

Hitting back at Code Red

Andy Norman, Matthew Williamson
HP Laboratories Bristol
HPL-2002-111
February 28th , 2003*

 In July 2001 the Internet was “attacked” by the Code Red virus.

This virus and its variants caused widespread havoc on computer
networks, and cost many millions of dollars in lost productivity and
man-hours to clean up.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2003

Hitting back at Code Red

Andy Norman, Matthew Williamson
Thursday, 14 March 2002

In July 2001 the Internet was “attacked” by the Code Red virus [1]. This virus and its
variants caused widespread havoc on computer networks, and cost many millions of
dollars in lost productivity and man-hours to clean up.

The virus affected versions 4 and 5 of Microsoft’s IIS web server, exploiting a buffer
overflow vulnerability in the indexing service. The attack consisted of a specially
crafted HTTP request that when sent to IIS would cause malicious code to take
control of the web server. The primary behaviour of the malicious code was to
attempt to propagate as rapidly as possible, by generating IP addresses at random1,
and making infective HTTP requests to those addresses. If any of these machines
were running vulnerable installations of IIS, they too would become infected. The
code attempted to propagate at an incredible rate, with many HTTP requests being
sent every second. It has been estimated that the virus could infect on the order of half
a million IP addresses a day [2]. The secondary behaviour of Code Red was to deface
web sites on the infected host, and prepare the infected machine to participate in a
distributed denial of service (DDOS) attack on www.whitehouse.gov, at certain times.
Later variants of Code Red (e.g. Code Red II [3]) left Trojan horses and open shares
on the compromised machine.

Not surprisingly this virus quickly saturated networks with traffic, causing widespread
delays and problems [4]. It also prompted efforts to combat the spread of the virus.
The response generally consisted of detecting infected machines, and then applying a
patch to an IIS library. Because infected machines made HTTP requests to other
machines, it was relatively simple to determine the IP addresses of infected machines
by looking at the access logs from the web servers that were being attacked.

Once an infected machine had been detected, the process for cleaning the machine
was to stop IIS and patch it with a patch obtained from Microsoft [5]. However this
patching process was fundamentally manual and therefore slow. The detection
method gave the IP address of the machine, but in order for the machine to be
patched, a human had to visit it (most machines do not have remote access). Before a
human can visit an infected machine, they need to know where it is! It is also
important to know who owns the machine, and what it is doing, so that mission
critical infrastructure is not inadvertently switched off. The mapping between IP
address and physical location, machine name, and owner name is variable (many
addresses are assigned dynamically), inaccurate (this information is generally not
kept, and what is kept can be out of date), and incomplete (for some machines no
information is available). This made the process of dealing with the virus very slow
and labour intensive.

1 The different variants of Code Red used different strategies for choosing IP addresses. Early variants
generated addresses at random, while later versions biased these random distributions towards the IP
address of the infected machine, making the virus propagation more effective within a subnet. For full
details see [,]. 2 8

1

http://www.whitehouse.gov/

The contrast between the very fast propagation of the virus (using IP addresses) and
the slow response (based on mapping IP address to physical location, and then
responding) essentially let the virus run free, its progress only being checked by
running out of vulnerable hosts to infect (see Figure 1)

Figure 1: Figure showing propagation of Code Red worm. Image taken from
http://www.caida.org/dynamic/analysis/security/code-red/

At HP, we developed an alternative response, which exploited the attack method of
the virus to allow remote access to infected and vulnerable machines. We reverse
engineered the Code Red virus payload, and constructed our own “antidote” payload
that entered machines using the same vulnerability as the virus (luckily the virus did
not close the vulnerability behind it). This payload could then be used to probe the
machine, determine whether it was infected, and if so to run a program to take
remedial action. This allowed infected machines to be detected and dealt with
remotely.

This meant that infected machines could be “treated” knowing only their IP address,
without knowing their physical location. It meant that a human was not required to
visit the machine to stop the virus propagating (although a visit was still required to
patch IIS2). This response was faster than the manual approach in the case when
owner data for the machine was available, and it enabled a response when that data

2 While it is theoretically possible to patch IIS remotely, it was felt that the patching would be safer and
more reliable if carried out manually.

2

was unavailable. Overall, combating the virus in this way increased the speed of the
response, and reduced the cost.

As well as fighting the virus, this method can also be used to detect both vulnerable
and infected machines on the network. The “antidote” can be sent to all the machines
on the network, but only those that are infected or vulnerable will respond. These
machines can then be patched to remove the vulnerability. The scanning is important
both to pre-emptively deal with machines during an attack, and also to prevent further
outbreaks after the main attack.

The rest of this paper describes how the Code Red virus payload works, the design of
the antidote payload and a description of how the this payload could be used to
prevent the spread of the virus, clean up during attack, and prevent further outbreaks.

Reverse Engineering code red

The Code Red payload is shown in Figure 2. It is a HTTP GET request for
filetype.ida. The .ida extension is mapped by IIS to cause the indexing service (IDA
module) to run on that filetype. The vulnerability that the virus exploits is a buffer
overflow [6]. The “NNN” is padding to increase the size of the request in order to
overflow the buffer, and the Unicode characters are machine code to coerce IIS into
running the binary payload. A full description of the binary payload and the virus
program is given in [2].

GET
/default.ida?NNN
NN
NN
NNNNNNNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%
u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531
b%u53ff%u0078%u0000%u00=a

[binary payload]
Figure 2: Code Red HTTP Request. It is a buffer overflow attack on the indexing service
(default.ida)

In order to exploit the same vulnerability as the virus, we constructed HTTP requests
that caused the same buffer overflow. For example, if you send the HTTP Request
shown in Figure 3, IIS will return different error codes depending on whether the IDA
module is vulnerable or patched.

GET
/x.ida?AA
AAA
AAA
AAAAAAAAAA=X
HTTP/1.1
Host: HP-Security-Scan
User-Agent: HP-Security-Scan

Figure 3: Probing HTTP Request, which exploits the same buffer overflow attack

3

If IIS was determined to be vulnerable, a second HTTP Request could be sent that
contained the “antidote” payload. This is shown in Figure 4. The payload itself is a
combination of x86 code and a much larger win32 executable. The machine code
installed itself in the IIS stack in the same way as Code Red. Once initialised, it
unpacked the win32 executable to C:\HPPatch.exe and attempted to execute it. If it
failed, it would then attempt to terminate IIS itself as a temporary remedial measure.
The assembly code also sent simple status messages back along the open HTTP
channel to the waiting scanner.

GET
/default.ida?NNN
NNN
NNN
NNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u780
1%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a
HTTP/1.0
Content-type: text/xml
Host: HP-Security-Scan
User-Agent: HP-Security-Scan
Accept: */*
Content-length: 37459

[37459 bytes of binary payload omitted here.]

Figure 4: Remedial or antidote payload

The win32 executable (HPPatch.exe) terminated the HTTP server part of IIS, and
marked the service as disabled, so that it would not start up again when the machine
was rebooted. This effectively stopped the virus from propagating further from that
machine.

The user of the machine was required to participate in the patching part of the
response. As interactive access was not permitted from IIS, HPPatch.exe added a
registry entry such that when a user next logged into Windows, they would be
presented with a pop-up window explaining that the HTTP service had been disabled
and why. The default web browser would then visit a purpose-built HP web page
displaying more information about the problem and explaining how to correct it. The
user could then apply the patch to IIS. HPPatch.exe was programmed such that the
user was prompted on login until the IDA module had been updated to avoid the
buffer-overflow bug.

The antidote payload thus mitigated many of the labour intensive parts of combating
Code Red. It could be used to probe for infected and vulnerable machines, it could be
used to quickly shut down IIS without knowing the physical location of the machine,
and it would not allow IIS to be re-run without the patch being applied, using the
owner of the machine to apply the patch.

Anti-virus system

Having the payloads above greatly eases the problem of dealing the Code Red virus.
However, we have also automated using these payloads for three different tasks:

4

dealing with a list of offending IP addresses, responding dynamically to attacks, and
scanning the whole network. We have also written this system so that probes and
responses for other viruses can be easily added and maintained.

Given a list of the IP addresses of suspected machines, our system can probe and deal
with each machine on that list automatically. This is useful because it allows
information from a variety of detectors to be used as input.

The system can also be used for proactive defence, by putting it on a machine on the
network. This “white knight” machine is programmed to listen for attacks, and
respond to those attacks by probing and responding to the attacking machine. Because
the virus propagates by generating IP addresses at random, and if the attack is
successful many machines are generating many IP addresses, it is likely that the
system machine will be attacked3. The “white knight” machine retaliates against any
machine that attacks it. This technique is useful because it slows the spread of the
virus, and is very quick compared to separate detection and response processes.

The third way that the program can be used is as part of a scanning system, scanning
the network for vulnerable machines. Scanning is important even when the virus is
not rife, because new and vulnerable machines are connected to the network all the
time (e.g. whenever a windows 2000 machine is installed, the patch to IIS is not
included by default, resulting in a vulnerable machine). If these machines were left
un-patched, then there is the danger of a fresh outbreak.

3 The initial Code Red virus used a fixed random seed for generating IP addresses []. This means that
all infected hosts would eventually attack the “white knight” machine and be retaliated against. Later
variants were more sophisticated [].

2

8

5

 Managing server

Scanning
client

Scanning
client

Scanning
client

Machines
on network

Figure 5: Showing SETI@home style scanning infrastucture. The managing server distributes
signatures and IP ranges to each of the scanning clients, which in turn scan those IP ranges. The
results of their scans are communicated back to the Managing server.

The scanning is implemented along the lines of the SETI@home [7] distributed
computation program, as shown in Figure 5. Each scanner client connects to the
Managing Server to obtain a range of IP addresses to scan, and a set of virus
signatures. Once all IP ranges close to the client are no longer available, the client will
then slowly expand its region out to include other geographies. For instance, if the
scanner client system is located in Palo-Alto, it will begin by scanning only subnets
local to Palo-Alto. Once all Palo-Alto subnets have been scanned, the client will
check if there are any available subnets in other areas close to Palo-Alto. Once all of
the North Americas subnets are scanned, the Palo-Alto client will check to see if there
are any subnets available in Europe or Asia-Pacific. This will continue until all
subnets within the database have been scanned. After all subnets have been scanned,
the process will start all over again with the Palo-Alto client scanning only its local
subnets.

Using 10 client scanners, the entire HP network (15.0.0.0/8) can be scanned in about
12 hours. Similar scanner tools require 30 days or more to complete this level of
scanning. It is expected that more client scanners would greatly reduce the amount of
time to scan HP to within minutes. Results of the scanning are reported back to the
managing server and reported via a web page at http://virus.rose.hp.com/cgi-
bin/virus.sh.

This system currently has signatures for all the Code Red variants and Nimda. When a
new virus or vulnerability is discovered, that vulnerability needs to be analyzed and
signatures, remote access probes and responses written. Once that has been achieved,
these can quickly be inserted into the system and immediately be used to combat the

6

mailto:SETI@home
http://virus.rose.hp.com/cgi-bin/virus.sh
http://virus.rose.hp.com/cgi-bin/virus.sh

virus in the three ways described above (processing lists of IP addresses, dynamically
responding to attack, and scanning).

Future work

The main area for future work is to develop tools to help automate the process of
analyzing new viruses and vulnerabilities. This would further speed up the response.

Conclusion

The web-born viruses such as Code Red and Nimda spread very quickly through
networks of computers causing widespread disruption of the networking
infrastructure. In contrast, the manual responses to these threats are very slow – they
are manual and require finding the physical location and owner of a machine before it
can be responded to.

We have developed an automatic response method, which uses the same attack
mechanism as the virus. This antidote payload can be used to provide remote access
to the machine, which can be used to automatically (and thus quickly) stop the
infected machine spreading the virus further. By exploiting the same vulnerability as
the virus, the response to the virus can be much quicker, cutting out the difficulty of
finding the physical location of the machine from its IP address.

 In addition, the payload can be used to effectively scan for vulnerable machines.

We have generalised this approach so that we can automatically respond to attacks
and can pre-emptively scan our networks to remove vulnerable machines. The only
bottleneck or time limiting factor in our response is the need to reverse engineer the
virus attack.

By using the virus attack method for defence, we can exploit the same factors that
allow the virus to propagate quickly to enable a quick response. For fast spreading
viruses, this speed is vital for the response to be effective.

Acknowledgements

John Scrimsher provided the details of the scanning system. Thank you also to Ryan
Bradetich, James Hatmaker, Mike McGehee, Leon Davidson, Claire Wright, John
Brawn, and Jonathan Griffin.

References

[1] CERT Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer Overflow In
IIS Indexing Service DLL http://www.cert.org/advisories/CA-2001-19.html

7

http://www.cert.org/advisories/CA-2001-19.html

8

[2] .ida "Code Red" Worm Advisory. July 17, 2001
http://www.eeye.com/html/Research/Advisories/AL20010717.html

[3] CERT Incident Note IN-2001-09 "Code Red II:" Another Worm Exploiting Buffer
Overflow In IIS Indexing Service DLL
http://www.cert.org/incident_notes/IN-2001-09.html

[4] Global Routing Instabilities during Code Red II and Nimda Worm Propagation.
James Cowie, Andy Ogielski, BJ Premore and Yougu Yuan. 19 September 2001
http://www.renesys.com/projects/bgp_instability/

[5] Microsoft Security Bulletin MS01-044 15 August 2001 Cumulative Patch for IIS
http://www.microsoft.com/technet/security/bulletin/MS01-044.asp

[6] Smashing The Stack For Fun And Profit, Aleph One,
http://www.shmoo.com/phrack/Phrack49/p49-14

[7] SETI@home, The Search for Extra Terrestrial Intelligence
http://setiathome.ssl.berkeley.edu/

[8] Code Red II analysis, Marc Maiffret and Ryan Permeh,
http://www.net-security.org/text/articles/code-red8.shtml

http://www.eeye.com/html/Research/Advisories/AL20010717.html
http://www.cert.org/incident_notes/IN-2001-09.html
http://www.renesys.com/projects/bgp_instability/
http://www.microsoft.com/technet/security/bulletin/MS01-044.asp
http://www.shmoo.com/phrack/Phrack49/p49-14
mailto:SETI@home
http://setiathome.ssl.berkeley.edu/
http://www.net-security.org/text/articles/code-red8.shtml

	Hitting back at Code Red
	Reverse Engineering code red
	Anti-virus system
	Future work
	Conclusion
	Acknowledgements
	References

