. 

4.5 Confidence Index C as function of N and K. 

4.5.1 Purpose 

The purpose of this experiment is to study the confidence index C(Pc) as function of the number of 

experts used in the voting N and the number of possible output symbols that an expert can produce.  

We conduct the study for both majority and plurality voting.  For a given number of possible output 

symbols “K”, the simulator expands the decision tree and assesses confidence index as discussed in 

section 4.2.  We have conducted the experiments for values of K=2 through 14 where the number of 

experts N varies from 2 to 6. Results are shown in figures 9 and 10. We note that the values of C 

evaluated here are for C(Pc), C(R) is discussed in section 5. 

4.5.2 Results 

 

 

 

 

 

 

 

Figure 9 C as function of N and K for plurality voting 
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Confidence C(Pc) for Majority

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Possible Symbols (K)

C
(P

c)

N=2

N=3

N=4

N=5

N=6

 

 

 

 

 

 

Figure 10 C as function of K and N for Majority voting 

4.5.3 Analysis 

a) For both majority and plurality voting, for a given value of K, as the number of experts 

increase, the level of confidence that we have in the results also increases. This is a logical 

result and it is the reason voting is used as opposed to a single expert. 

b) For majority voting, as the number of possible symbols increases, K>>N, the confidence index 

becomes constant.  It is also clear that consecutive even and odd experts converge. For 

example, from figure 10, we note that for N=2 and N=3, for values of K > 3, the two systems 

(one with 2 experts and another with 3 experts) will have the same confidence index C(2 

experts)=C(3 experts) =2. The same phenomenon is noticeable for N=4 and N=5 systems, they 

converge to a confidence index C(4 experts) =C(5experts) =3. Based on other experiments 

with higher values of N, we find that for majority voting, as K >> N, the confidence index 

converge to N/2 +1  

c) For plurality voting, as the number of possible symbols increases, K>>N, the confidence index 

for all experts converges to a constant value =2. 

4.6 Probability of reaching a consensus for majority and plurality voting as function of K 

4.6.1 Purpose 

The purpose of this experiment is to study the probability of reaching a consensus as function of the 

number of symbols that an expert can produce given a specific number of experts. We conduct the 

study for both majority and plurality voting.  For a given number of experts “N”, the simulator 

expands the decision tree and assesses the probability of reaching a consensus.  We have conducted 

the experiments for values of N=2 through 5 where the number of symbols K varies from 1 to 10. 

Results are shown in figure 10. 



 
21

4.6.2 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Pc for plurality and majority voting as function of K 

4.6.3 Analysis 

a) For a particular value of N, plurality voting has higher probability of reaching a consensus 

than majority voting for all K values. 

b) For majority voting, as the number of possible symbols “K” increases, Pc is decreasing 

monotonically.  

Prob. of reaching a consensus (N=2)

0

20

40

60

80

100

120
1 3 5 7 9 11 13 15 17 19

Number of possible symbols (K)

P
c Plurality

Majority

Prob of reaching a consensus (N=3)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Number of possible symbols (K)

P
c Plurality

Majority

Prob. of reaching a consensus (N=4)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Number of possible symbols (K)

P
c Plurality

Majority

Prob. of reaching a consensus (N=5)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Number of possbile symbols (K)
P

c Plurality

Majority

Prob of reaching a consensus (N=6)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Number of possible symbols

P
c Plurality

Majority



 
22
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4.7 Confidence index for majority and plurality voting as function of K 

4.7.1 Purpose 

The purpose of this experiment is to study the confidence index as function of the number of symbols 

that an expert can produce given a specific number of experts. We conduct the study for both majority 

and plurality voting.  For a given number of experts “N”, the simulator expands the decision tree and 

assesses the confidence index C.  We have conducted the experiments for values of N=2 through 4 

where the number of symbols K varies from 1 to 10. Results are shown in figure 12. 

4.7.2 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Confidence index for plurality and majority voting as function of K 

4.7.3 Analysis 

a) For a given number of experts N, majority voting always produces high confidence results 

than plurality voting for all values of K. 

b) For majority voting, C for is asymptotic and they converge to a value of to N/2 +1 

c) For plurality voting, C is asymptotic to a constant value = 2. 
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5 RELIABILITY ANALYSIS  

In the previous section, we studied the behavior of the voting system irrespective of whether it 

produces the correct output or not. In this section we study the reliability of the voting system R, and 

the confidences in the correct output C(R) as a function of N, K.  

5.1 Reliability (R) as function of N and K 

5.1.1 Purpose 

The purpose of this experiment is to study the reliability of a voting system as function of the number 

of symbols that an expert can produce as well as the number of experts used.  

5.1.2 Results 

 

 

 

 

 

 

Figure 13  a) R of the voting system as function of N for various K, and b) R as function of K for various N 

5.1.3 Analysis 

a) From figure 13-a, we find that for a given number of experts, as the number of possible 

outcomes increases “K”, the reliability of the system degrades. This is because the possibility 

of another outcome decreases the chance of obtaining the consensus and hence the chance that 

the consensus is correct. 

b) For a given K, the reliability of the voting system is oscillating and the period is K. This 

means that for some given number of symbols the maximum boost in the reliability of the 

system is achieved in increments of K-experts. 

c) Figure 13-b illustrates the severe degradation in the reliability of the voting system as the 

number of possible symbols increases given a uniform distribution of those symbols. This is 

because the distribution we simulated here is uniform distribution and hence the addition of 

new symbols is addition of unreliability factor to the system. 
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d) From figure 13-a, three experts can constitute a voting system whose reliability is competitive 

to the reliability produced by a larger number of experts. 

5.2 Correctness Confidence C(R) as function of N and K 

5.2.1 Purpose 

The purpose of this experiment is to study the confidence index that we have in the correctness of the 

voting system output, C(R).  We study C(R) as a function of the number of symbols that an expert can 

produce as well as the number of experts used. 

5.2.2 Results 

 

 

 

 

 

Figure 14 C(R) as function of N for various K for (a) plurality and (b) majority voting 

 

 

 

 

 

Figure 15 C(R) as function of K for various N, for (a) plurality and (b) majority voting 

5.2.3 Analysis 

a) From Figure 14, we find that for a given number of symbols, the confidence in the correctness 

of the system can be increased by increasing the number of experts.  

b) From figure 14, it is notable that plurality voting is more sensitive (decreases) to number of 

symbols than majority voting.  Hence, for majority voting, confidence is not much affected by 

increasing the number of symbols. 
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c) As noted before, from figure 15 it is clear that for a given number of experts as the number of 

symbols increases confidence in the correctness decreases. The asymptotic curves are 

previously discussed. 

6 CONCLUSION 

In this paper, we analyze the reliability and behavior of two voting schemas: majority and plurality 

voting.  We have taken a synthetic experimental approach in which a simulator is used to expand all 

possible decisions using a decision tree.  The decision tree is function of the number of experts and the 

number of possible symbols that each expert can produce.  We have conducted a series of studies to 

analyze the behavior of these two voting techniques in terms of the reliability of the voting system, the 

probability of reaching a consensus, certainty in the consensus, confidence in the output, and 

confidence in the correctness of the output.  The results of these studies are discussed in details 

together with their logical interpretation (section 4 and 5).  We compare plurality and majority voting, 

and study the effect of the number of experts and the number of possible expert outputs on the 

behavior and reliability of the voting schema.  We summarize some results that we discern from this 

experiment, using uniform PMF for each expert, as follows: 

- For the same number of experts and number of possible output symbols, plurality voting has a 

higher probability of reaching a consensus than majority voting and the certainty in the 

consensus and the confidence in voting output is higher as well. 

- We notice an oscillating behavior in the probability of reaching a consensus for majority and 

plurality voting. For majority the period is 2 and for plurality the period is K. Therefore, if we 

want to increment the number of units to use we would rather use increments of K-units to 

achieve maximum reliability increase. 

- For majority voting, there is a trade off between reaching a consensus and obtaining a higher 

confidence in the result when increasing the number of experts from odd to even numbers. 

- The probability of reaching a consensus is asymptotically decreasing for majority voting while 

it is asymptotically increasing for plurality voting. 

- The ratio between the confidence in the results of majority voting and the confidence in the 

results of plurality voting is directly proportional to the number of possible output symbols K. 
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- For majority voting, as K >> N, the confidence index converges to N/2 +1. For plurality 

voting, as the number of possible symbols increases, K>>N, the confidence index for all 

experts converges to a constant value =2. 

There are still several problems that can be analyzed using the same approach that we used in this 

study.  For example, we can study the behavior of other voting schemas such as k-out-of-n or instance 

runoff voting. We can also study various PMF distributions and their effect on the voting behavior. 

The results that we obtained in this study reveals the behavior of the majority and plurality voting 

schemas and enable us to make better choices in terms of the schema to use and the number of experts 

given some domain requirements such as accuracy or consensus constraints. 

A long-term objective of this research is to create reliability lookup tables for voting systems. 

Ultimately by studying different probability distributions of the output of the experts and running 

synthetic experiments like the ones we developed in this paper, we can construct lookup tables that the 

analyst uses to make decisions about the number of experts to use in implementing a voting system.  

Alternatively, a tool could be developed to study what-if scenarios by submitting parameters about the 

experts and obtaining results in terms of the reliability, confidence, and probability of reaching a 

consensus. 
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