

My Agent Wants to Talk to Your Service:
Personalizing Web Services through Agents

Harumi Kuno, Akhil Sahai
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2002-114
April 23rd , 2002*

E-mail: harumi_kuno@hp.com, akhil_sahai@hp.com

web services,
agents,
personalization

Web services are tailored for the support of dynamic business-to-
business interactions. As web service technology evolves, we
anticipate that the question of how to use customer information to
personalize the relationship between web services and their
customers will move beyond the current focus on a service's
interactions with the human consumer, and on to the challenge of
how a customer can assign a delegate that will programmatically
interact with web services according to context when acting on the
behalf of a customer. We recognize that agent technology could be
used to meet these goals. We identify a number of outstanding
issues that web service and agent platforms must evolve to address
in order for the two paradigms to work together. In addition, we
propose a personalization component that can be integrated with
existing web service infrastructures.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

My Agent Wants to Talk to Your Service:
 Personalizing Web Services through Agents

Harumi Kuno

Hewlett-Packard Laboratories
1501 Page Mill Road, MS 1135

Palo Alto, CA 94304
(1) 650-857-3228

harumi_kuno@hp.com

Akhil Sahai
Hewlett-Packard Laboratories

1501 Page Mill Road, MS 1135
Palo Alto, CA 94304

(1) 650-857-2022

akhil_sahai@hp.com

ABSTRACT
Web services are tailored for the support of dynamic business-to-
business interactions. As web service technology evolves, we
anticipate that the question of how to use customer information to
personalize the relationship between web services and their
customers will move beyond the current focus on a service’s
interactions with the human consumer, and on to the challenge of
how a customer can assign a delegate that will programmatically
interact with web services according to context when acting on the
behalf of a customer. We recognize that agent technology could
be used to meet these goals. We identify a number of outstanding
issues that web service and agent platforms must evolve to
address in order for the two paradigms to work together. In
addition, we propose a personalization component that can be
integrated with existing web service infrastructures.

Keywords
Web services, agents, personalization

1. INTRODUCTION
Web services are distributed services that are accessible via the
Internet through Uniform Resource Locators (URLs). Naturally,
web services must address traditional requirements, such as
scalability and reliability. In addition, specific characteristics
distinguish web services from more traditional e-commerce
applications:
1. Describable: Web service interfaces are described in terms of

operations they support and messages they exchange.
2. Discoverable: One of the foremost requirements for a web

service to be useful in a commercial scenario is that it be
discoverable by consumers (humans or other web services).
UDDI operator sites provide such capability for web services
for registration and discovery.

3. Message-based communication: Web services communicate
by exchanging documents through SOAP messaging.

The reason that web services have these characteristics is that they
are intended to engage in dynamic business-to-business (B2B)
interactions with services deployed on behalf of other enterprises.
Some consider any application that offers a web-interface (i.e.,
that publishes data in the HTML format using the standard HTTP
protocol) to be a “web service,” but we believe that this

interpretation, which ignores description and discovery
functionality, misses the innovation of the web service vision.
As web service technology evolves, we anticipate that they will
become increasingly sophisticated, and that the challenges web
service community will face will also evolve to meet their new
capabilities. One of the most important of these challenges is the
question of what it means to personalize web services.
In this paper, we address the problem of web service
personalization. We begin in Section 2 by providing a brief
overview of current web service platforms. We then discuss in
Section 3 how the goals of personalization apply to the web
services paradigm. In particular, we identify a number of new
issues that web service platforms must evolve to address. In
Section 4 we propose an architecture that addresses these issues,
which we compare to related work in Section 5. Finally, in
Section 6, we summarize our conclusions

2. CURRENT WEB SERVICE
PLATFORMS
The two primary currently emerging web services infrastructure
standards are J2EE and .Net. J2EE was designed to provide for 3-
tier service architectures, as opposed to 2-tier client-server
architectures. HP’s Application Server, BEA’s WebLogic are
examples of J2EE-compliant application servers that combine web
server farms with EJB engines. The 3-tier architecture extends the
client-server paradigm with a presentation layer, which could be
static as is the case with a simple browser or could be more
dynamic depending on the usage of JSPs, servlets, the Application
server logic layer or business logic layer as it is usually termed is
implemented in the form of Enterprise Java Beans (EJB)s. The
business logic layer accesses data from databases through entity
beans that in turn use JDBC for accessing the databases. They can
also access legacy software through Java Messaging Service
(JMS). The commercial implementations of J2EE provide a web
service layer on top of the J2EE infrastructure. This layer enables
exposing services through WSDL [3] interfaces, registering these
services at UDDI [4] operator sites and communicating with
clients and other web services through SOAP messaging.
The .Net my Services initiative on the other hand personalizes
web services by smoothing users’ interactions with other web
services. .NET provides a hosted environment for users to create,
register, discover and use other web services. In order to
personalize user interaction with other web services, a set of

customization services will be run by the hosted environment.
These customization services will register user devices (.Net
Devices), maintain the payment information in its wallet (.Net
Wallet), maintain repository of favorite web sites (.Net Favorite
Web sites), maintain mails in its Inbox (.Net Inbox,), maintain
user documents in (.Net Documents) etc. The interactions between
web services and creation of WSDL interfaces for web services
will be facilitated by easy to use tools like .Net Visual Studio.

3. PERSONALIZATION AND WEB
SERVICES
Personalization describes the problem of how to use customer
information to optimize a business’s relationship with its
customers. Traditionally, personalization technology has focused
on a service’s interactions with the customer. According to the
Personalization Consortium [16], the goal of this technology has
been to use information about a customer so as to better serve the
customer by anticipating needs, make the interaction efficient and
satisfying for both parties, and build a relationship that
encourages the customer to return for subsequent purchases.
The web service platforms described in the previous section are
beginning to offer technology that supports traditional forms of
personalization. For example, Microsoft’s .NET Passport
authentication service enables users to enter and store profile
information (e.g., e-mail address and password, mailing address,
etc.) so that it does not have to be re-entered as they move from
web site to web site. The .Net wallet service will store credit card
information so that users do not need to re-enter it either. As an
alternative to Microsoft, the Liberty Alliance Project [14], is an
organization to create an open, federated, single sign-on identity
solution for the digital economy via any device connected to the
Internet. Similarly, as Mike Clark [7] notes, a number of value
added service suppliers that provide rudimentary rating and
enriched service search services are beginning to emerge. Sites
such as www.salcentral.com, www.bizrate.com offers service
reviews and ratings. However, although these and other web
services are emerging, they are intended for human user, and do
not provide explicit support for automation and delegation.
Web services, however, offer the potential for a customer to
assign a programmatic delegate to act on his or her behalf in
interactions with services. Thus, the web service environment
extends the issues raised by personalization to include the
question of how a delegate can make decisions on behalf of the
customer when interacting with a service, as opposed to how to
adapt the service so that it can better interact with the customer.
In this paper, we do not address how a customer might store their
personal profile information for use by an agent, or how a
delegate should authenticate itself as representing a user. Instead,
we focus on how a delegate could interact programmatically with
web services.

4. ARCHITECTURE FOR PERSONALIZED
WEB SERVICES
We propose an architecture (Figure 1) that leverages agent
technology to personalize user interaction with web services. This
aspect of personalization is lacking in current web service
architectures. Our personalization component can be either
integrated with hosted environments like .Net my services or with
existing portals/integrators so as to provide user personalization.

In particular, we use agents to implement delegates. These agents
proxy for the users, achieve goals of the user through goal-
directed behavior (with or without the presence of the user) and
interact with other constituents of the personalization component.
For example, context managers track the user as its temporal and
spatial location changes. Similarly, user profiles maintain static
and dynamic information about the user. Static information is pre-
registered while dynamic information is learnt by studying user
behavioral patterns. As the delegates interact with web services
over time their experiences are recorded in the rating services.
These rating services can be used by delegates of other users or
can also be passed to third party rating services.

4
M
t
f
s
a
d
v
p
c

H
t
m
W
t
w
s
I
m
b
c
a
c
t
i
T
(
g
t

User’s service access devices

palm tops

cell phones

4

information
appliances

From: HenryHa rriso
n

Do you be lieve
tha t

the mobi le
da ta

ma rke t is ab
out to

ta ke off?set top boxes
(Home PC/TV)

Hosted Environments
(.Net myServices)

Portals/Integrators

Web Services
(.Net, J2EE based)

Context
managers

Agents

User
Profiles

Rating
service

Personalization component

Conversation
managers

User’s service access devices

palm topspalm tops

cell phones

4

cell phones

44

information
appliances

From: HenryHa rriso
n

Do you be lieve
tha t

the mobi le
da ta

ma rke t is ab
out to

ta ke off?

information
appliances

From: HenryHa rriso
n

Do you be lieve
tha t

the mobi le
da ta

ma rke t is ab
out to

ta ke off?

From: HenryHa rriso
n

Do you be lieve
tha t

the mobi le
da ta

ma rke t is ab
out to

ta ke off?

From: HenryHa rriso
n

Do
From: HenryHa rriso

n

Do you be lieve
tha t

the mobi le
da ta

ma rke t is ab
out to

ta ke off?set top boxes
(Home PC/TV)
set top boxes
(Home PC/TV)

Hosted Environments
(.Net myServices)

Portals/Integrators

Web Services
(.Net, J2EE based)

Hosted Environments
(.Net myServices)

Portals/Integrators

Web Services
(.Net, J2EE based)

Context
managers

Agents

User
Profiles

Rating
service

Personalization component

Conversation
managers

Context
managers

Agents

User
Profiles

Rating
service

Personalization component

Conversation
managers

Figure 1 User devices interact with web services via the
personalization component.
.1 AGENTS AS DELEGATES
ultiple definitions of the term “Agent” have been proposed

hroughout the years, but fundamentally, agents must support the
ollowing four properties: autonomy, reactivity, proactivity,
ociability [24]. We believe that these characteristics make agents
 particularly appropriate technology for implementing
elegation. Furthermore, since agents dynamically communicate
ia message exchanges that conform to specified
rotocols/patterns, agent-based conversations are naturally
ompatible with web service interactions.

owever, we must address a number of issues in order for agents
o interact effectively with web services. Web-services are much
ore loosely coupled than traditional distributed applications.
eb-services are deployed on behalf of diverse enterprises, and

he programmers who implement them are unlikely to collaborate
ith each other during development. Therefore, web services

upport very flexible, dynamic bindings.
n order for the agents and services to interact dynamically, they
ust be able to do three fundamental things. First, the agent must

e able to discover services that are appropriate given a
ustomer’s preferences and requirements. The delegate should
lso be able to adapt its behavior based on the dynamic
haracteristics of the web services in a user’s current physical and
emporal context. Second, services must describe their abstract
nterfaces and protocol bindings so that agents can invoke them.
hird, an agent should be able to carry out complex interactions

conversations) with multiple services while acting on behalf of a
iven user (for example, the agent should be able to login and
hen purchase an item from the service). This includes the

http://www.salcentral.com/
http://www.bizrate.com/

monitoring of ongoing interactions so that the delegate can take
proactive alternatives should exceptions occur.

4.2 Advertisement / Discovery
Web service repositories, such as UDDI, publish the information
needed to discover and interact with web services. This includes
“white page” contact information for the businesses that front
services, “yellow page” categorizations of the taxonomies and
vocabularies used to describe services, and “green page”
specifications of the interfaces and protocols used to access and
interact with services.
Although UDDI features a SOAP message-based interface for
programmatic access and publishes schemas describing its data
structures, UDDI is optimized for interaction with humans (e.g.,
service developers), not agents. Thus, a number of issues must be
addressed before agents can use web service repositories to
discover and programmatically interact with services without
human intervention:
First, in order for agents to select services in a context-sensitive
manner, they must be able to discover services based on semantic
description. However, in UDDI discovery is primarily by service
name, not by service attributes. UDDI tModels can represent the
equivalent of vocabularies, but it is cumbersome to perform
lookups by tModel reference, and indeed the actual service
descriptions in UDDI are unstructured and intended for human
consumption. Second, UDDI repositories are fairly static, and
intended for stable content. Agents, on the other hand, require
dynamic information such as would be provided by a rating
service. Finally, UDDI repositories does not support service
context, such as location-dependent or context-sensitive
information.
A number of research groups use ontologies to express semantic
descriptions of web services. The DAML-based Web Service
Ontology project (DAML-S) provides a core set of markup
language constructs for describing the properties and capabilities
of their Web services in unambiguous, computer-interpretable
form. The W3C Web Ontology Working Group has published an
initial draft of requirements for the Ontology Web Language
(OWL) 1.0 specification. However, these efforts need to be
integrated with service discovery mechanisms before agents can
use them to discover web services. In addition, existing efforts do
not address how to create and maintain descriptions that include
dynamic attributes such as current load averages or ongoing
performance characteristics.
Current web service rating services exist in quite an ad hoc
manner. Certain web based businesses like Amazon and e-bay
provide mechanisms for users to rate commodities (like books)
and vendors (sellers) respectively. These mechanisms capture the
user experience while undertaking business with them. BizRate
intends to perform similar functions. Most of these are however
ad hoc mechanisms. As agents representing users discover and
undertake business with other web services, mechanisms for
rating would be invaluable for making these web services
“customer-friendly”.

4.3 Context
In order for a delegate to represent a human user, the delegate
must be able to characterize the context of the interaction. The
user context can be current temporal and spatial location, terminal

device characteristics, user preferences, users nearby, resources
nearby, lighting, noise level, network connectivity,
communication cost, communication bandwidth, and social
situation. Some of this contextual information can be sensed
through sensors like GPS, and network bandwidth detection,
while others can be inferred from knowledge bases. Each of these
contextual parameters are fairly complex. For example, terminal
device characteristics could involve audio capability, video
capability, image decoder, text capability, local storage capacity,
screen size, network capability, content markup language
capability. Temporal and spatial location pinpoints a user location
in time and in the physical world, so that context specific services
can be provided to the user.
Chen et al observe [4] that human contextual awareness is based
upon three factors: the sensing of contextual information, the
acquisition and sharing of contextual information, and reasoning
about contextual knowledge. Much work in context-aware
applications addressing all three of these areas has been done in
both the agent and mobile computing communities [4, 10].

4.4 Invocation
Emerging standards such as Web Services Definition Language
(WSDL) provide general-purpose XML-based languages for
describing the interfaces and protocol bindings of web service
functional endpoints. WSDL enables the description of web
services irrespective of the message formats and network
protocols used. For example, in WSDL a service is implemented
through a set of endpoints. An endpoint is in turn a set of
operations. Each operation is defined in terms of the messages
that can be received and sent out.
The Java Agent Services (JAS) project is tasked with defining an
industry standard specification and API for the development of
network agent and service architectures [9]. The JAS will define
Java classes describing the various components of message
elements and defining agent names and descriptions, and Java
interfaces corresponding to agent services for messaging,
directories, and naming. Although JAS is designed to be
compatible with standard transports, such as HTTP and SOAP,
and it seems quite reasonable that an ACL message could exist as
a payload of a SOAP message, JAS does not address how an ACL
message could be translated into the format expected by a given
web service. Similarly, HP BlueJade integrates agents in the
Bluestone Application Server environment, but does not address
how agents can leverage web-service standards (e.g., SOAP,
UDDI, WSDL) or how services and agents can interact [3].

4.5 Orchestration
Orchestration languages such as WSCL[1], WSFL[23],
ebXML[22], and RosettaNet's PIPs [21] provide XML schemas
for defining legal sequences of message exchanges (interactions)
web services support. Orchestration languages and interface
definition languages are highly complimentary -- the latter
specifies how to send messages to a service and former specifies
the order in which such messages can be sent. The advantage of
keeping the two distinct is that doing so allows us to decouple
conversational interfaces from service-specific interfaces.
For example, the ebXML associates parties that engage in
business with Collaboration Protocol Profiles (CPP). Once a party
discovers another party’s CPP they negotiate to form a

Collaboration Protocol Agreement (CPA). The intent of the CPA
is not to expose business process internals of parties but to expose
the visible process that involves interactions between parties. The
CPA and the process specification document it references define a
conversation between parties. This conversation involves multiple
Business Transactions. A Business Transaction may involve
exchange of messages as request and replies. The CPA may refer
to multiple process specification documents.
Current web service platforms require services to participate in
homogeneous marketplaces, in which participants code to
matching conversation protocols; should a protocol change, all
participants that support the protocol must be updated and
recompiled. In addition, existing systems also couple the message
exchanges with the internal state of a service/agent.
Several existing agent systems allow agents to communicate
following conversational protocols (or patterns). However, to the
best of our knowledge, all of these are tightly coupled to specific
agent systems, and require all participating entities to be built
upon a common agent platform. For example, the Knowledgeable
Agent-oriented System (KaoS)[2] is an open distributed
architecture for software agents, but requires agent developers to
hard-wire conversation policies into agents in advance. Walker
and Wooldridge [20] address the issue of how a group of
autonomous agents can reach a global agreement on conversation
policy; but require the agents themselves to implement strategies
and control. Chen, et al. [5] provide a framework in which agents
can dynamically load conversation policies from one-another, but
their solution is homogeneous and requires that agents be built
upon a common infrastructure.
Our personalization component includes conversation controllers,
as proposed in [12, 13]. These Conversation Controllers allow us
to require only that a participating service produce two XML-
based documents -- 1) a specification of the conversational flows
it supports and 2) a specification of the service’s functionality
(describing how the service can be invoked). This allows us to
provide an extremely lightweight solution relieving service
developers from the burden of implementing conversation-
handling logic and make possible the automated coordination of
complex conversations between agents and services that do not
support compatible message document types.

5. CONCLUSIONS
We examine here the question of how agent technology can be
used to personalize web services. In particular, we address the
challenge of how a customer can assign a delegate that will
programmatically interact with web services according to context
when acting on the behalf of a customer. We have identified a
number of outstanding issues that web service and agent platforms
must evolve to address in order for the two paradigms to work
together, and propose a personalization component that can be
integrated with existing web service infrastructures.

6. REFERENCES
[1] A. Banerji et al. Web Services Conversation Language
(WSCL) 1.0, W3C Note, Mar. 2002.
[2] J. M. Bradshaw. KAoS: An Open Agent Architecture
Supporting Reuse, Interoperability, and Extensibility. Knowledge
Acquisition for Knowledge-Based Systems Workshop, 1996.
[3] B. Burg. Agents in the world of active web-services. Second
Kyoto Meeting on Digital Cities, 2001.
[4] H. Chen, S. Tolia, C. Sayers, T. Finin, and A. Joshi. Creating
context-aware software agents. 1st Workshop on Radical Agent
Concepts, Sept. 2001.
[5] Q. Chen, U. Dayal, M. Hsu, and M. Griss. Dynamic Agents,
Workflow and XML for E-Commerce Automation. International
Conference on E-Commerce and Web-Technology, 2000.
[6]E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) 1.1, Mar. 2001.
[7] M. Clark. The Birth of the UDDI Value Added Service
Supplier. Web Services Architect, Dec. 2001.
[9] Java Agent Services Project. http://www.java-agent.org/. N.
Jennings and M. Wooldridge. Software agents. IEEE Review,
pages 17–20, Jan. 1994.
[10] T. Kantor. Adaptive Personal Mobile Communication –
Service Architecture and Protocols. PhD thesis, Stockholm
University/KTH, Dec. 2001.
[11] W. Kim, S. Graupner, A. Sahai et al. Web E-speak -A
Document Interchange Engine for Web based E-Services. IEEE
Multi-Media, Jan. 2002.
[12] H. Kuno and M. Lemon. A Lightweight Dynamic
Conversation Controller for E-Services. WECWIS 2001.
[13] H. Kuno, M. Lemon, and A. Karp. Transformational
interactions for p2p e-commerce. HICSS-35, Jan. 2002.
[14] Liberty Alliance Project. http://www.projectliberty.org.
[15] S. A. McIlraith, T. C. Son, and H. Zeng. Mobilizing the
semantic web with DAML-enabled web services. Semantic Web
Workshop, 2001.
[16] Personalization Consortium.
[]http://www.personalization.org/personalization.html.
[17] A. Sahai and V. Machiraju. Enabling of Ubiquitous E-
Services Vision on the Internet. E-Services Journal, 2001.
[18] A. Sahai and C. Morin. Mobile agents for enabling mobile
user aware applications. Second ACM International Conference
Autonomous Agents (Agents 98), May 1998.
[19] Universal Description, Discovery and Integration (UDDI)
Project. http://uddi.org.
[20] A. Walker and M. Wooldridge. Understanding the emergence
of conventions in multi-agent systems. First International
Conference on Multi-Agent Systems, 1995.
[21] RosettaNet. http://rosettanet.org
[22] EbXML http://www.ebxml.org
[23] WSFL. http://www.ibm.com/software/solutions/webservices/
[24] N.Jennings, M. Wooldridge. Software Agents. IEEE
Review. January, 1994. Pg 17-20.

http://www.java-agent.org/

	INTRODUCTION
	CURRENT WEB SERVICE PLATFORMS
	PERSONALIZATION AND WEB SERVICES
	ARCHITECTURE FOR PERSONALIZED WEB SERVICES
	AGENTS AS DELEGATES
	Advertisement / Discovery
	Context
	Invocation
	Orchestration

	CONCLUSIONS
	REFERENCES

