
                                                                       
An RDF NetAPI 
 
Andy Seaborne 
Information Infrastructure Laboratory  
HP Laboratories Bristol 
HPL-2002-109 
April 22nd , 2002* 
 
E-mail: andy_seaborne@hp.com 
 
 
semantic 
web, RDF, 
NetAPI, 
internet 
engineering 
 

Part of fulfilling the vision of the Semantic Web is the exchange of 
RDF data between computer systems. The web enables the reuse of 
document resources so that people, and now systems, can obtain, 
combine and process information from other systems without 
explicit producer-consumer relationships. One precursor for the 
Semantic Web to achieve critical mass will be a common 
framework for accessing RDF data, one sufficiently common that 
the majority of applications will use it, the majority of publication 
host systems support it. This paper reports on some initial work on a 
NetAPI for accessing and updating RDF data over the web. The 
NetAPI includes actions for conditional extraction or update of 
RDF data, actions for model upload and download and also the 
ability to enquire about the capabilities of a hosting server. An 
initial experimental system is described which partially implements 
these ideas within the Jena RDF toolkit. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
Semantic Web Workshop WWW 2002, Hawaii, June, 2002 
 Copyright Hewlett-Packard Comp any 2002 



An RDF NetAPI 
A Position Paper 

 
 
  
  
 

 

 
Andy Seaborne 

Hewlett-Packard Laboratories 
Bristol 

UK 

andy_seaborne@hp.com 

 
 
 
 
 

 
 

ABSTRACT 
This paper reports on some initial work on a NetAPI for 
accessing and updating RDF data over the web. The NetAPI 
includes actions for conditional extraction or update of RDF data, 
actions for model upload and download and also the ability to 
enquire about the capabilities of a hosting server. An initial 
experimental system is described which partially implements 
these ideas within the Jena RDF toolkit. 

Categories and Subject Descriptors 
[C.2.2] Network Protocols, [D.2.11] Software Architectures 

General Terms 
Design, Experimentation, Standardization, Languages. 

Keywords 
RDF, Remote query 

1. THE NEED FOR A NETAPI FOR RDF 
Part of fulfilling the vision of the Semantic Web is the exchange 
of RDF data between computer systems. The web enables the 
reuse of document resources so that people, and now systems, 
can obtain, combine and process information from other systems 
without explicit producer-consumer relationships being set up. 

One precursor for the Semantic Web to achieve critical mass will 
be a common framework for accessing RDF data, one sufficiently 
common that the majority of applications will use it, the majority 
of publication host systems support it, and only specialized 
applications will choose to develop their own protocols. 

Given a common protocol, the network effect of bringing in more 
and more semantic applications can start. Application developers 
can concentrate on the application, and not on the plumbing. 
Tool builders (server and client side) do not need to support 
multiple protocols, and can target client-side or server-side 
environments.  Publishers can know that many systems and 

applications can access their RDF information. 

In this paper, we argue for the use of “conditional GET”  (query) 
and “partial PUT”  (update) as the central operations for 
accessing RDF datasources. In the outline framework, we 
incorporate existing actions of HTTP, such as HTTP GET, as the 
simplest level acting on complete RDF models. But as the 
semantic web grows, and as large metadata repositories appear, 
the paradigm shifts to one that is more like database access than 
web page download. 

We have built a small experimental system that demonstrates 
part of the NetAPI. We do not propose specific protocols here 
and this is not the only attempt to create remote interaction with 
RDF data. We are investigating what it would take to create 
mass deployment on the current web infrastructure. 

2. DESIGN CHALLENGES 
One challenge is to balance simplicity of implementation, 
leading to widespread deployment, with adequate functionality. 
We want a simple, widely used infrastructure. 

In any complex system, there is often a gap between the 
requirements of the application and the capabilities of the 
general infrastructure that is properly met by domain-specific 
sub-systems. These domain specific systems appear as 
“applications”  to the infrastructure and as “ infrastructure”  to the 
end applications. 

Another challenge in the design of a NetAPI for RDF-based 
systems is to provide a useful protocol that separates the 
evolution of client and server software in a community that is 
pulled from diverse research and industrial domains so the 
protocol should be simple and domain independent. 

We envisage further protocols, both on top of the common access 
framework proposed here and also more specialized protocols for 
specific uses where the common access framework is 
insufficient. A basis for a general system will rarely meet the 
needs of all possible domains directly. 

We also want to utilize as much of the common web 
infrastructure for the access of RDF data, using existing 
protocols and existing server systems. This decreases the barriers 
to deployment. 

3. OUTLINE FRAMEWORK 
We limit the discussion here to operations on single models. 
Applications will also want to merge data sources, issue queries 
across several data sources or (consistently) update multiple 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission by the authors.   
Semantic Web Workshop 2002 Hawaii, USA 
 
Copyright by the author. 



sources. This should be considered for possible later addition: the 
focus here is to identify a simple set of clearly defined 
operations, which will boost the adoption of the semantic web. 

There are 3 categories of operations, which have been identified: 

• Operations on the RDF data itself (query, update) 
• Transfer of complete sets of RDF data as RDF models. 
• Operations relating to the hosting server, such as enquiring 

about its capabilities and the range of operations on particular 
RDF stores. 

We do not see the basic operations of RDF data as a fetch but 
one that is conditioned to select a subset of the data available. 
For this we need selection languages – we do not anticipate that 
one language will meet a sufficiently wide set of needs at the 
moment so we make the selection language a parameter of the 
operation. In future, we hope that a single language emerges with 
sufficient coverage that both RDF data providers and RDF data 
consumers can expect to find support for it in all toolkits. 

3.1 Server Capabilities 
The execution model is one where there are client-initiated 
actions. Some of the operations have optional parameters so 
client-side toolkits and applications may need to enquire about 
the capabilities offered by a host server and about the legal 
operations and parameters on each of the data sources hosted at 
that server. This reduces to the server needing to provide 
information about its capabilities, both overall and with regard to 
specific RDF data sources. 

3.2 Model Operations 
Operations that fetch or store whole RDF models are the 
simplest level of operation for an RDF data source and these 
naturally map to the HTTP operations GET and PUT. These are 
already supported by existing web servers, where the data source 
is an RDF document. Simple extension to retrieving the metadata 
about a web object, instead of the object itself, based on, say, the 
MIME type is also natural. 

Abstractly, the operations are: 

• GET-MODEL(model, format) 
• PUT-MODEL(model, format) 
These operations give a sea of RDF models with client systems 
loading RDF data and performing the extraction and merging of 
data at the client. 

Such whole model operations are not suitable where the quantity 
of RDF information is large, yet the actual information required 
by the client is small (for example: data about a publication from 
a digital library), nor does it provide for the update of a data 
source, only complete replacement. 

For these operations, we need operations acting on client-defined 
sets of RDF statements, not the whole model (which is a set 
defined by the server). 

3.3 Triple operations 
In order to operate on specific data sources we propose 
operations: 

• QUERY(model, language, condition, format) 
• UPDATE(model, data-to-delete, data-to-add) 

The language parameter means that we can have a variety of 
languages for extraction of data from RDF sources: we anticipate 
that this will usually be a query language and there are 
advantages in providing a common mechanism where possible. 
However, we recognize that a single language cannot meet the 
needs of, say, query and of inferencing rules systems at this 
stage. 

The “ format”  parameter allows variable in the output format 
even for the same query language (examples: returning bound 
variables or the RDF subgraph that matched the query: providing 
XML or N-triple for update). 

The UPDATE operation provides a set of changes to move a 
remote model from one consistent state to another consistent 
state. This reduces the need for locking of models and for server-
side lock management. 

4. POSSIBLE PROTOCOL STYLES 
Given the three categories of operations, we then have a choice 
in how these are realized in terms of protocol. The semantic web 
differs from the current, information, web in that the results of 
information queries are is no longer primarily render for human 
consumption but are expected to drive further processing at the 
requestor (see [8] for a discussion of the design of the current 
web). 

Web services does focus on a web where the interaction across 
the web is between computer systems, and the transferred 
formats are in support of computer processing, not necessarily for 
rendering for end-user viewing. 

Each has adopted their own architectural style: using HTTP [6] 
as the application protocol, with a fixed set of operations and 
content negotiation; or using SOAP [9], running over HTTP or 
other transports, where the legal set of operations is open-ended 
and the further parameters are determined by the operation 
designer. 

Here, we argue that there is a small set of well-defined 
operations, leading to a single protocol that can used for the vast 
majority of usages. The operation of QUERY maps naturally to 
HTTP conditional GET but UPDATE requires specific use of 
HTTP POST or adding new operations (c.f. WebDAV [7]). 

Either approach is possible: either refining use of HTTP or using 
a pure message passing model. However, HTTP is a deployed 
protocol for the specific purpose for the existing web. Reusing 
infrastructure, rather than modifying, will lead to faster adoption 
as unmodified web servers can be used as the basis. 

5. JOSEKI: AN RDF SERVER  
Joseki is an experimental system that implements a protocol for 
QUERY and UPDATE on top of HTTP POST. It uses RDF model 
transfer as the message format; we do not suggest that this 
represents the best choice for a production protocol – it is an 
outbreak of “next-bench”  syndrome. 

The current Jena toolkit [2] already support two forms of remote 
access: it can load a complete RDF model by using HTTP GET 
and it can also store the RDF triples in a remote database 
accessed via JDBC. This experimental system adds the 
capabilities of QUERY and UPDATE. 



The system is packaged as a standard web application for simple 
deployment in existing servlet engines, or as a standalone server 
using an embedded web server [10]. 

5.1 Protocols and Query Language 
The protocol consists of a number of layers (from lowest to 
highest in the stack): 

1. A model exchange layer 

2. A request-response layer 

3. A query and update layer 

Each operation is encoded as a single RDF model to give SOAP-
like operation, except we have a predetermined, small set of 
options, with higher levels on the stack attaching their protocol 
information via properties to the message URI. Both body and 
header information are contained in the same RDF model. The 
request-response layer simply matches responses to the request 
that caused them. 

5.2 Conditional Selection Language 
The conditional selection language is RDQL, an implementation 
of SquishQL[1] for the Jena toolkit[2]. SquishQL is an SQL-like 
query language that matches a graph pattern to a data source; 
filter functions can restrict the values of variables. RDQL returns 
both bound variables and the triples that caused the binding. 
SquishQL has been variously implemented [3, 4, 5]. 

The query request contains an RDQL query, complete with URI 
to specify the data source. The response contains the variable 
bindings in an RDF data structure, and the triples that cause the 
binding are associated with the particular binding using 
reification. The return format is N-Triple because there are 
usually shared bNodes.  

5.3 Client Interface 
The client-side implements remote query and remote update 
operations for the Jena toolkit. The same Java interface is 
provided for remote query as for query of local models and the 
URI of the data source in included in the query itself as usual. 
The client creates a remote query engine that takes the URL as 
the location of the remote server. 

The client processes the results through an iterator in the same 
programming paradigm as for local queries. The only difference 
is the creation of the query execution object; a remote query 
engine takes a location URL. 

5.4 Server 
The server implementation is a conventional servlet in a servlet-
container web server, with HTTP POST, and the reply to the 
POST, used as the transport for model exchange. No server 
enquiry is implemented although it is planned to do so. 

The server is configured with a set of RDF models, each with its 
own URI, which is independent of the host server, the URL of 
the servlet and the location within the host of the data for the 
model. This separation of the name of the data source (the model 
URI) from the location of the action (the URL where the 

conditional GET is performed) allows systems administrators 
control over the location of models on the host systems and hides 
information such as filenames and JDBC connection URLs. RDF 
data sources can be relocated on the server without change to the 
client code. 

5.5 Review 
This experimental system is not finished. The use of the query 
paradigm for processing information is well suited to the network 
environment where operations are coarser grained and higher 
latency than API calls directly on a model implementation. The 
application writer sees the conventional query result processing 
paradigm that masks the network details. Streaming the return of 
the results is possible but not with the use of RDF as the 
message exchange layer. 

One difference is that the client application can not fully mix the 
query calls with Jena API calls as is possible when the local 
model is available. This is because only a partial copy of the 
RDF data is available at the client as a model. 

6. NEXT STEPS 
We plan to use the experimental RDF server in the construction 
of RDF driven applications, to test the protocol structure, the 
client programming paradigm and the server-side issues in 
managing RDF data. We also plan to implement QUERY on HTTP 
GET to enable the HTTP caching already deployed in today’s 
web infrastructure. 

7. REFERENCES 
1. L. Miller, A. Seaborne, A. Reggiori, “Three Implementations 

of SquishQL, a Simple RDF Query Language” , submitted to 
ISWC2002. 

2. The Jena toolkit: HPLabs Semantic Web activity, 
http://hpl.hp.com/semweb/ 

3. A. Seaborne, RDQL – RDF Data Query Language. RDQL 
grammar: http://www.hpl.hp.com/semweb/rdql-
grammar.html 

4. L. Miller, “ Inkling: RDF query using SquishQL” , web page: 
http://swordfish.rdfweb.org/rdfquery/ 

5. A. Reggiori, D. W. van Gulik, RDFStore, 
http://rdfstore.sourceforge.net 

6. RFC2616, “Hypertext Transfer Protocol -- HTTP/1.1”  
7. E.J.Whitehead Jr., “Lessons from WebDAV for the Next 

Generation Web Infrastructure”  
http://www.ics.uci.edu/~ejw/http-
future/whitehead/http_pos_paper.html 

8. R.T. Fielding, “Architectural Styles and the Design of 
Network-based Software Architectures” . Doctoral 
dissertation, University of California, Irvine, 2000. 
http://www1.ics.uci.edu/~fielding/pubs/dissertation/top.htm 

9. M. Gudgin, M. Hadley, J. Moreau, H.F. Nielsen (editors), 
“SOAP Version 1.2”  (working draft), 
http://www.w3.org/TR/2001/WD-soap12-part1-20011217/ 

10. Jetty: http://jetty.mortbay.org/  
 

 


