
                                                                       
Three Implementations of SquishQL,  
a Simple RDF Query Language 
 
Libby Miller1, Andy Seaborne, Alberto Reggiori 2 

Information Infrastructure Laboratory  
HP Laboratories Bristol 
HPL-2002-110 
April 26th , 2002* 
 
E-mail: libby.miller@bristol.ac.uk, andy_seaborne@hp.com, areggiori@webweaving.org  
 
 
semantic 
web, query, 
RDF, internet 
engineering 
 

RDF provides a basic way to represent data for the Semantic Web. 
We have been experimenting with the query paradigm for working 
with RDF data in semantic web applications. Query of RDF data 
provides a declarative access mechanism that is suitable for 
application usage and remote access. We describe work on a 
conceptual model for querying RDF data that refines ideas first 
presented in at the W3C workshop on Query Languages and the 
design of one possible syntax, derived from rdfDB, that is suitable 
for application programmers. Further, we present experience gained 
in three independent implementations of the query language. 
 

 

* Internal Accession Date Only                               Approved for External Publication 
First International Semantic Web Conference (ISWC2002), Sardinia, June, 2002 
1   ILRT, Bristol University, Bristol, UK 
2   Web Weaving Internet Engineering, Arnhem, The Netherlands 
 Copyright Hewlett-Packard Company 2002 



 

Three Implementations of SquishQL, a Simple RDF 
Query Language 

Libby Miller1, Andy Seaborne2, Alberto Reggiori3   

1ILRT, Bristol University, UK 
l i bby. mi l l er @br i st ol . ac. uk 

2Hewlett-Packard Laboratories, Bristol, UK 
andy_seabor ne@hp. com 

3Web Weaving Internet Engineering, Arnhem, The Netherlands 
ar eggi or i @webweavi ng. or g 

Abstract. RDF provides a basic way to represent data for the Semantic Web. 
We have been experimenting with the query paradigm for working with RDF 
data in semantic web applications. Query of RDF data provides a declarative 
access mechanism that is suitable for application usage and remote access. We 
describe work on a conceptual model for querying RDF data that refines ideas 
first presented in at the W3C workshop on Query Languages [14] and the 
design of one possible syntax, derived from [7], that is suitable for application 
programmers. Further, we present experience gained in three implementations 
of the query language. 

Introduction 

An SQL-ish query language for RDF provides consistent, human-understandable, 
access to repositories of semantic data, whether stored files or large databases, 
enabling application programmers to create semantic web applications quickly. 
SquishQL syntax and model is designed to reflect RDF's graph syntax, and uses SQL-
like constructs so that application developers can pick it up as quickly as possible. 

As application programmers ourselves, working with RDF, we have implemented 
query software because we needed it to use RDF effectively. RDF APIs provide a 
high degree of control at a fine level of granularity that supports a range of 
programming paradigms; query is one such paradigm which is coarser-grained and 
useful when there is large amounts of data with semi-regular structure. The query 
paradigm makes for more intuitive access with a shorter learning curve, as well as 
making access possible in situations where there is a high operation overhead, for 
example, over remote access protocols such as SOAP. 

The query paradigm is also suitable for scripting environments, enabling the 
creation of RDF-driven applications quickly and easily.  Reduced "time-to-deploy" is 
an important issue in enabling the semantic web. 

In this paper, we describe the conceptual framework for the query language: this is 
closely tied to the RDF graph, providing a base level of query of RDF data. We relate 
this work to other systems, then describe a syntax for our query language suitable for 



 

application programmers. We describe our experience with three different 
implementations and note experiments in providing inference support without 
modifying the query language itself. 

A Query Framework for RDF 

The RDF Model and Syntax specification [15], which has been formalized in the 
proposed model theory for RDF [16], makes the graph the primary syntax for RDF. 
This graph is a partially labeled, directed graph where the node labels are URIs or 
literals, and the arc labels are URIs. No two nodes can have the same label; there 
cannot be two arcs with the same label between the same pair of nodes. Not all nodes 
need be labeled giving rise to bNodes (anonymous nodes) which have no URI label. 
The N-Triples syntax [22] records such a graph as a list of its edges. 

In [14], a query model for RDF is proposed in which the query is an RDF model, 
where any resource, property or literal can be replaced by a variable. 

The result is a pair: a subgraph of the target knowledge base that matches the query 
and a table of sets of legal values for the variables.  In addition, the paper notes that 
RDF schema constructs such as subClassOf and subPropertyOf provide some specific 
inferencing. Their query proposal is to provide a query parameter which specifies 
whether the query is on the underlying RDF graph or the deductive closure of the 
graph, thought of as a knowledge base. 

Such a query model provides a baseline query model for the semantic web – the 
query language works against the RDF model without any higher-level constructs in 
the language for inference or interpretation.  While an RDF model implementation 
may itself provide additional features, this approach to query works by assuming any 
feature (such as inferencing) manifests itself as an RDF graph that can be accessed by 
some graph API. 

The SquishQL Model of Query 

The RDF Working Group has defined a graph syntax as the primary representation of 
the conceptual model for RDF. Concrete syntaxes in XML and N-Triples are defined.  
We see that the query form proposed in [14] is a fixed-sized graph pattern over the 
syntax of the RDF graph where the pattern is formed from variables for nodes 
(labeled or unlabeled), arcs or literals. This matching does not depend on the graph 
interpretation. SquishQL adds to this baseline query model, introducing filter 
functions over the variables, which restrict the values that the variables can take.  
These filter functions do not change the expressive power of the graph pattern. 

The pattern language is formed from: 
• Triple patterns, which describe one edge of the graph, allowing either a variable or 

an explicit value for each of subject, predicate and object. In the syntax below, 
variables are indicated by ‘?’ : the most general pattern is (?x, ?y, ?z) which 
matches any triple. 



 

• Graph patterns, which describe the graph shape, expressed as a collection of triple 
patterns. In the syntax below, there is a list of triple patterns which are interpreted 
as the conjunction of the triple patterns. This list is an edge-list of the graph 
pattern. 
This results in quite a weak pattern language but it does ensure that in a result all 

variables are bound (there is no disjunction). The language does not express 
transitivity or other forms of unknown length paths in the graph. 

The filter functions are Boolean expressions over the values of URIs or literals. 
We return all the possible ways the graph pattern and filter functions can be 

matched against the graph.  Because the language does not have disjunction or 
repetition, we only need to return the values for the variables, and not the particular 
subgraph that caused each possible match, because substitution of the values for the 
variables into the original query is sufficient to identify the particular sub graph (set 
of edges) that caused a particular match. 

Variables and bNodes  
A variable in a query is not the same as a bNode (an unlabeled “blank” node in an 
RDF graph).  Although bNodes are treated as existentially bound variables in the 
proposed model theory for RDF there are some differences from the variables in edge 
patterns: 
1. The set of variables in a query is distinct from the set of bNodes in the data graph. 
2. Query variables match nodes; hence can match resource URIs or literals or graph 

bNodes. 
3. Query variables can label arcs, hence can match property URIs. 

RDF as N-Triples 
If we think of the RDF model as a table of triples in N-Triples form, then the 
subgraph pattern becomes a list of triples, except with the possibility of variables.  
Then, both triple patterns and Boolean expressions are constraints on the results of a 
query.  Each of the constraints must be true, either because a triple pattern becomes a 
triple to be found in the RDF graph, or because a Boolean expression evaluates to 
true.  

Other Systems 

There are a number of other query languages of RDF available, some of which 
have been in use for several years. One of the earliest was rdfDB [7] and this is the 
basis for SquishQL syntax.  It is a simple graph-matching query language designed 
for use in the rdfDB database system.  It differs slightly syntactically from SquishQL 
and also does not contain the constraints on the variables used by SquishQL. It returns 
results as a table. 

Algae [6] is another early query language for RDF. It uses an S-expression syntax 
to do graph matching. It is used to power the W3C's Annotea annotations system [12], 
and other software at the W3C. It is written in Perl, and can be used with an SQL 
database. It returns a set of triples in support of each result. One of our 



 

implementations (RDQL/Jena) does retain the triples used to bind variables and the 
application can access this information. 

RQL [9,8] is a combined RDF store and query system. It also provides a schema 
validating parser and has a syntax targeted at RDFS[17] applications. It can perform 
similar queries to SquishQL, with the added power of support for transitive closure on 
RDFS subclass and subproperty.  This is also the query language used by Sesame 
[10]. 

The EDUTELLA system [11] provides a hierarchy of query languages: the lowest 
level, RDF-QEL-1 provides a graph pattern language, expressed as an RDF model. 

Other systems with similar query languages include RDFQL [20] and one 
described in [13].  RDFQL combines a rules language with query; the underlying 
database system interprets the rules.  The language in [13] has syntactic support for 
regular expression path expressions. 

SquishQL - A Textual Language 

In this section, we describe a syntax that has been implemented in at least three 
systems [1,2,3]. The syntax described below is just one possible syntax for the 
abstract query model outlined.  We have chosen to define a syntax for the application 
developer (a person).  Other syntactic forms, more suited to production by tools, such 
as RDF or XML, will also be needed; see [23] for an experiment in a RuleML syntax. 

In SquishQL, there are two classes of constraints; patterns and filter expressions.  
Patterns are generative (they create bindings) and the filters are restrictive (they 
remove possibilities).  SquishQL separates these into the WHERE clause (generative) 
and the AND clause (restrictive). 

Some query systems have followed the tradition of having predicate first.  We have 
chosen instead to mimic N-Triples syntax and specify triple patterns as subject-
predicate-object. 

SELECT ?t i t l e 
FROM ht t p: / / exampl e. com/ xml eur ope/ pr esent at i ons. r df  
WHERE 
    ( ?doc,  <dc: t i t l e>,  ?t i t l e)  ,  
    ( ?doc,  <r df : t ype>,  <f oaf : Document >)  
USI NG  
  dc   FOR <ht t p: / / pur l . or g/ dc/ el ement s/ 1. 1/ >,  
  f oaf  FOR <ht t p: / / xml ns. com/ f oaf / 0. 1/ >,  
  r df   FOR <ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#> 

Fig. 1. Query: Find me the titles of documents in 
http://example.com/xmleurope/presentations.rdf  

In SQL, a database is a closed world; the FROM clause identifies the tables in the 
database; the WHERE clause identifies constraints and can be extended with AND.  
By analogy, the web is the database and the FROM clause identifies the RDF models. 
Variables are introduced with a leading ‘?’  and URIs are quoted with <> [19]; 
unquoted URIs can be used where there is no ambiguity. 
 



 

SELECT Clause 
Identifies the variables to be returned to the application.  If not all the 
variables are needed by the application, then specifying the required results 
can reduce the amount of memory needed for the results set as well as 
providing information to a query optimizer. 

FROM Clause 
The FROM clause specifies the model by URI. 

WHERE Clause 
Specifies the graph pattern as the conjunction of the list of triple patterns. 

AND Clause 
Specifies the Boolean expressions over values of URIs and literals, including 
arithmetic comparisons, and boolean expressions, including disjunction and 
negation. 

USING Clause 
A way to shorten the length of URIs. As SquishQL is likely to be written by 
people, this mechanism helps make for an easier to understand syntax. This 
is not a namespace mechanism; instead, it is simply an abbreviation 
mechanism for long URIs by defining a string prefix. 

 
The RDF specification defined the form of containers and of reification. There is no 
explicit syntax for these in SquishQL.  As shown in the examples, this does not affect 
retrieving data from containers, but the query can become cumbersome.  Similarly, 
with reification, the lack of syntactic support can make expressing some queries 
awkward. 

SELECT ?y 
WHERE ( <ht t p: / / somewher e. com/ aBag>,  ?x,  ?y)  
AND !  (  ?x eq <r syn: t ype> && ?y eq <r syn: Bag>)  
USI NG 
  r syn FOR ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns# 

Fig. 2. Extract the contents of a bag 

Query Evaluation Issues 

A number of issues arise in defining the evaluation of a query: 
1. Treatment of anonymous nodes, which are scoped to the document containing the 

syntactic RDF. 
2. Expression evaluation in the absence of formal datatyping in RDF. 

Anonymous nodes 
In general, it is not possible to write SquishQL syntax queries that contain bNodes as 
values in triple patterns because they have no syntactic representation.  Some systems 
manifest bNodes as automatically generated URIs and could have queries with 
bNodes. In RDQL/Jena, it is possible to construct queries through a programmatic 



 

API, not just via a parser, so bNodes, as Jena resources, can be included. This has an 
impact on remote operation where queries are passed to a server for execution – this 
requires a serialisable form. 

Data types and filter evaluation 
RDF does not define a type system for literals.  However, to provide a range of 
operators for Boolean filters, we have to decide on the type for a literal.  This is 
currently done by attempting to parse the literal during query execution as the type 
required by the expression (number, string etc). 

Inkling 

Inkling [1,5] is a Java implementation of SquishQL created to be API and database-
independent for testing the usefulness of SquishQL for comparatively small-scale 
projects. The aim was to have a query engine that could be used with almost any RDF 
database implementation written in Java, and which could be used for experimenting 
with the SquishQL query language. 

API and database independence 
Inkling can query most Java RDF database implementations and most Java RDF 
APIs, whether the implementations are in memory or use some form of persistent 
storage. For Inkling to be able to talk to an RDF database or service, that service just 
has to implement an extremely basic interface consisting of a single method. This 
method is a three-place search method: 

quer yDat abase( subj ect ,  pr edi cat e,  obj ect )  

where any argument can be null, which was the lowest common denominator of 
methods supported by the APIs examined (Jena [4] and Stanford RDF [18] API).  

This provides a generic interface to database storage. This mechanism allows the 
storage subsystem to make decisions about access to stored triples. Different database 
layouts can make different tradeoffs between efficient indexing structures and 
increased storage costs. There are some problems with the simplicity of the interface, 
for example, if there are optimizations the database can perform for certain kinds of 
queries such as reification, bags and sequences, then this per-triple interface won't be 
useful. 

This is the simplest means for accessing the database. Where optimizations are 
possible, for example if the underlying database supports a similar query language, 
efficiencies can be made by passing the entire query to the underlying database.  

JDBC interfaces 
Inkling uses the JDBC interfaces to make SquishQL queries. This enables the 
implementation to be fairly independent of the database to be searched, and also 
means that Java programmers will be familiar with the means of accessing the 
queries. 



 

Example 
 One way we have used Inkling is as an access mechanism for a testbed of 

information about people, RDFWeb (http://rdfweb.org). The test data consists of files 
containing information about people, the people they know, images of them, and 
information about documents they have created, rather like homepages. The files are 
created by many different people, and may contain arbitrary information from any 
vocabulary. Much of the data is in the experimental ‘ foaf’  (friend of a friend) 
vocabulary, which is continually expanding as people see the need for other 
characteristics. 

Inkling enables the information to be harvested from the web, so that the database 
can be rebuilt at the frequency desired. Then the information can be pulled out of the 
database as it is required. RDFWeb displays a person-centric view of the data, where 
queries pull out information about a particular person within a server-side JSP page. 

SELECT ?name,  ?mbox 
WHERE 
  ( ?l i bby,  <f oaf : mbox>,  
           <mai l t o: l i bby. mi l l er @br i st ol . ac. uk>)  ,  
  ( ?l i bby,  <f oaf : knows>,  ?someone)  ,  
  ( ?someone,  <f oaf : mbox>,  ?mbox)  ,  
  ( ?someone,  <f oaf : name>,  ?name)  
USI NG f oaf  f or  <ht t p: / / xml ns. com/ f oaf / 0. 1/ > 

Fig. 3. Query: Get names and email addresses of the people that the person with email address 
libby.miller@bristol.ac.uk knows. 

This works well if all the people in the database have both mailboxes and names 
associated with them, but will fail if the data is inconsistent, which it may be, since 
this is a distributed database with many authors. There is no way of saying that a 
subquery is optional in SquishQL: a safer course may be to query for the email 
addresses of people known, and then query for their names.  

 
SELECT ?t i t l e,  ?descr i pt i on,  ?name 
WHERE  
 ( ?l i bby,  <f oaf : mbox>,  
          <mai l t o: l i bby. mi l l er @br i st ol . ac. uk>)  ,  
 ( ?paper ,  <dc: cont r i but or >,  ?l i bby) ,  
 ( ?paper ,  <dc: t i t l e>,  ?t i t l e)  ,  
 ( ?paper ,  <dc: descr i pt i on>,  ?descr i pt i on)  ,  
 ( ?paper ,  <dc: cont r i but or >,  ?someone)  ,  
 ( ?someone,  <f oaf : name>,  ?name)  
USI NG f oaf  f or  <ht t p: / / xml ns. com/ f oaf / 0. 1/ > ,  
      dc   f or  <ht t p: / / pur l . or g/ dc/ 1. 1/ > 
 

Fig. 4. Query: Get me the titles and descriptions of papers that Libby has written, and the 
names of anyone who wrote the paper with her. 

This query will pull out anything to which the person with email address 
libby.miller@bristol.ac.uk is a contributor where there is at least one other contributor  
with an email address - although this could be libby.miller@bristol.ac.uk. Where 



 

there is more than one contributor, the result set will be repetitious: it will pull out the 
title and description again for each contributor. Similarly, if a contributor has more 
than one name in the database it will pull out the title and description again for that. 
Finally, if libby has done a paper on her own, and is therefore listed as the dc:creator 
rather than the dc:contributor then this query will not get that information. There is no 
way of writing 'or' of graph patterns in SquishQL, for reasons of simplicity and 
tractability. Instead one would have to make two queries to access this information. 

These types of queries can be made using one or more RDF files from an in-
memory database, or from an SQL backed database. Because of the flexibility of 
query it is a simple matter to alter the information shown: if a great deal of data about, 
say, eye colour, is made available, then it is simple to add an additional query into the 
Java Server page. 

RDQL 

RDQL[2] is an implementation of SquishQL for the Jena RDF toolkit[4].  Jena is a 
collection of RDF tools written in Java that includes: 
• A Java API  
• ARP: An RDF parser 
• RDQL: A query system 
• Support classes for DAML+OIL ontologies 
• Persistent storage based on BerkeleyDB. 
• Persistent storage based on various relational databases. 

Jena and RDQL 
RDQL allows queries to be made on RDF models from Java on any Jena model so the 
query system is independent of the storage implementation and of the RDF syntax. 
RDQL can be mixed with Jena API calls because a query returns the underlying Jena 
objects that satisfy the query so the Resources, Properties or Literals retrieved can be 
used for model update or other API calls. Combining programming paradigms can be 
useful; for example, this has been used in calculating RDF Schema closures, where 
each rule condition is a query and each additional statement is added though the Jena 
API. 

Execution 
In order to reduce the amount of working memory needed by a query, the execution 
of a query is carried out in parallel with the application consuming the results.  In the 
simple query engine currently supplied in the Jena toolkit, there are three threads, one 
is used for matching triple patterns against the model in a depth-first traversal, one is 
used for filter evaluation and one is the application thread that issued the query and is 
processing the results. The bounded buffers between the threads control the query 
execution so that the query execution engine is limited in how far ahead of the 
application processing. The amount of working memory needed is independent of the 



 

size of the data in the model, but not the query. If the application does not process 
results fast enough, the query system will pause when buffers become full. 

Implementation in Jena 
The triple pattern matcher uses a similar scheme to Inkling: the main Jena operation 
used takes a description of the triples used, in the form of fixing the Resources, 
Properties or Literals or leaving that item unconstrained.  All the current 
implementations of a Jena model provide indexes by Subject, Predicate or Object so 
access is efficient. 

However, the filter expressions used to restrict the values are not passed down to 
the underlying storage.  RDF does not define type information so general stores hold 
only strings and RDQL interprets whether a value is, say, an integer, based on 
whether it can interpret it as such when filtering a result generated by the triple 
matcher. 

An inferencing store for Jena 
An experimental inferencing store based on Prolog has been developed. This 
inferencing system has been used for queries of RDFS [17] data. The properties 
subClassOf and subPropertyOf are made to behave transitively and the property type 
rdf:type returns inferred types of resources as well as the declared types. Like RQL, 
we have chosen to redefine the standard properties subClassOf and subPropertyOf: 
although this is done as part of the model, not as part of the query language. An 
alternative design would be to create new properties for the transitive relationships, 
anySubClassOF, anySubPropertyOf, leaving the original properties for access to the 
original data. 

SELECT ?x 
WHERE ( <ht t p: / / somewher e/ r esour ce>,  <r df : t ype>,  ?x)  
USI NG 
  r df  FOR <ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#> 

Fig. 5. Query: return all the types for the resource 

RDFStore 

RDFStore [3] implements the SquishQL language to query RDF repositories directly 
from Perl. The toolkit consists of a Perl API, a streaming SiRPAC parser and a 
generic hashed data storage custom designed for the RDF model. The storage sub-
system allows transparently storage and retrieval of RDF nodes, arcs and labels, either 
from an in-memory structure, from the local disk or from a very fast and scaleable 
remote storage [24]. The latter is a fast networked TCP/IP based transactional storage 
library that uses multiple single key hash based BerkeleyDB files together with an 
optimized network routing daemon with a single thread/process per database. The 
data indexing model is general enough to retrieve RDF subgraphs and properties 
using free-text and statement-group sensible matching. Each literal value gets indexed 



 

in its full Unicode [25] form and in-memory data structures or objects can also be 
serialised on disk. The API supports bNodes (blank Nodes or anonymous-resources) 
but the storage internally does treat them like any other resource. Being in Perl, an un-
typed language, the toolkit at the moment does not treat typed literals in any special 
way; all query filtering operations on the values are processed using pure Perl regular 
expressions and eval constructs. 

Running RDF queries with RDFStore 
The API implements the Stanford RDF API [18] and supports the basic three-place 
search method (or triple matching) which is the atomic query construct available; 
each result set consists of an RDF model which can be further queried, serialized or 
enumerated in its component statements. A much more property-centric programming 
interface to an RDF repository is provided via the RDQL driver; by running an SQL-
like query on an actual storage it is possible to access the single nodes, arcs and labels 
as resources or literals. Such a query paradigm being much more consistent and 
human-understandable, has proved to be very practical and flexible compared to other 
similar approaches. Once the query has been carried out, the result set is actually 
being stored into a Perl hash data structure and further processed with common 
programming constructs. 

Query processing and execution 
The query processing and execution is performed on the client side and the approach 
is fundamentally different from other similar techniques such as rdfdb [7] where the 
query parsing, processing and execution is done entirely on the server side. Having it 
running on the client makes the DBMS server back-end much more generic and 
lightweight; then by using some kind of compression of data indexes both storage and 
network traffic can be reduced.  

RDFStore contains a hand-written top-down LL(1) parser for the RDQL syntax 
with extensions to the basic pattern language to run free-text selection of RDF graph 
elements. When a query is processed, it gets parsed into an in-memory structure that 
is then used to run the actual query on the back-end database; the RDQL query 
internally is implemented as a join of a series of basic three-place searches on the 
RDF graph. Then the constraints are applied and the actual results returned to the 
user. RDFStore contains a module to make basic RDF Schema inferencing on triples 
but the RDQL sub-system is not using it yet. By using free-text words present into 
literal values it is possible to select the nodes matching a query criteria in a much 
more selective way. 



 

 

SELECT ?l i nk 
FROM <ht t p: / / xml hack. com/ r ss10. php> 
WHERE 
  ( ?i t em,  <r df : t ype>,  <r ss: i t em>) ,  
  ( ?i t em,  <r ss: t i t l e>,  %" Apache" %) ,  
  ( ?i t em,  <r ss: l i nk>,  ?l i nk)  
USI NG  
  r df  f or  <ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#>,  
  r ss f or  <ht t p: / / pur l . or g/ r ss/ 1. 0/ > 

Fig. 6. Query involving free-text matching in an RDFStore query. 

Such an extension is similar to the SQL LIKE operator present in most of out-of-
the-shelf database solutions today; this kind of filtering can also be applied to the 
restrictive part (constraints) of the query by using the LIKE operator directly with Perl 
regular-expressions. The following returns the same result of the example above in 
less efficient way: 

SELECT ?l i nk 
FROM <ht t p: / / xml hack. com/ r ss10. php> 
WHERE 
  ( ?i t em,  <r df : t ype>,  <r ss: i t em>) ,  
  ( ?i t em,  <r ss: t i t l e>,  ?t i t l e) ,  
  ( ?i t em,  <r ss: l i nk>,  ?l i nk)  
AND ?t i t l e LI KE ' / Apache/ i '  
USI NG 
  r df  f or  <ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#>,  
  r ss f or  <ht t p: / / pur l . or g/ r ss/ 1. 0/ > 

Real-world example of RDQL 
For the ETB project [26] we successfully used the RDQL syntax to query fully RDF 
DC/DCQ metadata records classified accordingly to a multilingual thesaurus in 8 
languages. An ETB metadata record is describing an educational resource having a 
specific target audience, rights management and quality selection criteria; each single 
record describes a Web resource, which can reside on several distributed servers 
having several different multilingual translations of it. Each record description is put 
in the statement group of a specific indexing term of the multilingual thesaurus and 
associated with a Collection Level Description (CLD) [27]. 

The example below is in practice very simple compared to other full-blown 
Boolean SQL statements we need to run in the advanced search of the production 
system. Such an advanced feature has been implemented using a hybrid solution using 
RDQL, simple triple-matching and basic programming data structures; the result has 
shown quite a good scalability but we are investigating the real implications and 
aspect of running full queries with disjunction and negation. 



 

 

SELECT ?t i t l e_val ue,  ?t i t l e_l anguage,  
       ?subj ect _val ue, ?subj ect _l anguage,  
       ?descr i pt i on_val ue,  ?descr i pt i on_l anguage,  
       ?l anguage,  ?i dent i f i er  
WHERE ( ?x,  <dc: t i t l e>,  ?t t ) ,  
      ( ?t t ,  <r df : val ue>,  ?t i t l e_val ue) ,  
      ( ?t t ,  <dc: l anguage>,  ?t t l ) ,  
      ( ?t t l ,  <dcq: RFC1766>,  ?t i t l e_l anguage) ,  
      ( ?x,  <dc: subj ect >,  ?ss1) ,  
      ( ?ss1,  <et bt hes: ETBT>,  ?ss2) ,  
      ( ?ss2,  <r df : val ue>,  ?subj ect _val ue) ,  
      ( ?ss2,  <dc: l anguage>,  ?ss3) ,  
      ( ?ss3,  <dcq: RFC1766>,  ?subj ect _l anguage) ,  
      ( ?x,  <dc: descr i pt i on>,  ?dd) ,  
      ( ?dd,  <r df : val ue>,  ?descr i pt i on_val ue) ,  
      ( ?dd,  <dc: l anguage>,  ?ddl ) ,  
      ( ?ddl ,  <dcq: RFC1766>,  ?descr i pt i on_l anguage) ,  
      ( ?x,  <dc: i dent i f i er >,  ?i dent i f i er ) ,  
      ( ?x,  <dc: l anguage>,  ?l l 1) ,  
      ( ?l l 1,  <dcq: RFC1766>,  ?l anguage)  
USI NG  
  r df  f or  <ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#>,  
  r df s f or  <ht t p: / / www. w3. or g/ 2000/ 01/ r df - schema#>,  
  dc f or  <ht t p: / / pur l . or g/ dc/ el ement s/ 1. 1/ >,  
  dcq f or  <ht t p: / / pur l . or g/ dc/ t er ms/ >,  
  dct  f or  <ht t p: / / pur l . or g/ dc/ dcmi t ype/ >,  
  et b f or  <ht t p: / / eun. or g/ et b/ el ement s/ >,  
  et bt hes f or  <ht t p: / / eun. or g/ et b/ t hesaur us/ el ement s/ > 

Fig. 7. Example query from the ETB system. 

Conclusions 

We have described a refined framework for the querying of RDF data.  We developed 
this to meet our needs in writing RDF applications.  The query framework follows the 
RDF graph syntax very closely and provides for extraction of RDF data (URIs, 
literals, bNodes) from a data source. 

The syntax we present is modeled after SQL.  It is targeted at the application 
developer.  Other syntaxes would be appropriate for different communities. 

We have implemented SquishQL in three systems. The first, Inkling, stores RDF 
data in relational databases or in external XML files. The second implementation, 
RDQL, is part of the Jena RDF toolkit and combines query with manipulation of the 
RDF graph at a fine-grained level through the Jena RDF API. The third, in RDFStore, 
is close coupling of RDF and Perl data access styles. 

We have shown the utility of this simple approach to query of RDF data in a 
number of applications as well as other applications developed by the RDF developer 
community. 



 

References 

1. L. Miller, “ Inkling: RDF query using SquishQL”, web page: 
http://swordfish.rdfweb.org/rdfquery/ 

2. A. Seaborne, RDQL – RDF Data Query Language, part of the Jena RDF Toolkit, 
HPLabs Semantic Web activity, http://hpl.hp.com/semweb/, RDQL grammar: 
http://www.hpl.hp.com/semweb/rdql-grammar.html 

3. A. Reggiori, D. W. van Gulik, RDFStore, http://rdfstore.sourceforge.net 
4. B. McBride, “Jena: Implementing the RDF Model and Syntax Specification”, in: 

Steffen Staab et al (eds.): “Proceedings of the Second International Workshop on 
the Semantic Web - SemWeb'2001” , May 2001 
http://www.hpl.hp.co.uk/people/bwm/papers/20001221-paper/ 

5. D. Brickley, L. Miller, “RDF, SQL and the Semantic Web - a case study” , 
http://ilrt.org/discovery/2000/10/swsql/ 

6. E. Prud’hommeaux, Algae in “RDF Database Library” , 
http://www.w3.org/2001/Talks/0505-perl-RDF-lib/slide5-0.html 

7. R.V.Guha, “rdfDB : An RDF Database”, web page: http://guha.com/rdfdb/ 
8. G. Karvounarakis, V. Christophides, D. Plexousakis, S Alexaki, “Querying 

Community Web Portals”, SIGMOD2000, 
http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.html 

9. Greg Karvounarakis, “The RDF Query Language (RQL)”  
10. Sesame, see http://sesame.aidministrator.nl/, part of the OntoKnowledge project, 

http://www.ontoknowledge.org/ 
11. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. 

Palmér, T. Risch, “EDUTELLA: A P2P Networking Infrastructure Based on 
RDF” , http://edutella.jxta.org/reports/edutella-whitepaper.pdf 

12. J. Kahan , M Koivunen, E. Prud'Hommeaux, R R. Swick “Annotea: An Open 
RDF Infrastructure for Shared Web Annotations”, 
http://www10.org/cdrom/papers/488/ 

13. D. Allsopp, P. Beautement, J. Carson, M Kirton “Toward Semantic 
Interoperability in Agent-Based Coalition Command Systems” , Proceedings of the 
First International Semantic Web Workshop, July 30-31, 2001, 
http://www.semanticweb.org/SWWS/program/full/paper10.pdf 

14. R.V. Guha, Ora Lassila, Eric Miller, Dan Brickley, Enabling Inference, W3C 
Query Language meeting, Boston, December 3-4, 1998. 

15. Ora Lassila, Ralph R. Swick (editors), “Resource Description Framework (RDF) 
Model and Syntax Specification” , 22 February 1999. 

16. P. Hayes (editor), “RDF Model Theory”  (work in progress) 
http://www.w3.org/TR/rdf-mt/ 

17. Dan Brickley, R.V. Guha (editors), “Resource Description Framework (RDF) 
Schema Specification 1.0” , 27 March 2000 (W3C Candidate Recommendation).  

18. Sergey Melnik, “Stanford RDF API”, web page: http://www-
db.stanford.edu/~melnik/rdf/api.html 

19. T. Berners-Lee, R. Fielding, L. Mastiner, “Uniform Resource Identifiers (URI): 
Generic Syntax” , RFC2396 

20. Intellidimension Inc. “RDFQL”  
http://www.intellidimension.com/RDFGateway/Docs/rdfqlgettingstarted.asp 



 

21. J. De Roo, Euler proof mechanism, http://www.agfa.com/w3c/euler/ 
22. N-Triples syntax in W3C Working Draft “RDF Test Cases”  

http://www.w3.org/TR/rdf-testcases/#ntriples 
23. G. Chappell, RuleML combined with RDF query model: 

http://209.198.94.130/ruleml/query.asp 
24. Dirk Willem-van Gulik, “The DB engine” , August 1999, 

http://rdfstore.sourceforge.net/dbms.html  
25. The Unicode Consortium, “ The Unicode Standard Version 3.0” , ISBN 0-201-

61633-5 
26. European Schoolnet (EUN) European Treasury Browser (ETB) project, 

http://etb.eun.org 
27. Andy Powell, “ Collection Description – Study, Recommendation, Specification” , 

3 September 1999, http://www.ukoln.ac.uk/metadata/rslp/proposal/ 
 


