

Quality Assurance for Document Understanding Systems

Sherif Yacoub
Information Infrastructure Laboratory
HP Laboratories Palo Alto
HPL-2002-116
April 25th , 2002*

E-mail: sherif_yacoub@hp.com

quality
assurance,
document
understanding,
content
remastering

Document understanding is a field that is concerned with semantic
analysis of documents to extract human understandable information
and codify it into machine-readable form. Document understanding
systems provide means to automatically extract meaningful
information from a raster image of a document. Those systems
provide means to create information rich content that is usable in
many end-user applications such as search and retrieval. To process
a large volume of data, such as the collection of books and journals
produced by a publisher, content understanding systems should run
non-stop in an automated fashion and in an unattended operation
mode. Ensuring the quality of the output of such system is a
challenging task due to several factors including the unattended
nature of the system and the mass amount of data (in terabytes)
which could give rise to considerable number of exceptions.
Automated quality assurance (QA) techniques are essential to the
success of the operation of a large-scale document understanding
system. In this paper, we propose QA techniques that are essentially
needed for a document understanding system and their automation.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

1

Quality Assurance for Document Understanding Systems

Abstract

Document understanding is a field that is concerned with semantic analysis of documents to extract

human understandable information and codify it into machine-readable form. Document

understanding systems provide means to automatically extract meaningful information from a raster

image of a document. Those systems provide means to create information rich content that is usable

in many end-user applications such as search and retrieval. To process a large volume of data, such as

the collection of books and journals produced by a publisher, content understanding systems should

run non-stop in an automated fashion and in an unattended operation mode. Ensuring the quality of

the output of such system is a challenging task due to several factors including the unattended nature

of the system and the mass amount of data (in terabytes) which could give rise to considerable number

of exceptions. Automated quality assurance (QA) techniques are essential to the success of the

operation of a large-scale document understanding system. In this paper, we propose QA techniques

that are essentially needed for a document understanding system and their automation.

Keywords: quality assurance, document understanding, and content remastering.

1 DOCUMENT UNDERSTANDING: APPLICATIONS VS SYSTEMS

The design of many software systems often involves the manipulation and processing of digital

content. For instance, the ability to deliver electronic services through internet-based delivery

channels requires that printed material such as books, journals, newspaper, or magazines be converted

into forms suitable for electronic distribution. This type of content manipulation often includes

preprocessing, transformation from one format to another, extraction of metadata, and in many cases

verification and validation of the resulting content.

Document understanding [1] is one form of content understanding in which a system analyzes

documents including books, journals, magazines, newspapers, or enterprise corporate documents. A

document understanding system often starts with a scanned image representation of a document and

delivers an information rich representation together with useful semantic information about its content.

For instance, input channels could feed the system with raster image format of document pages (such

Sherif Yacoub
Hewlett-Packard Laboratories
1501 Page Mill Rd., MS 1126

Palo Alto, CA 94304

sherif_yacoub@hp.com

2

as the TIFF or BMP formats); the output channel could deliver searchable Portable Document Format

(PDF) or eXtensible Markup Language (XML) documents. One application of such system could be

the remastering of digitized (image) documents and re-purposing the content to become the backend of

an online web community. A practical example of a community that uses a backend of re-purposed

material is the Cognitive Science Online Community [18].

A document understanding system has a large number of components that work together in one or

several workflows to achieve the system-level functionality. These components include (for example)

algorithms for generation of digitized text, extraction of layout, extraction of logical information, text

understanding, corpus-wide meta-data extraction, and journal and chapter splitting. These algorithms

are developed in-house, acquired commercially, or obtained off-the-shelf as freeware or shareware

components. The system uses this collection of algorithms to provide various functionalities.

Currently, we can identify several commercial applications and research tools that provide document

understanding services. For instance, the WISDOM++ application [4] is an intelligent document

processing system that transform paper documents into digital format such as HTML/XML. The

system has several components for OCR, segmentation, classification, layout analysis, and

transformation into web-accessible format. Roussel et.al. in [10] identify the requirements for a

document understanding system that emphasizes the user-user interaction, user-algorithm interaction,

and algorithm-algorithm interaction. Other commercial products such as Abbyy FineReader or Adobe

Acrobat Capture also provide applications for transforming a raster image document into a searchable

structured format like PDF or XML.

Existing solutions are considered document understanding applications or programs; they are not

document understanding systems. Applications are useful for end-users since they provide graphical

user interfaces through which the user interacts with the system, accepts or rejects results, or resubmits

the document for processing in various configurations. We call these solutions standalone

applications. In a standalone application, failures can be tolerated manually since the user can restart

the program or repeat the remastering process.

Standalone applications are not suitable for processing massive volume of data and large number of

input pages. This is often the case for commercial publishing. For instance, a publisher might want to

provide online web access to a collection of books and journals that belong to some domain through a

web community or through the publisher’s web site. For this purpose, this collection of books and

journals must be converted from paper format into searchable digital formats such as PDF documents.

Using standalone applications to convert the collection is not a feasible solution due to the enormous

3

manpower required to use these applications to convert each and every document page in the

collection.

As an example, consider a publisher who wants to convert the out-of-print collection from paper

format to digital searchable format for the purpose of providing a print-on-demand (POD) service of

out-of-print items for his customers. The publisher has an out-of-print collection of 5000 books and

journals. The document images produced from scanning this collection (which is a small size

collection) will be around 15 Terabytes of data of approximately 1.5 Million pages. The estimated

size of the output data in PDF format would be in the 200 Gigabytes range depending on the content

of the pages. To process such a massive amount of data, we need an automated system that has several

key features:

1) The system runs in an unattended operation mode. Human intervention with system should be

minimized.

2) The system runs in a non-stop operation mode. In order to be able to process this massive

amount of data in a reasonable timeframe, the system should run in a 24x7 operation mode.

3) The system operates on multiple documents at the same time using a cluster of processing

nodes that collaborate together to process the corpus.

In the following section, we discuss an example of a system that we developed for this purpose; the

system is called Digital Content ReMastering, DCRM system.

Ensuring the quality of the output of such system is a challenging task. The system analyzes a

massive amount of data (millions of pages); hence the output may contain a considerable number of

exceptions. It is unrealistic to manually check the quality of each and every output page in a collection

of million pages due to the huge human effort required for the process. In addition, the system runs in

an unattended mode, therefore we should minimize any manual effort to interact with the system. The

cost of post-correction of the output is often big [10] since it might be difficult to manage the rework

tasks and the heterogeneity in the exceptions. Therefore, automated means for quality assurance (QA)

are inevitable. The system should possess automated means for detection of quality imperfections and

automated correction techniques. This paper proposes quality assurance techniques to be used in

document understanding systems and their automation. We first describe the DCRM system. Then,

we discuss automated quality assurance techniques, which include: the automated integrity check of

input data, the automated defect detection in the output, automated means for using alternative

algorithms for producing high-quality output, and finally the visual quality assurance process for

suspect pages.

4

2 THE DCRM SYSTEM

The Digital Content ReMastering (DCRM) system is a complex system that provides automated non-

stop unattended document understanding operations. Complexity arises from the number of software

and hardware components that are integrated together as a solution for document understanding. The

system has components that implement algorithms for document understanding. The system also has

components for managing the operation and providing important non-functional features such as

reliability and fault tolerance. The complexity also arises from management of a large volume of input

data as well as management of the output data. The data flow and control flow in such a system is

complex and the architecture should provide means to manage this complexity and facilitate

interaction between functional components. Figure 1 illustrates the hardware configuration of the

DCRM system.

Figure 1 Hardware configuration of the DCRM system

Worker or Mill
machines

Delivery

Input channels

RAID
Array
Disks

mill-pa-1

mill-pa-2

mill-pa-3

mill-pa-4

mill-pa-5

mill-pa-6

mill-pa-7

mill-pa-8

mill-pa-9

mill-pa-10

mill-pa-11

mill-pa-12

mill-pa-13

mill-pa-14

Win2k Server

DLT80 Tape Drive

Switch
Giga bit Link

Main Server

PDF Server

Delivery Server

Tape Library
60 Slots
6 Drives

RAID
Array
Disks

mill-pa-1

mill-pa-2

mill-pa-3

mill-pa-4

mill-pa-5

mill-pa-6

mill-pa-7

mill-pa-8

mill-pa-9

mill-pa-10

mill-pa-11

mill-pa-12

mill-pa-13

mill-pa-14

Win2k Server

DLT80 Tape Drive

Switch
Giga bit Link

Main Server

PDF Server

Delivery Server

Tape Library
60 Slots
6 Drives

Tape Library
60 Slots
6 Drives

5

The system is composed of a cluster of workstations that are connected together using a network

switch. The workstations are called worker machines (or mill machines). They run components that

perform the document understanding algorithms. The workstations are connected to a main server that

hosts an external storage. The main server is responsible for managing the input data. There are

several input channels to supply the system with scanned document images. In the above figure, we

illustrate two input channels: a standalone tape drive and a tape library. Both input channels can read

Digital Linear Tapes (DLTs). Each DLT contains up to 80GB of scanned document images, which

constitute approximately 25-30 books or journals. The RAID storage is used to hold the input data

while it is being processed by worker machines. The output data is stored on a separate server. A

delivery server is used to collect output data and write them to a delivery media such as DLT tapes or

Compact Disks (CDs).

The architecture of the system is based on component-based software engineering (CBSE) principles

[11,17]. The architecture is a composition of components and scripts. Components perform the

document understanding functions such as OCR, layout analysis, and logical structure analysis. Each

component is a self-contained, fairly independent concrete realization that provides well-defined

services and functionalities. Each component is wrapped using a script-wrapper that handles inputs,

outputs and errors, and provides the context in which the component is executing. Components are

glued together using scripts that manage the workflow execution.

The system has many components, for example:

� Access channel components: controllers to manage tape libraries and standalone tapes.

� Quality assurance components: such as the input integrity verifier, automated quality assurance of

the output, and other components that we discuss in details in the following sections.

� Content understanding components: such as OCR engines, journal splitting components, page

layout analysis components, logical analysis components, PDF concatenation component, journal

article creation component, etc.

� Preprocessing components: such as bleed-through removal and auto-exposure components.

� Delivery channels components: such as DLT writers and CD writer components.

� Configuration utilities: such as tools to submit new titles for processing, checking the processing

status of the corpus, and removing titles from processing channels.

� System components: such as reliable wire transfer, logger, watchdogs, process monitors, release

synchronization, event notification, and performance analysis components.

6

To integrate these variety of components, the architecture is build using software framework principles

[12] such as “don’t call us, we’ll call you”. In this architecture, none of the components has an

explicit knowledge of the existence of other components in the system whether the same worker

machine or another. Processes run in parallel over a distributed cluster of workstations. The data and

control flows are separated in the architecture. The data flow is managed using the external RAID

system. The control flow is managed using a set of communication channels where each process

knows of an input channel to read tasks from and produce output in either a success channel that

carries successful tasks or fail channels that carry failed tasks.

It is not the objective of this paper to describe the details of the DCRM system. Instead we focus on

one important feature that is required in such system, the quality assurance techniques used to monitor

the quality of the output data. In the following sections we discuss the quality assurance techniques

used in the DCRM system.

7

3 INPUT QA

The DCRM system accepts scanned document images from several page acquisition channels. The

paper documents are scanned, digitized, and stored as raster images. Any raster image format, such as

TIFF format, can be used. When few document pages are to be scanned, the digitization procedure is

simple and manageable by a single operator and probably using a desktop scanner. For large-scale

industries, like commercial and academic publishers, digitization of a large corpus of books and

journals is a complex operation that is usually uneconomical to manage in-house. Hence, the

digitization operation is outsourced to a third party scanning vendor (for example, see Lason Inc [5]).

Figure 2 illustrates an example of the overall process involving the publisher, the scanning vendor, and

the DCRM system. The documents are collected by the publisher and sent to a 3rd party-scanning

vendor. The first step in the DCRM system is to load the scanned document images into the system.

We have no control over the operation environment and the scanning process at the scanning vendor

location. Therefore, quality assurance of the input document images is essential to ensure that the

input complies with some predefined specifications. The system then applies the document

understanding and remastering algorithms. The output is then checked for quality and delivered to the

publisher.

Figure 2 The Remastering process

A large number of pages are scanned (usually in the millions range, depending on the size of the

publisher and the volume of the material to be digitized). Scanned page images are stored into

electronic media that is then fed into the DCRM system. As part of the quality assurance process, the

input data must be checked for integrity and quality. This upfront quality validation is important since

a faulty input to the system might cause the system to fail or produce undesirable output.

The system has three quality assurance and integrity validations that are performed on the scanned

document images before they are submitted for processing:

loading input QA processing output QA
re - mastering
algorithms loading input QA processing output QA

re - mastering
algorithms

delivery content
acquisition

Scanning
3 rd Party

DCRM delivery content
acquisition

Scanning
3 rd Party

DCRM

8

a) Integrity of Data. The system is capable of handling specific type of images with specific formats.

The system accepts files that comply with type and format specifications. For instance, the

specification of the scanned images could include the type and format of the document images

(such as TIFF), the resolution of the scan (such as 400x400 dpp), compression schema

(uncompressed, LZW compression, etc.), and color depth (gray scale, RGB color palate, etc.).

The input quality assurance process validates the format as well as the specifications of the input

files and rejects those files that do not comply with the specification. It also checks the integrity

of the file and ensures that it is a valid data file.

b) Consistency of Naming and Organization. The scanned document pages should follow pre-defined

naming convention that allows the system to automatically recognize files that belong to particular

ISBNs or ISSNs. For instance, a simple directory structure could be implemented in which the

ISBN number is used as the directory name. Names are chosen for individual page files such that a

file name consists of two parts: the ISBN to which the page belongs and the page number. Several

other naming schemas could be used. It is important to follow some specific schema such that the

files and their order are automatically recognized by the system.

c) Logical Verification. A quality assurance process is required to check that all pages of the book

have been scanned and no page has been dropped mistakenly. The system has a quality assurance

component to verify that the scan was performed for all pages of the original book. This verifier

process works on the scanned document images and detects the page number on every page. It

then ensures that page numbers for a particular book are in sequence and consistent with the page

numbers given to the files carrying the page image.

The input quality assurance processes are applied to each input page. Pages that pass the input QA

test will be fed to the system for remastering. Failed pages are returned to the scanning vendor for

correction or rescan.

9

4 AUTOMATED QA OF OUTPUT DATA

4.1 Purpose

In the heart of the DCRM system, a document-remastering engine is used to process and convert the

input document images from a raster format (TIFF) to a searchable information-rich format (PDF).

The process involves the application of several document-understanding algorithms. These algorithms

include: pre-processing algorithms to prepare the document image for analysis such as skew detection

and correction and noise removal algorithms; region analysis algorithms to detect regions in the page

and identify their types; layout analysis to understand the document structure; logical analysis to

understand the content of each region; text extraction algorithms such as OCR algorithms; and finally

re-purposing and reformatting algorithms to produce various output formats.

Errors are inevitable. The document-remastering engines used in the DCRM system are general-

purpose engines that can be used with various document types. Even though these engines have been

tested thoroughly, errors will eventually occur. This is because the system is used to process a large

number of document pages. Due to the volume and diversity of the input documents, we should

expect that the algorithms might fail on some of the input pages and produce unacceptable output.

Moreover, some of these algorithms are acquired off-the-shelf and hence we have no control over their

accuracy. Therefore, we have to accept the fact that some errors will occur and we have to tolerate

and recover from these errors.

Error rates. The DCRM system is used to analyze large volume of data. For such volume, even if the

error rate is low percentage-wise it could be large size-wise. For example, a failure rate of 0.5% in a

collection of two million pages is still 10,000 pages. Given that the average size of a book is about 400

pages, this 0.5% failure rate represents 25 books size-wise.

Type of errors. For QA purposes, we are not concerned with operation failures, which are related to

the reliability of the components and the system. Instead, we are concerned here with unacceptable

output quality that is due to errors produced by the document analysis engine. Examples of common

errors that we find in the output of several document-understanding systems include: loss of content

information, incorrect output text, or misclassification of region types.

Error detection. To assess the correctness of the output, a quality assurance person inspects the output

and determines its correctness as compared to the input document. For example, the QA person

compares the output PDF file to the input TIFF image file to determine whether any content

information has been lost in the conversion process. For a system that analyzes a large volume of

10

documents in an unattended mode, such human intervention is undesirable due to performance

constraints. Hence, automated support for quality check is a mandate.

Detectable errors. Based on our experience in QA for document understanding systems, we recognize

that some of the errors could be automatically detected. For example, some of these errors include:

a) Loss of content. Some content might be lost during the remastering process. This could occur

due to errors in the segmentation algorithm or errors in the region classification algorithm.

For example, we find that a part of an image in the input TIFF file is misclassified as a noise-

region instead of being classified as image-region. This is due to an error in the statistical

analysis method used within the classification algorithm to make the distinction between

image, text, noise, graph, or table regions. This is an unacceptable error specially when the

missing region is a page number or part of an image as we found in some output pages.

b) Defects in line drawings. Some line and art drawings are not as sharp and clear (and

sometimes are missing) in the output document as compared to the original raster document.

This could be due to errors in the preprocessing algorithms or in the segmentation and region

analysis algorithms.

c) Skew errors. The system detects skews in the input TIFF image and corrects them in the

output PDF. When comparing the input and output pages we might find huge skew

differences due to errors in the skew correction algorithm. These skew errors could make the

output PDF unreadable.

4.2 The AutoQA Component

We have developed an Automated Quality Assurance (AutoQA) component as part of the DCRM

system. The AutoQA is capable of detecting the inconsistencies between the output document page

and the input raster image and the type of errors related to missing regions, blurred line art drawings,

and skew problems.

Figure 1 illustrates the structure of the AutoQA component. The idea behind the AutoQA component

is to use a closed-loop workflow to check the content of the output document as compared to the

content image in the input document. The operation of the component is described as follows.

1) The digitized document page is called the Scanned Document Image (SDI). The automated

quality assurance operation is performed for each of those pages as they are processed by the

system.

11

2) The SDI document is analyzed and processed using a document-remastering engine that extracts

relevant information using document analysis and understanding algorithms.

Figure 3 The automated quality assurance system using a feedback loop

3) Using the information produced by the document-remastering engine, a formatter (or re-purposing

engine) is used to aggregate the segmented information to produce a viewable, readable, printable,

and searchable “Print-on-Demand” (POD) quality output. Usually a Portable Document format

PDF or Postscript formats are used.

4) The POD output is stored in a file called the POD document. This output is the desired output for

a print on demand program, and so its quality is checked for errors that are possibly introduced

during the content remastering operation.

5) A feedback loop is then started by using the output POD file to regenerate a raster image of the

output (stepping back from information-rich format such as PDF to raster low information format

such as TIFF). Standard file conversion components could be used in this operation such as the

tools provided by Lead Technologies [2] or shareware software such as GhostScript [3].

Tiff format Examples: PDF, PS or ,
XML formats.

Performs several
document analysis
and understanding
functions

Reformats the content
to produce a rich-
content document.

1 2 3 4

Scanned
Document

Image
(SDI)

Print on
Demand
format
(POD)

Regenerated
Document

Image (RDI)

Remastering
Engine

Re-purposing
/formatting

Regeneration
of Document

Image

RDI/SDI
Comparator

Off-The-Shelf tools to generate
raster image from POD
formats. Examples: LeadTools,
GhostScript, etc.

Tiff format

Horizontal and Vertical Alignment, de-
skewing, generating tiles, correlation
between tiles, pass/fail assessment

Feedback for
QA purposes

Accept
Output?

Yes/No

Yes/No

5

6 7

8

12

6) As a result of previous step, a regenerated image is produced, which we call the Regenerated

Document Image (RDI).

7) The original TIFF image (SDI) and the regenerated TIFF image (RDI) are then compared to

determine if any content has been lost during the remastering and understanding process.

Comparison is performed through correlation. If the remastering engine do not make mistakes in

recognizing parts of the document, then the SDI and RDI images will be correlated. Correlation is

performed using the following procedure:

a) Skew is detected for both documents using any standard skew detection technique. The skew

angles calculated are compared, and if the difference between these two angles is more than a

threshold, then one image is rotated to line up with the other.

b) The horizontal & vertical shifts (x and y offsets) between SDI and RDI are detected and the

two images are horizontally & vertically aligned (one image is shifted to line up with the

other).

c) The SDI and the RDI images are down sampled to 100 dpi (from, for example, 400 or 200 ppi

in the original files) and then partitioned into tiles. There are 20 tiles in each direction. For an

8.5 x 11 inch original, these tiles will be 0.425 inches x 0.55 inches.

d) For each tile, the correlation (E(XY) - E(X)E(Y))/sqrt(Var(X)*Var(Y)) is calculated between

the corresponding tiles in each image (SDI and RDI). Edge tiles are ignored from the

correlation. If the variance is small, special care is used to avoid division by zero.

e) If a tile has a correlation factor bigger than some threshold (say 0.7) then the tile is considered

a pass tile, otherwise the tile fails the correlation. An overall correlation index can be

computed by taking the mean correlation of all the tiles. The percentage of tiles that pass

compared to the overall number of tiles can also be used as a metric.

8) Using the percentage of correlated tiles, the system makes a decision about whether the SDI and

the RDI are considered correlated and thus accepts the output, or uncorrelated and thus rejects the

output.

4.3 Results

Currently, every document understanding application or system involves either (a) manual evaluation

of the output by a quality assurance person, or (b) manual correction of the output in case of erroneous

documents. In “closing the loop” on the quality assurance by regenerating a TIFF file from the output,

we are able to automatically detect defects in the output documents that are related to errors in

13

processing one or more of the document regions. For each of those defective documents the system

generates a difference image that can be examined by a quality assurance person.

This AutoQA component is currently used in the quality assurance phase of the DCRM system.

Because the AutoQA component generates weighted correlation data for all pages in the corpus, those

pages requiring the most significant manual correction, if any, are identified in order, allowing the

fastest improvement of overall corpus appearance.

As an example of the value-added of the AutoQA component, consider a real world example where

the DCRM system is used to process one million pages of out-of-print books and journals for an

academic publisher. Without the AutoQA component, the publisher has to make available the person

to check the quality of the million output pages. Using the AutoQA component, 95% (950,000 pages)

automatically passed quality assurance checks and only the remaining 5% are prioritized for manual

quality checks using the correlation indices. This is a considerable saving in the human effort required

for the quality assurance. The 5% pages that do not pass the AutoQA phase are not manually

processed; other quality assurance techniques are used as discussed in the next sections to reduce the

number of pages to be manually checked.

5 ALGORITHM COMBINATION FOR IMPROVED QUALITY

In a perfect world, the output quality of a document-understanding algorithm can be assessed by

measuring the output against accurate results or facts. The process is called Ground Truthing and the

facts about the output are called Ground Truth data. For example, ground truthing an OCR engine

refers to the assessment of the correctness of the characters produced by the algorithm compared to the

correct characters.

To be able to assess the correctness of the output of a content remastering engine, we should measure

the results of the algorithm against the ground truth data. In the DCRM system, it is not acceptable to

halt the system operation to check the quality of the output. Such system runs in an unattended mode

and thus manual intervention is unacceptable. At runtime, there are no means to certify that the

remastering engine is 100% correct because the absolute correct output data from applying the

algorithm to specific input document is not available. Since we cannot be 100% sure about the results

of an algorithm at run time. we compromise the 100% confidence and seek the highest possible

correctness level instead. We can call techniques that try to increase the confidence in obtaining

correct results runtime ground truthing.

14

The DCRM system is composed of several document-understanding algorithms. Algorithms are

obtained commercially or developed in house. The system will usually possess several algorithms

performing the same function but obtained from different sources. For example, it may have multiple

engines each implementing an algorithm to perform OCR; one OCR engine is acquired commercially

[6,7], another is obtained as a freeware [8], and another engine is developed internally by a document

understanding team. Similarly, it may have multiple algorithms for region analysis, table of content

(TOC) recognition, journal splitting into articles, and others. In such cases, the system has to

automatically discern how to use those different (in implementation and technology) yet similar (in

functionality) algorithms. The system has to decide which algorithm to use, whether to use only one

algorithm or multiple algorithms for redundancy, and how to combine those algorithms. In such

domain, there are several techniques to do algorithm combination for OCR applications [13-15].

Algorithm combination techniques can be used to improve the output quality using the results from

competing algorithms. Competing algorithms are algorithms performing the same function (e.g.

OCR), however, each uses a different technique, has different implementation, or has been acquired

from different vendor. Therefore, combination increases the chance of obtaining a better quality

output as compared to the output of a single algorithm.

As an additional quality assurance stage, the system is capable of perform runtime ground truthing

using combination of competing algorithms and provides mechanisms for assessing the correctness of

the output of an algorithm at runtime without manual intervention. There are several common

techniques that are used by domain experts to combine algorithms. The DCRM system makes use of

these common combination techniques. As an example, the DCRM system can use several content

remastering engines and vote among the results produced by each. In this section, we limit our

discussion to one technique that builds on top of the AutoQA component discussed in the previous

section, we call it: the TryAnother technique.

Figure 4 illustrates the schematic diagram for the TryAnother technique. In this technique, we have

alternative algorithms that can perform the same function. The idea is to simply try one engine at a

time. The output is then measured using the AutoQA component (discussed in section 4). If the output

is satisfactory according to the AutoQA acceptance criteria, then the output of that engine is selected

as the final output and the rest of the engines are ignored. If the output does not meet the AutoQA

quality criteria, the system selects another engine from the list and tries it. The system keeps repeating

the process until a satisfactory output is reached.

15

When the TryAnother technique is used with the automated quality assurance technique, we find that

the number of document pages that are submitted for manual QA is reduced significantly. Using the

DCRM system and the same document collection discussed in section 4, we recall that 5% percentage

of pages are submitted for manual QA due to errors produced by using only one document remastering

engine. Using the TryAnother technique with eight alternative document-remastering engines, the

percentage is reduced from 5% to 0.8% at the final output stages, which is a significant improvement

given the size of the collection.

Figure 4 A schematic diagram for the TryAnother technique

6 VISUAL QA

6.1 Purpose

As we discuss earlier, it is not possible to obtain a 100% correct output for a collection of millions of

document pages in an automated fashion. This is due to the large volume of data being processed by

the system, which in practice would give rise to several exceptions. However, from the end-user

perspective the data produced by the system has to be flaw-free. With regard to the quality assurance

processes, the DCRM system utilizes the AutoQA component described in section 4 and the algorithm

combination techniques described in section 5 to detect and tolerate processing errors. Despite the

effectiveness of the combination of these two automated approaches, there will still be defective

document pages that could not be fixed automatically. Therefore, human intervention is inevitable and

a quality assurance person is needed to perform the quality assurance on the remaining document

pages. We call this process the Visual Quality Assurance (VisualQA) process.

The VisualQA process is also required to examine another type of error that is not detected by the

AutoQA process. Due to region analysis errors in the content remastering engine, some text regions

Document Algorithm A
Passed

AutoQA?

Algorithm B

Choose Output

Algorithm X

Passed
AutoQA?

Passed
AutoQA?

16

might get misclassified. As a result those regions will appear in the final output (PDF page) as gray-

scale regions and not black and white text. A mechanism is required to check for possible gray-scale

text in the output and present those suspect pages to the quality assurance person for verification.

6.2 The VisualQA System

The interaction of the quality assurance person with this massive number of document is not simple

and is error-prone. To simplify the VisualQA process, we develop a web-based tool that facilitates the

interaction of the QA person with the DCRM system. The VisualQA process is a four-phase process,

which involves interaction between the VisualQA person and the system.

Phase 1: Generation and Notification

When the analysis of each page is completed, the system checks for possible gray-scale text defects in

the output. It also checks whether or not the output fails the AutoQA test. In either of these two cases,

the page is marked as a suspect page and is logged to a suspect file.

When the analysis of all pages of a book or a journal is completed, an HTML generator reads the

suspect list for that particular book and generates an HTML file that contains an entry for each suspect

page and a link to the output file (or a thumbnail version of the output is embedded in the HTML file).

The page also contains form fields to accept input from the user as of what to do with the suspect

page. An email is automatically sent to the VisualQA manager with the name of the book and the URL

to the HTML of suspect pages.

Phase 2: Web-based Visual Quality Assurance

After receiving a notification message that a book is ready, the VisualQA manager uses a standard

web browser to view the suspect PDF pages and check their quality. For each PDF page, the

VisualQA manager is presented with several options to accept the page (no defects), reject the page

(errors in the output page are irrecoverable), or submit the page for rework process that forces the

system to reprocess using some specific options. The VisualQA manager checks suspect PDF pages

and submits the form. The process is done asynchronously while the system is processing other pages.

Phase 3: Processing and Notification.

After the VisualQA form is submitted by the VisualQA manager, the system analyzes each entry and

acts accordingly. Pages that pass the VisualQA are removed from the suspect list and are considered

good pages. The raster images for pages that failed the VisualQA are kept aside for further manual

rework. The document images for pages that are submitted for rework will be rescheduled in the

17

system for reprocessing with the options selected by the VisualQA manager. In all cases, the system

notifies the VisualQA manager when processing the HTML form is completed.

Phase 4: Rework Cycle

Some of the suspect pages are select for rework by the VisualQA manager. There are several rework

options. A very common rework cycle is to force the page to be processed as text-only page and

hence all the regions identified by the remastering engine are classified as text regions. Those pages

are rescheduled for processing and another VisualQA cycle is used to check the quality of the output.

6.3 Results

As an example of he volume managed by the VisualQA components, consider the application that we

discussed in the previous sections. About 3% of the output pages were identified as suspect pages,

whether because they failed the AutoQA criteria or because they possibly contain text regions that

were misclassified as photo. The following figure illustrates the percentage of those pages the

passed/failed the VisualQA and those submitted/passed/failed the text-only rework process. We find

that out of the 3% suspect pages, 60% passed the VisualQA, 18% failed, and 22% are submitted for

text-only rework process. Out of the pages submitted for rework, 85% passed the second round

VisualQA and 15% failed. As a final result, only 0.12% of the whole collection is considered defective

output.

Figure 5 Results from the VisualQA procedures.

7 CONCLUSION

Quality assurance techniques are essential to the success of the operation of a large-scale document

understanding system. Due to the large volume of data to be processed, the system should run in a

non-stop unattended operation mode. We presented the DCRM system as an example of a document

remastering system as compared to standalone document processing applications. In the DCRM

system, automated means for quality assurance are used to minimize user interventions. We discussed

automated means for quality assurance; namely: automated quality assurance of the input data,

Quality Assurance

3.23%

1.93%

0.60% 0.70% 0.59%
0.12%

0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%

Suspects
Visual QA: Pass
Visual QA: Fail
Rework: Submitted
Rework: Pass
Rework: Fail

18

automated quality assurance of the output data, and algorithm combination techniques for improving

the output quality. We also illustrated a VisualQA feature in the DCRM system. Using the

combination of these techniques, the DCRM system is able to: a) detect unsatisfactory quality of

output due to errors in a content remastering engine, b) tolerate errors in one content remastering

engine by using alternative engines, c) provide automated means to obtain high quality output, and d)

significantly minimize the number of documents to be manually inspected.

REFERENCES

[1] A list of Document Understanding Research Groups. http://documents.cfar.umd.edu/cgi-
bin/groups, 2002

[2] Lead Technologies, Inc. http://www.leadtools.com, 2002

[3] Ghostscript Freeware, http://www.ghostscript.com, 2002

[4] O. Altamura, F. Esposito, & D. Malerba. “WISDOM++: An Interactive and Adaptive Document
Analysis System,” Proceedings of the Fifth International Conference on Document Analysis and
Recognition, 366-369, IEEE Computer Society Press, Los Vaqueros, CA, 1999.

[5] Lason, The Information Management Company, Capture Service,
http://www.lason.com/capture.htm , 2002

[6] ScanSoft OCR engine from Caere Inc., http://www.caere.com, 2002

[7] Abbyy OCR engine from Abbyy Inc., http://www.abbyy.com/, 2002

[8] A collection of OCR resources http://hosc.net/ocr/index.html, 2002

[9] O. Altamura, F. Esposito, and D. Malerba, “Transforming Paper Documents into XML Format
with Wisdom++,” International Journal of Document Analysis and Recognition, 3(2):175-198, 2000.

[10] Nicolas Roussel, Oliver Hitz, and Rolf Ingold, “Web-based Cooperative Document
Understanding”, Proceedings of the Sixth International Conference in Document Analysis and
Recognition, ICDAR-6, Seattle Washington, September 2001, pp 368.

[11] Clemens Szyperski, “Component Software: Beyond Object-Oriented Programming”, Addison
Wesley, 1998.

[12] Mohamed Fayad and Douglas C. Schmidt, “Building Application Frameworks : Object-Oriented
Foundations of Framework Design,” John Wiley & Sons; 1999

[13] Xiaofan Lin, “Reliable OCR Solution for Digital Content Re-mastering,” in the Proceedings of
the SPIE Conference on Document Recognition and Retrieval IX, San Jose, CA 20-25 January 2002.

[14] S. Klink and T. Jäger, “MergeLayouts - Overcoming Faulty Segmentations by a Comprehensive
Voting of Commercial OCR Devices”, Proceedings of 5th International Conference in Document
Analysis and Recognition, Bangalore, India, Aug 1999.

[15] L. Lam and C.Y. Suen, “A Theoretical Analysis of the Application of Majority Voting to Pattern
Recognition”, Proceedings of IEEE, pp. 418-420, 1994.

[16] Grady Booch, Ivar Jacobson, and Jim Rumbaugh, “The Unified Modeling Language User
Guide,” Addison Wesley 1998

19

[17] The 4th ICSE Workshop on Component-Based Software Engineering: Component Certification
and System Prediction, Toronto, Canada, May 14-15, 2001

[18] The MIT Cognitive Science electronic community. http://cognet.mit.edu/

