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Abstract: We show that the function h(x) =
Q

i<j(xj�xi) is harmonic for any random

walk in Rk with exchangeable increments, provided the required moments exist. For
the subclass of random walks which can only exit the Weyl chamber W = fx : x1 <
x2 < � � � < xkg onto a point where h vanishes, we de�ne the corresponding Doob
h-transform. For certain special cases, we show that the marginal distribution of the
conditioned process at a �xed time is given by a familiar discrete orthogonal polynomial
ensemble. These include the Krawtchouk and Charlier ensembles, where the underlying
walks are binomial and Poisson, respectively. We refer to the corresponding conditioned
processes in these cases as the Krawtchouk and Charlier processes. In [O'Connell and
Yor (2001b)], a representation was obtained for the Charlier process by considering a
sequence of M=M=1 queues in tandem. We present the analogue of this representation
theorem for the Krawtchouk process, by considering a sequence of discrete-timeM=M=1
queues in tandem. We also present related results for random walks on the circle, and
relate a system of non-colliding walks in this case to the discrete analogue of the circular
unitary ensemble (CUE).
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1. Introduction

We are concerned with probability distributions on Z
k of the form

bP(x) = 1

Z
h(x)2 P(x); x 2 Z

k; (1.1)

where P is some well-known distribution on Z
k, Z is the normalizing constant, and the function

h is given by

h(x) =
kY

i;j=1
i<j

(xj � xi): (1.2)

Interesting examples include: the Krawtchouk ensemble, where P = �
k and � is a binomial
distribution; the Charlier ensemble, where P = �
k and � is a Poisson distribution; the de-

Poissonised Charlier ensemble, where P is a multinomial distribution; and the Meixner ensemble,
where P = �
k and � is a negative binomial distribution. These are examples of discrete orthog-

onal polynomial ensembles, so-called because of their close connection with discrete orthogonal
polynomials. See [Jo99, Jo00a, Jo00b], and references given there, for models which lead to these
ensembles, connections between these ensembles, and their asymptotic analysis as k !1. These
ensembles are discrete analogues of ensembles which arise as eigenvalue distributions in random
matrix theory (see [Me91], for example) and marginal distributions for non-colliding di�usion
processes [Bi94, Dy62, Gr99, HW96, KO01].

Our main results are as follows. First we show that the function h is harmonic for any random
walk in R

k (discrete or continuous time) with exchangeable increments, provided the required
moments exist. (Note that h is de�ned on Rk .) De�ne the Weyl Chamber as

W = fx = (x1; : : : ; xk) 2 R
k : x1 < x2 < � � � < xkg: (1.3)

For random walks with the property that they can only exit W onto a point x with h(x) = 0, it
follows that h is a strictly positive regular function for the restriction of the random walk toW and
we can de�ne the corresponding Doob h-transform. We show that the Krawtchouk and Charlier
ensembles can be recovered as the law at a �xed time of an appropriately chosen h-transformed
walk onW started from the point x� = (0; 1; 2; : : : ; k�1) 2 W . We shall refer to these conditioned
walks as the Krawtchouk and Charlier processes, respectively. Roughly speaking, the Krawtchouk
process is a system of non-colliding random walks in discrete time and the Charlier process is the
continuous-time analogue (but note that they di�er signi�cantly in that the latter process does
not permit individual walks to jump simultaneously).

In [OY01b], a representation is obtained for the Charlier process by considering a sequence
of M=M=1 queues in tandem. In this paper we will present the analogue of this representation
theorem for the Krawtchouk process, by considering a sequence of discrete-time M=M=1 queues
in tandem. We use essentially the same arguments as those given in [OY01b], but need to take
care of the added complication that, in the discrete-time model, the individual walks can jump
simultaneously.

For completeness, we also present related results for random walks on the circle. The invariant
distribution for the system of non-colliding walks on the circle is a discrete orthogonal polynomial
ensemble which can be regarded as the discrete analogue of the circular unitary ensemble (CUE).
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The latter arises in random matrix theory as the law of the eigenvalues of a random unitary matrix
chosen according to Haar measure on the group of unitary matrices of a particular dimension. In
the continuous case, a connection with non-colliding Brownian motions has been made in [Dy62]
and [HW96].

The outline of the paper is as follows. In Section 2, we show that the function h is harmonic
for any random walk (discrete or continuous time) with exchangeable increments, provided the
required moments exist. Then we introduce a class of random walks for which h is regular in the
Weyl chamber, and de�ne the h-transform. In Section 3, we identify some well-known discrete
ensembles in terms of h-transforms of appropriate random walks. In Section 4, we give a repre-
sentation for the Krawtchouk process, by considering a sequence of discrete-time M=M=1 queues
in tandem. Finally, we discuss the discrete circular ensemble in Section 5.

2. Non-colliding random walks

Fix k 2 N and let X = (X(n))n2N0 be a random walk on R
k starting at x 2 R

k under Px. In
Subsection 2.1 we prove that h is harmonic for X, provided the required moments exist and the
walk has exchangeable increments; in fact, as remark below, h is harmonic for any L�evy process
with exchangeable increments, provided h is in the domain of the generator. In Subsection 2.2 we
restrict to a smaller class of random walks for which we can de�ne the h-transform on the Weyl
chamber.

2.1 Harmonicity of h.

We �rst show that h is harmonic for the random walk X, under very weak assumptions. Recall
that a measure is exchangeable if it is invariant under permutation of its components.

Theorem 2.1. Let the step distribution � of X be exchangeable, and assume that
R
yk1 �(dy) <

1. Then h is harmonic for X; that is, for any x 2 R
k , we have E x(h(X(1))) = h(x). Thus,

(h(X(n)))n2N0 is a martingale under Px for any x 2 Rk .

Proof. Recall that h can be expressed as a Vandermonde determinant:

h(x) = det
�
(xi�1

j )i;j2[k]
�
; [k] = f1; : : : ; kg: (2.1)

Our proof is by induction on k. The assertion is trivially satis�ed for k = 1.

Fix k � 2 and assume that the assertion is true for k � 1. For x 2 Rk , m 2 [k], set

hm(x) = det
�
(xi�1

j )i2[k�1]; j2[k]nfmg

�
: (2.2)

In words, hm(x) is the (k�1)� (k�1)-Vandermonde determinant of fx1; : : : ; xkgnfxmg. Expand
the determinant h(x) along the last line to obtain that

h(x) =
kX

m=1

(�1)m�1xk�1
m hm(x); x 2 R

k : (2.3)

Using this, we obtain that

Ex

�
h(X(1))

�
=

Z
Rk

�(dy) h(y + x) =
kX

m=1

(�1)m�1

Z
Rk

�(dy) (ym + xm)
k�1hm(y + x): (2.4)
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For m 2 [k], denote by �m the m-th marginal of �, and for ym 2 R, denote by �(m)(�jym) a version
of the conditional distribution of � given that the m-th coordinate is ym. Note that �(m)(�jym)
is an exchangeable probability measure on Rk�1 . Furthermore, recall that, for �xed ym, the mapey � (y1; : : : ; ym�1; ym+1; : : : ; yk) 7! hm(y) is the (k � 1)-dimensional version of h. Hence, the
induction hypothesis yields, for any ym 2 R,Z

Rk�1

�(m)(d~yjym) hm(y + x) = hm(x); x 2 R
k : (2.5)

Using this, we obtain from (2.4):

l.h.s. of (2.4) =
kX

m=1

(�1)m�1

Z
R

�m(dym) (ym + xm)
k�1hm(x)

=
kX

m=1

(�1)m�1

Z
R

�m(dy)
k�1X
l=0

�
k � 1

l

�
xlmy

k�1�lhm(x)

=
k�1X
l=0

�
k � 1

l

�Z
R

�m(dy) y
k�1�l

� kX
m=1

(�1)m�1xlmhm(x)
�
:

(2.6)

On the right hand side, we use the expansion (2.3) and see that the term between the brackets is
equal to h(x) for l = k� 1 and equal to zero for all other l (since it is the determinant of a matrix
with two identical lines). Hence, the right hand side of (2.6) is equal to h(x), and this completes
the induction proof.

Corollary 2.2. If X is a continuous-time random walk in Rk with generator given by

Gf(x) =

Z
Rk

[f(x+ y)� f(x)]�(dy)

for some exchangeable jump distribution � with
R
yk1 �(dy) <1, then h is harmonic for X; that

is, Gh = 0.

Remark 2.3. Actually, h is harmonic for any L�evy process on Rk with exchangeable increments.

That is, for a generator of the form

Gf(x) =
1

2
�

kX
i=1

@2i f(x) + b
kX
i=1

@if(x) +

Z
Rk

h
f(x+ y)� f(x)� y � rf

1 + jyj2
i
�(dy);

where � is exchangeable,
R
yk1 �(dy) <1 and

R
R

jy1j
1+jyj2

�(dy) <1, we have Gh = 0. This follows

from the above corollary and the elementary facts that �h = 0 and
Pk

i=1 @ih = 0.

2.2 Conditioned walks

Recall that our goal is to condition X on never having a collision between any two of its
components. We can do this for certain walks by means of a Doob h-transform with h as in
(1.2). Actually, h is in general not the only positive harmonic function but in some sense the most
natural one (see Lemma 3.5 below and the remarks preceding it).
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In order to de�ne the h-transform, we require that (h(X(n))1lfT > ng)n2N0 is a positive mar-
tingale, where

T = inffn 2 N : X(n) =2 Wg (2.7)

denotes the �rst time that the process leaves the Weyl chamber W de�ned by (1.3). This require-
ment forces us to restrict the class of random walks we consider. In particular, we shall assume
now that X runs on the integers and that the components are nearest-neighbor walks. By W we
denote the set fx 2 Z

k : x1 � x2 � � � � � xkg, and @W =W nW . Denote by PW : W �W ! [0; 1]
the restriction of the transition kernel of X to W , which is an in�nite substochastic matrix. Recall
that a function f : W ! [0;1) is called regular for PW if PWf = f on W .

Theorem 2.4. Let the step distribution of X be exchangeable with support in Z
k. Furthermore,

assume that no step from W to W
c
has positive probability. Then the restriction of h to W is a

strictly positive regular function for PW .

Proof. It is clear that h is positive on W and vanishes on @W . The regularity of h for PW
is shown as follows. Denote by � the walker's step distribution. Fix x 2 W . It suÆces to
show that

P
y2W �(y)h(y + x) = h(x). But this easily follows from Lemma 2.1, since h(x) =P

y2Zk �(y)h(y + x), and we have h(y + x) = 0 if y + x 2 @W , and �(y) = 0 if x + y =2 W .

Note that the conditions of Theorem 2.4 are satis�ed if the walker's components are i.i.d.
processes and make steps in f0; 1g (or in f�1; 0g) only, or if the step distribution is exchangeable
and only steps with j � j-length � 1 occur with positive probability (where j � j denotes the lattice
norm).

Under the assumptions of Theorem 2.4, one may de�ne the h-transform of X. In spite of the
possible existence of other functions which are regular for PW (see Lemma 3.5 below), we refer to
this transformed walk as the conditioned walk given that X never leaves the Weyl chamber W . A
certain justi�cation for this interpretation is provided in the proof of Theorem 4.6 below.

We denote by bPx the distribution of the transformed process X, started at x 2 W . The transition
kernel for this walk is given by

bP (x; y) = PW (x; y)
h(y)

h(x)
; x; y 2 W: (2.8)

Recall T de�ned in (2.7). Make iterated use of (2.8) to see that

bPx(X(n) = y) = Px(X(n) = y; T > n)
h(y)

h(x)
; x; y 2 W: (2.9)

This construction is easily extended to continuous-time random walks X = (X(t))t2[0;1). Con-
sider the canonical embedded discrete-time random walk and assume that its step distribu-
tion satis�es the assumptions of Theorem 2.4. Then the de�nition of the Doob h-transform
of the process is possible in the analogous way. In particular, (2.9) holds in this case for any
n 2 [0;1) as well, where the de�nition (2.7) of the leaving time T has to be adapted to
T = infft 2 [0;1) : X(t) =2 Wg.

3. Discrete Ensembles: Examples
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In this section, we present two examples of well-known discrete ensembles which can be viewed
as the distribution at a �xed time of a suitable random walk conditioned to stay in W . Our
examples are:

(i) the binomial random walk (leading to the Krawtchouk ensemble),
(ii) the Poisson random walk (leading to the Charlier ensemble) and its de-Poissonised version,

Throughout this section we shall use the notation of Section 2.

3.1 The Krawtchouk process.

The main aim of this subsection is to show that the Krawtchouk ensemble (on W ),

KrWk;n;p(x) =
1

Z
h(x)2

kY
i=1

Bin;p(xi); x = (x1; : : : ; xk) 2 W \ f0; : : : ; ngk; (3.1)

appears as the distribution at �xed time of independent binomial walks conditioned to never
collide.

Fix a parameter p 2 (0; 1) and let the components of X be independent random walks on
N0 whose steps take the value one with probability p and zero else. Hence, at each time n, each
component has the binomial distribution Bin;p(l) =

�
n
l

�
pl(1�p)n�l, l 2 f0; : : : ; ng, with parameters

n and p, if the process starts at the origin. Clearly, this step distribution satis�es the assumptions
of Theorem 2.4.

We conceive KrWk;n;p as a probability measure on W . We can identify the distribution of the
conditioned binomial walk as follows. Abbreviate x� = (0; 1; : : : ; k � 1) 2 W .

Proposition 3.1. For any n 2 N0 and any y 2 W ,

bPx�(Xn = y) = KrWk;n+k�1;p(y): (3.2)

Proof. First observe that, for any y 2 W ,

bPx�(Xn = y) > 0 () 8i = 1; : : : ; k : i� 1 � yi � n+ i� 1

() 0 � y1 < y2 < � � � < yk � n+ k � 1

() KrWk;n+k�1;p(y) > 0;

i.e., the two distributions on both sides of (3.2) have the same support. Assume that y lies in that
support.

Use the Karlin-McGregor theorem [KM59] to rewrite, for any x; y 2 W ,

Px(Xn = y; T > n) = det
�
(Bin;p(yj � xi))i;j=1;:::;k

�
: (3.3)

Here we trivially extend Bin;p to a probability measure on Z.

Observe that�
n

yj � i+ 1

�
=

�
n+ k � 1

yj

�
bi;jQk�1

l=1 (n + l)
; where bi;j =

i�2Y
l=0

(yj � l)�
k�1Y
l=i

(n� yj + l); (3.4)
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and further observe that bi;j is zero if yj � i+ 1 is not in f0; : : : ; ng. Hence, in view of (2.9),using
the multilinearity of the determinant, we obtain that

det
�
(Bin;p(yj � x�i ))i;j=1;:::;k

�
= K det(B)

kY
i=1

Bin+k�1;p(yi); (3.5)

where B = (bi;j)i;j=1;:::;k with bi;j as in (3.4). Here K denotes a positive constant which depends
on n, k and p only. Hence, the proof of the lemma is �nished as soon as we have shown that
det(B) = eKh(y) for some positive constant eK which does not depend on y. Observe that bi;j is a
polynomial of degree k�1 in yj with coeÆcients c1;i; : : : ; ck;i that do not depend on j or y1; : : : ; yk,

i.e., bi;j =
Pk

m=1 y
m�1
j cm;i. Hence, B is equal to the matrix productB = (ym�1

j )j;m=1;:::;kC with C =

(cm;i)m;i=1;:::;k. According to the determinant multiplication theorem, det(B) = det
�
(ym�1

j )j;m
��

det(C) = h(y) det(C). It is clear that det(C) 6= 0 since both sides of (3.2) are strictly positive.

Substituting det(B) = h(y) det(C) in (3.5) and this in (3.3), and noting that the supports of
the two probability measures in (3.2) are identical, we arrive at the assertion.

With some more e�orts, one also can show that det(C) = (n+1)k�1(n+2)k�2� � � � � (n+ k�
1)1.

Introduce the Green's function for the walk before the �rst time of a collision, �: W �W !
[0;1), by

�(x; y) =
X
n2N0

Px(X(n) = y; T > n); x; y 2 W: (3.6)

and the corresponding Martin kernel K : W �W ! [0;1) by

K(x; y) =
�(x; y)

�(x�; y)
; x; y 2 W; (3.7)

where we recall that x� = (0; 1; : : : ; k � 1) 2 W . For future reference, we state a result on the
asymptotic behaviour of the Martin kernel. By 1l we denote the vector (1; : : : ; 1) 2 @W .

Lemma 3.2. For any x 2 W \ Nk
0 ,

K(x; y)! h(x)

h(x�)
as y !1 through W such that y=jyj ! 1l=k: (3.8)

Proof. All following limit assertions refer to the limit as y !1 throughW such that y=jyj ! 1l=k.
In order to prove the lemma, it is suÆcient to prove the following. There is a constant C > 0
(depending on k and p only) such that, for any x 2 W ,

�(x; y) = Ch
�
y
jyj

�
h(x)(1 + o(1)): (3.9)

We again use Karlin-McGregor's formula in (3.3). We may assume that yj � xi � 0 for any
i and j. We split the sum on n 2 N0 in the de�nition of �(x; y) into the three sums �(x; y) =�P

n2Iy
+
P

n2IIy
+
P

n2IIIy

�
Px(X(n) = y; T > n) where Iy, IIy and IIIy, respectively, are the

subsets of N0 in the three regions left of, between and right of jyj=(kp)� jyj3=4.
For n 2 IIy [ IIIy, we use that n� yj for any j to get that�

n

yj � xi

�
=

�
n

yj

� xiY
l=1

yj � l + 1

n� yj + l
=

�
n

yj

�� yj
n� yj

�xi
(1 + o(1)); (3.10)
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uniformly in n. Hence, uniformly in n 2 IIy [ IIIy, we have, using the multilinearity of the
determinant,

det
�
(Bin;p(yj � xi))i;j=1;:::;k

�
=
� p

1� p

��jxj kY
j=1

Bin;p(yj) det
h�� yj

n� yj

�xi�
i;j=1;:::;k

i
(1 + o(1)):

(3.11)

In order to evaluate the latter determinant, we introduce the Schur function Schurx(z) which is
a certain multipolynomial in z1; : : : ; zk whose coeÆcients are non-negative integers and may be
de�ned combinatorially. It is homogeneous of degree jxj � k

2
(k � 1) and satis�es Schurx(1l) =

h(x)=h(x�). Furthermore, it satis�es the generalized Vandermonde identity det[(zxij )i;j=1;:::;k] =
h(z) Schurx(z). Applying this to the vector z = (yj=(n � yj))j=1;:::;k, we obtain from the last
display that

det
�
(Bin;p(yj � xi))i;j=1;:::;k

� � � p

1� p

��jxj
h(z) Schurx(z)

kY
j=1

Bin;p(yj): (3.12)

We turn now to the second region of summation, i.e., jyj=(kp) � jyj3=4 � n � jyj=(kp) + jyj3=4.
Observe that z converges to p

1�p
1l, uniformly in all n 2 IIy. Hence, Schurx(z) ! Schurx(

p
1�p

1l) =�
p

1�p

�jxj� k
2
(k�1)

h(x)=h(x�). Furthermore, by using the de�nition of h in (1.2) and recalling that

zj = yj=(n� yj), one obtains that

h(z) =
h(y)Q

i<j

�
1
n
(n� yj)(n� yi)

� = (1 + o(1))
h(y)kyk�

k
2
(k�1)

1Q
i<j(1=p� 1)2

= (const + o(1))h
�
y
jyj

�
: (3.13)

Use a local central limit theorem for the binomial probability (see Theorem VI.1.6 in [Pe75], e.g.)
to approximate Bin;p(yj) = (2�p(1� p)n)�1=2 expf�1

2
(yj � np)2=(p(1� p)n)g+O(1=n), uniformly

in n 2 IIy, to deduce that

lim
y!1

y=jyj!1l=k

X
n2IIy

kY
j=1

Bin;p(yj)

exists and is positive (observe that yj � kyk1 for every j). Hence, the second termP
n2IIy

Px(X(n) = y; T > n) is asymptotically equivalent to the right hand side of (3.9), with
some appropriate choice of C.

Now we show that the sums of Px(X(n) = y; T > n) over n in Iy and IIIy are negligible with
respect to the sum over n 2 IIy. In order to do that, we have to further divide Iy and IIIy into
Iy = I+y _[I�y and IIIy = III+y _[III�y where I+y = fn 2 Iy : n � (1+")yj; 8jg and III+y = fn 2 IIIy : n �
1
"
yj; 8jg, for some small " > 0. In order to handle the sum over the extreme sets, use Stirling's

formula to estimate, for suÆciently small " > 0 (the smallness depends on p only):

Bin;p(yj � xi) � e�const jyj; n 2 I�y [ III+y ; for some j;

from which it follows that
P

n2I�y [III
+
y
det

�
(Bin;p(yj�xi))i;j=1;:::;k

�
decays even exponentially in jyj.

Since h(y)jyj� k
2
(k�1) decays only polynomially, we have seen that

P
n2I�y [III

+
y
Px(X(n) = y; T > n)

is negligible with respect to the sum on n 2 IIy.

We turn to the summation on n 2 I+y [ III�y . Here (3.10) holds as well, and therefore also (3.12)

does. Use the �rst equation in (3.13) to estimate h(z) � h(y)jyj� k
2
(k�1)const (the latter constant
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depends on " only). Furthermore, note that y 7! z is a bounded function, and since the coeÆcients
of the Schur function are positive, we may estimate Schurx(z) � const Schurx(1l) � const h(x). In
order to handle the sum of the binomial probability term, use Stirling's formula to deduce that

Bin;p(yj) � e�const
p
jyj uniformly in n 2 I+y [ III�y . This in turn yields that

lim
y!1

y=jyj!1l=k

X
n2I+y [III

�
y

kY
j=1

Bin;p(yj) = 0:

This shows that the sum on n in I+y [ III�y is asymptotically negligible with respect to the right
hand side of (3.9). This ends the proof.

3.2 The Charlier process.

In this subsection, we show how the Charlier ensemble (on W ),

ChWk;�(x) =
1

Z
h(x)2

kY
i=1

�xi

xi!
; x = (x1; : : : ; xk) 2 W \ Nk

0 ; (3.14)

arises from the non-colliding version of the Poisson random walk.

We consider a continuous-time random walk X = (X(t))t2[0;1) on Nk
0 that makes steps after

independent exponential times of parameter k, and the steps are uniformly distributed on the
set of the unit vectors e1; : : : ; ek where ei(j) = Æij. In other words, the components of X are the
counting functions of independent unit-rate Poisson processes. The generator of this walk is given
as Gf(x) = 1

k

Pk
i=1[f(x+ei)�f(x)]. By Corollary 2.2, h de�ned in (1.2) is harmonic for this walk.

Since the step distribution satis�es the conditions of Theorem 2.4, h is a strictly positive harmonic
function for the walk killed when it exits W . In other words, the embedded discrete-time random
walk satis�es the condition of Theorem 2.4. Hence, we may consider the conditioned process given
that the walker never leaves the Weyl chamber W , which is the Doob h-transform of the free walk
de�ned by

bPx(X(t) = y) =
h(y)

h(x)
Px(X(t) = y; T > t); x; y 2 W; t > 0; (3.15)

where T = infft > 0: X(t) =2 Wg.
The distribution of the free Poisson walk at �xed time t is given by Px(X(t) = y) = P0(X(t) =

y � x) and

P0(X(t) = y) =
(kt)jyj

jyj! e
�ktMujyj(y) =

kY
j=1

tyie�t

yi!
; y 2 N

k
0 ; t 2 [0;1); (3.16)

where Mun(y) = k�n
�

n
y1;:::;yk

�
1lfjyj = ng denotes the multinomial distribution on Nk

0 , and j � j
denotes the lattice norm.

We conceive the Charlier ensemble de�ned in (3.14) as a probability measure on W . Let us
now show that the distribution of the conditioned walk at �xed time is a Charlier ensemble, if the
walker starts from the point x� = (0; 1; 2; : : : ; k � 1).

Proposition 3.3. For any y 2 W and any t > 0,bPx�(X(t) = y) = ChWk;t(y): (3.17)
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Proof. We use Karlin-MacGregor's [KM59] formula, which in this case reads:

Px(X(t) = y; T > t) = e�kt
X
�2Sk

sign(�)
kY

j=1

� ty�(j)�xj

(y�(j) � xj)!
1lfy�(j) � xjg

�
; (3.18)

where Sk denotes the set of all permutations of 1; : : : ; k, and sign(�) denotes the signum of a
permutation �, and y� = (y�(1) : : : ; y�(k)). We may summarize this as

Px(X(t) = y; T > t) = tjyj�jxje�kt det
h�
(yj � xi)!

�11lfyj � xig
�
i;j=1;:::;k

i

= e�ktt�jxj
kY

j=1

tyj

yj!
det

h�xi�1Y
l=0

(yj � l)
�
i;j=1;:::;k

i
:

(3.19)

Applying (3.19) for x� = (0; 1; 2; : : : ; k�1), we note that the matrix on the right hand side may be
written as a product of the Vandermonde matrix (ym�1

j )j;m=1;:::;k with some lower triangle matrix
C = (cm;i)m;i=1;:::;k with diagonal coeÆcients ci;i = 1. Hence, the latter determinant is equal to
h(y). Now recall (3.15) to conclude the proof.

Remark 3.4. The imbedded discrete-time random walk of the Poisson walk leads to what is known

as the de-Poissonised Charlier ensemble. If X = (X(n))n2N0 is a discrete-time random walk

on N
k
0 whose step distribution is the uniform distribution on the unit vectors e1; : : : ; ek, then its

distribution at �xed time is given by Px(X(n) = y) = Mun(y�x). We call X the multinomial walk.
The step distribution satis�es the conditions of Theorem 2.4. The h-transform of the multinomial

walk satis�es

bPx�(X(n) = y) =
1

Z
h(y)2Mun�k(k�1)=2(y); y 2 N

k
0 ; n �

k

2
(k � 1); (3.20)

where Z = 2�k(k�1)=2(n+ 1) : : : (n+ k(k � 1)=2) denotes the normalizing constant.

Let us go back to the h-transform of the continuous-time Poisson random walk. We now identify
h with a particular point on the Martin boundary of the restriction of X to the Weyl chamber W .
Analogously to (3.6) and (3.7), we de�ne the Green kernel associated with X on W by �(x; y) =R1
0

dtPx(X(t) = y; T > t) and the corresponding Martin kernel by K(x; y) = �(x; y)=�(x�; y):
Recall from the proof of Lemma 3.2 (see below (3.11)) the Schur function Schurx(v) for x 2 W
and v 2 Rk . The following lemma implies that x 7! Schurx(kv) is a strictly positive regular
function for PW , for any v 2 (0;1)k\W with jvj = 1; in particular, the function h is not the only
function that satis�es Theorem 2.4. We have thus identi�ed in�nitely many ways to condition k
independent Poisson processes never to collide. However, in [OY01b] it is shown that, in some
sense, h is the most natural choice, since the h-transform appears as limit of conditioned processes
with drifts tending to each other. Similar remarks apply to the Krawtchouk case; in the proof
of Theorem 4.6 we see that the h-transform has the analogous interpretation. In this case we
also expect in�nitely many positive harmonic functions on the Weyl chamber which vanish on the
boundary. We remark that in the Brownian case h is the only positive harmonic function on W .

Lemma 3.5. Fix x 2 W \ Nk
0 and v 2 (0;1)k \W with jvj = 1. Then, in the above context,

K(x; y)! Schurx(kv) as y!1 through W such that y=jyj ! v: (3.21)
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In particular,

K(x; y)! h(x)

h(x�)
as y !1 through W such that y=jyj ! 1l=k: (3.22)

Proof. We use (3.19) to see that, for any y 2 W with jyj � jxj,

�(x; y) = kjxj�jyj�1 (jyj � jxj)!Qk
j=1 yj!

det
h�xi�1Y

l=0

(yj � l)
�
i;j=1;:::;k

i
: (3.23)

Recall from the proof of Proposition 3.3 that the latter determinant is equal to h(y) for x = x�.
Also note that xi � x�i for any i, and hence jx � x�j = jxj � jx�j. Hence we obtain from (3.23)
that, as the limit in (3.21) is taken,

K(x; y) = kjx�x
�j jy � xj!
jy � x�j!

1

h(y)
det

h�xi�1Y
l=0

(yj � l)
�
i;j=1;:::;k

i

= kjx�x
�j
�jyj�jx�x�j + o(1)

� 1

h(y)
det

h�
yxij (1 + o(1))

�
i;j=1;:::;k

i
:

(3.24)

Recall that det
��
yxij
�
i;j=1;:::;k

�
= h(y) Schurx(y). Use the continuity of the determinant and of the

Schur function and the fact that Schurx(�) is homogeneous of degree jx�x�j to deduce that (3.21)
holds.

4. A representation for the Krawtchouk process

In [OY01b], a representation is obtained for the Charlier process by considering a sequence of
M=M=1 queues in tandem. In this section we will present the analogue of this representation
theorem for the Krawtchouk process, by considering a sequence of discrete-time M=M=1 queues
in tandem. We will use essentially the same arguments as those given in [OY01b], but need to take
care of the added complication that, in the discrete-time model, the individual walks can jump
simultaneously. The Brownian analogue is also presented in [OY01b], in an attempt to understand
the recent observation, due to Baryshnikov [Ba01] and Gravner/Tracy/Widom [GTW01], that the
random variable

M = inf
0=t0<t1<���<tk=1

kX
i=1

[Bi(ti)� Bi(ti�1)];

where B = (B1; : : : ; Bk) is a standard k-dimensional Brownian motion, has the same law as
the smallest eigenvalue in a k � k GUE random matrix. For related work on this identity, see
[BJ01, OY01a].

Similar connections between directed percolation random variables, such as M , and random
matrix or discrete orthogonal polynomial ensembles have also been observed in [Jo00a, Jo99] (see
Corollary 4.7). See also [Ba00, Fo99]. These are all related to the amazing fact, recently discovered
and proved by Baik, Deift and Johansson [BDJ99], that the asymptotic distribution of the longest
increasing subsequence in a random permutation is the same as the asymptotic distribution of
the largest eigenvalue in a GUE random matrix, which had earlier been identi�ed by Tracy and
Widom [TW94].
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4.1 Tandem queues.

Consider a collection of k queues in tandem operating in discrete time. There is a number of
customers (maybe none) waiting in any of the queues, and the customers must pass each of the
queues in increasing order until they �nally leave the system. At each time unit in each queue,
any service processes one customer (if present) and the customer arrives at the next queue. Let
us formalize the system.

We label the queues by i 2 f1; : : : ; kg and the time by n 2 Z. Let the number of arrivals and
departures in queue i at time n be denoted by ai(n) and di(n), respectively. Since the queues are
in tandem, every departure from the (i � 1)-st queue is an immediate arrival in the i-th queue,
i.e.,

ai(n) = di�1(n); i 2 f2; : : : ; kg; n 2 Z: (4.1)

Let si(n) be the maximal number of services at time n in queue i and Qi(n) be the length of the
i-th queue at time n. Then we have the relations

Qi(n) =
�
Qi(n� 1) + ai(n)� si(n)

�+
; (4.2)

di(n) = ai(n) +Qi(n� 1)�Qi(n); (4.3)

for any n 2 Z and i 2 f1; : : : ; kg.
We introduce two other useful variables. Let

ui(n) = si(n)� di(n) and ti(n) = ai(n) + ui(n); i 2 f1; : : : ; kg; n 2 Z: (4.4)

Then ui(n) is the number of unused services in queue i at time n. Note that we have always
ui(n) � 0. Later it will turn out that ti(�) is the service process for the time-reversed i-th queue.

We need some general notation. For a given process yi(�) and any �nite interval I � R, we
denote by YiI the cumulative process over the interval I

YiI =
X
n2I\Z

yi(n): (4.5)

This notation applies for y = a; d; t and s. Hence, from the above relations we deduce in particular,
for any i 2 f1; : : : ; kg and all m;n 2 Z with m � n,

Di(m;n] = Ai(m;n] +Qi(m)�Qi(n) (4.6)

Ti(m;n] = Si(m;n]�Qi(m) +Qi(n) (4.7)

Ui(m;n] = Si(m;n]�Di(m;n] (4.8)

Furthermore, for any process yi(�), we also de�ne the reversed process yi by

yi(n) = yi(�n); n 2 Z: (4.9)

Then Y iI is the cumulative reversed process.

4.2 Tandem queues with single arrivals and services.

From now on, we assume that there are at most a single arrival and a single service at a given
time and queue. Furthermore, we assume that the arrivals and the services occur randomly and
independently and that their distributions depend only on the queue. Hence, the collection of the



NON-COLLIDING RANDOM WALKS, TANDEM QUEUES, AND DISCRETE ENSEMBLES 13

arrival and maximal service numbers, ai(n) and si(n), are independent Bernoulli random variables
with respective parameters p 2 (0; 1) and qi 2 (0; 1). For stability, we assume p < minfq1; : : : ; qkg.
Note that Qi(�) is a stationary process given by

Qi(n) = sup
m<n

�
Di�1(m;n]� Si(m;n]

�+
= sup

m�n
fDi�1(m;n]� Si(m;n]g; (4.10)

(note that Y (m;m] = 0). Furthermore,

Qi(n) = sup
u�n
fDi(n; u)� Ti(n; u)g: (4.11)

Note also that Q1 is a reversible Markov chain; in fact it is a birth and death process, and the
geometric distribution on N0 with parameter p(1�q1)

q1(1�p)
2 (0; 1) is its invariant distribution (see e.g.

[As87]).

We now give a proof of an important result that identi�es the distribution of the processes
Dk; T1; : : : ; Tk. The statement is the discrete-time analogue of the extension of Burke's theorem
given in [OY01b], although the proof is considerably more involved due to the fact that simul-
taneous arrivals and services are possible. Discussions on Burke's theorem and related material
can be found in [Br81, Br99, Ke79, Ro00]. The original statement was �rst presented in [Bu56].
The idea of using reversibility to prove Burke's theorem is due to Reich [Re57]. We remark that
Brownian analogues and variations of Theorem 4.1 below are presented in [HW90, OY01a].

If fy(n); n 2 Zg is a sequence of independent Bernoulli variables with parameter p, the cumu-
lative process Y I de�ned over all intervals I is a binomial process of parameter p on Z. Indeed,
for all m � n, Y (m;n] is a binomial variable of parameter (n�m; p).

Theorem 4.1. For any k 2 N , Dk; T1; : : : ; Tk are independent binomial processes with respective

parameters p; q1; : : : ; qk.

Proof. The proof is by induction on k. We �rst consider the case of k = 1 which already contains
the main argument.

The proof of the assertion for k = 1 is based on reversibility. We already know that A1 and
S1 are independent binomial processes with parameters p and q1. It is easy to see that D1 and
T 1 are the arrival and service processes of the reversed queue. So we proceed by constructing a
reversible representation of the queue which is symmetric in (A1; S1) and (D1; T 1).

We �rst construct a queue-length process Q given by a birth and death process which is taken
equal in distribution to the stationary process Q1. Since it is not possible to reconstruct the
arrival and service processes from the queue-length process, we introduce an auxiliary process
indexed by 1

2
+ Z which contains the necessary information on the events fQ(n � 1) = Q(n)g

and moreover is reversible. Consider the i.i.d. process (M0
n�1=2)n2Z 2 f(0; 0); (0; 1); (1; 1)gZ (resp.

(Mn�1=2)n2Z 2 f(0; 0); (1; 1)gZ) where for all n 2 Z, M0
n�1=2 (resp. Mn�1=2) has the same dis-

tribution as (a1(n); s1(n)) given that Q1(n � 1) = Q1(n) = 0 (resp. (a1(n); s1(n)) given that
Q1(n� 1) = Q1(n) 6= 0). (The reader might �nd it helpful to draw a picture.)

It is easy to check that the arrival-service process (�; �) in our construction is then a function
of (Q;M0;M), more precisely, for some suitable function f ,

(�(n); �(n)) = f
�
(Q(n� 1);Q(n));M0

n�1=2;Mn�1=2

�
; n 2 Z: (4.12)
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The process (Q; �; �) is then equal in distribution to (Q1; a1; s1).

We can also construct the departures in this framework. More precisely, we de�ne processes Æ
and � by

(Æ(n); � (n)) = f
�
(Q(n� 1);Q(n));M0

n�1=2;Mn�1=2

�
; n 2 Z: (4.13)

Then, (Æ; �) has the same law as (d1; t1). The assertion in (4.13) can be interpreted as the statement
that (Æ; �) is the arrival-service process of the reversed queue.

Now, (Q;M0;M) is reversible by construction, and hence

f
�
(Q(n� 1);Q(n));M0

n�1=2;Mn�1=2

� law
= f

�
(Q(n� 1);Q(n));M0

n�1=2;Mn�1=2

�
: (4.14)

The processes Æ and � are reversible, so that (�; �) and (Æ; �) are equal in law. From the same
arguments, we get that the sequence Æ(n) (resp. �(n)) is pairwise independent which �nally gives
the equality in law of the cumulative processes of (�; �) and (Æ; �). This shows that the assertion
holds true for k = 1.

We now turn to the general case. Assume the theorem is true for k � 1 instead of k, i.e.,
Dk�1; T1; : : : ; Tk�1 are independent binomial processes with respective parameters p; q1; : : : ; qk�1.
Since the service process Sk at queue k is clearly independent of the processes at queues 1; : : : ; k�
1, we even have that Dk�1; T1; : : : ; Tk�1; Sk are independent binomial processes with respective
parameters p; q1; : : : ; qk.

Recall from (4.1) that Dk�1 = Ak. Applying the result for k = 1, we get that Dk and Tk are
independent binomial processes with parameters p and qk. Being functions of (Ak; Sk) = (Dk�1; Sk)
only, they are independent of (T1; : : : ; Tk�1).

We now need to introduce some notation. Let f1; : : : ; fk : N ! N be such that f1(0) = � � � =
fk(0) = 0. The following operations arise naturally in the study of queues:

(f1 
 f2)(i; j] = inf
i�m�j

[f1(m)� f1(i) + f2(j)� f2(m)]; (4.15)

(f1 � f2)(i; j] = sup
i�m�j

[f1(m)� f1(i) + f2(j)� f2(m)]: (4.16)

Unless otherwise deleniated by parentheses, the default order of operations is from left to right;
for example, when we write f 
 g 
 h, we mean (f 
 g)
 h. Note that

(f1 
 � � � 
 fk)(i; j] = inf
i�m1�����mk�1�j

[f1(m1)� f1(i)

+ f2(m2)� f2(m1) + � � �+ fk(j)� fk(mk�1)];
(4.17)

and a similar formula for �.
Lemma 4.2. On fQ1(0) = � � � = Qk(0) = 0g,

Q1(n) + � � �+Qk(n) = sup
0�m�n

�
A1(m;n]� (S1 
 � � � 
 Sk)(m;n]

�
; n 2 N0 : (4.18)

Proof. It is easy to verify that on fQ1(0) = � � � = Qk(0) = 0g, (4.10) reduces to
Qk(n) = sup

0�v�n

�
Dk�1(v; n]� Sk(v; n]

�
: (4.19)
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Using (4.6) and (4.1), it follows

Qk(n) = sup
0�v�n

�
Dk�2(v; n] +Qk�1(v)�Qk�1(n)� Sk(v; n]

�
: (4.20)

This implies, with (4.10),

Qk�1(n) +Qk(n) = sup
0�v�n

�
Dk�2(v; n] + sup

0�u�v

�
Dk�2(u; v]� Sk�1(u; v]

�� Sk(v; n]
�

= sup
0�u�n

�
Dk�2(u; n]� inf

u�v�n

�
Sk�1(u; v] + Sk(v; n]

��
= sup

0�u�n

�
Dk�2(u; n]� (Sk�1 
 Sk)(u; n]

� (4.21)

Applying the same steps repeatedly and using that

(Sl 
 � � � 
 Sk)(m;n] = inf
m�u�n

�
Sl(m; u] + (Sl+1 
 � � � 
 Sk)(u; n]

�
(4.22)

gives the result.

In the same manner one proves the following.

Lemma 4.3.

Q1(0) + � � �+Qk(0) = sup
u>0

�
Dk(0; u]� (T1 
 � � � 
 Tk)(0; u]

�
: (4.23)

4.3 Tandem queues and non-colliding random walks.

In this subsection we give a representation of non-colliding random walks de�ned in the sense
of Section 2 in terms of tandem queues with Bernoulli arrivals and services.

First we recursively de�ne a sequence of mappings �k : N0 ! Nk
0 , depending on k func-

tions f1; : : : ; fk : N0 ! N0 satisfying fi(0) = 0 for all i. Recall (4.15) and (4.16) and de�ne
�2(f1; f2) : N0 ! N2

0 by

�2(f1; f2) = (f1 
 f2; f2 � f1): (4.24)

Furthermore, de�ne �k(f1; : : : ; fk) : N0 ! Nk
0 by

�k(f1; : : : ; fk) =
�
f1 
 � � � 
 fk;

�k�1(f2 � f1; f3 � (f1 
 f2); : : : ; fk � (f1 
 � � � 
 fk�1))
�
:

(4.25)

The following result shows that the operator �k yields a representation of the processes
Dk; T1; : : : ; Tk in terms of the arrival and service processes if all the queues start without any
customer at time 0. We abbreviate Y (n) = Y (0; n] for any cumulative process de�ned on N0 .

Lemma 4.4. On fQ1(0) = � � � = Qk(0) = 0g�
Dk(n);�k(T1; : : : ; Tk)(n)

�
= �k+1(A1; S1; : : : ; Sk)(n); n 2 N0 : (4.26)

Proof. We assume Q1(0) = � � � = Qk(0) = 0. Summing over i 2 f1; : : : ; kg in (4.6) and using
(4.1) and (4.18) we get

Dk(n) = A1(n)� (Q1(n) + � � �+Qk(n))

= A1(0; n]� sup
0�m�n

�
A1(m;n]� (S1 
 � � � 
 Sk)(m;n]

�
= (A1 
 S1 
 � � � 
 Sk)(n)

(4.27)
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Also, using (4.7), we have, for any i 2 f1; : : : ; kg,
Ti(n) = Si(0; n] + sup

0�m�n
[Di�1(m;n]� Si(m;n]]

= (Si �Di�1)(n)

= (Si � (A1 
 S1 
 � � � 
 Si�1))(n)

(4.28)

The last equality comes from (4.27). It follows that

�k(T1; : : : ; Tk) = �k(S1 � A1; S2 � (A1 
 S1); : : : ; Sk � (A1 
 S1 
 � � � 
 Sk�1)): (4.29)

Now let X be a random walk on Nk
0 whose components X1; : : : ; Xk are i.i.d. binomial walks

whose respective parameters we denote by 0 < p < q1 < � � � < qk�1 < 1.

Theorem 4.5. The conditional law of (X1; : : : ; Xk), given that

X1(n) � � � � � Xk(n); n 2 N ; (4.30)

is the same as the unconditional law of �k(X1; : : : ; Xk).

Proof. The proof is by induction on k. Let us prove the assertion for k = 2.

Assume that (X1; X2) is a pair of independent binomial processes with parameters p < q1.
Keeping the notations of Subsection 4.1, by Theorem 4.1, the distribution of (X1; X2) is equal to
the conditional distribution of

(D1(n); T1(n))n2N0 given that D1(n) � T1(n); 8n 2 N : (4.31)

By (4.11),

fD1(n) � T1(n); 8n 2 Ng = fQ1(0) = 0g: (4.32)

Now, by Lemma 4.4, (D1; T1) = �2(A1; S1) on fQ1(0) = 0g. But the process �2(A1; S1) is obviously
independent of Q1(0), which gives the result since A1 and S1 are independent binomial processes
with paramters p and q1. This proves the assertion for k = 1.

Turning now to the general case, assume the assertion is true for k � 1 instead of k. Consider
the conditional law of (Dk�1; T1; : : : ; Tk�1) given that

Dk�1(n) � T1(n) � � � � � Tk�1(n); n 2 N0 : (4.33)

By Lemma 4.4 and the induction hypothesis, the conditional law of (Dk�1; T1; : : : ; Tk�1) given that

T1(n) � � � � � Tk�1(n); n 2 N0 ; (4.34)

is the same as the unconditional law of (Dk�1;�k�1(T1; : : : ; Tk�1)). Therefore, the conditional law
of (Dk�1; T1; : : : ; Tk�1) given (4.33) is the same as the conditional law of (Dk�1; T1; : : : ; Tk�1) given
that

Dk�1(n) � (T1 
 � � � 
 Tk�1)(n); n 2 N0 : (4.35)

By (4.23), (4.35) is equivalent to Q1(0) + � � �+Qk(0) = 0, which in turn is equivalent to Q1(0) =
� � � = Qk(0) = 0. Then by Lemma 4.4

(Dk(n);�(T1; : : : ; Tk)(n)) = �k+1(A1; S1; : : : ; Sk)(n); n 2 N0 (4.36)
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The right hand side of the last equation is independent of Q1(0); : : : ; Qk(0), which gives the
result.

Our next purpose is to extend the assertion of Theorem 4.5 to the case in which all the parame-
ters are equal. Hence let X1; : : : ; Xk be independent binomial processes with parameter p 2 (0; 1)
each. Note that, in this case, the conditioning on (4.30) is equivalent to the conditioning that the
processes Xi + i� 1, i = 1; : : : ; k do not collide. Recall that x� = (0; 1; 2; : : : ; k � 1) 2 W , and letbX + x� be a realisation of bPx� as de�ned in Section 2.

Theorem 4.6. The processes bX and �k(X) have the same law.

Proof. In what follows, convergence in law of processes is in the sense of �nite-dimensional
distributions. For " < (1�p)=(k�1), let X" be a random walk on Nk

0 whose componentsX1; : : : ; Xk

are i.i.d. binomial walks with respective parameters 0 < p < p+ " < � � � < p+(k� 1)" < 1. Then,
of course, X" converges in law to X, as "! 0. It follows that the process �k(X

") converges in law
to �k(X). Thus, Theorem 4.6 will follow from Theorem 4.5 if we can show that the conditional

law of x�+X" , given (4.30) converges weakly along a subsequence to bPx� . To prove this, �rst note
that this conditional law is in fact the Doob h-transform of X", started at x�, with

h(x) = h"(x) = P
"
x(T

" =1); (4.37)

where P"x denotes the law of X" started at x 2 W , and T " is the �rst time X" exits the Weyl

Chamber W . Denote by bP"x� the law of this h-transform. It is easy to see that there exist strictly
positive functions ' and '0 on W , which do not depend on ", such that

'(x) � h"(x)

h"(x�)
� '0(x); x 2 W; 0 < " <

1

2

1� p

k � 1
: (4.38)

It follows that h"(�)=h"(x�) converges (in the product topology on RW ) along a subsequence to
a strictly positive function g on W . Denote by P "

W (resp. PW ) the restriction of the transition
kernel associated with X" (resp. X) to W . Then P "

W converges to PW as "! 0. Since h" is regular
for P "

W and the processes X and X" have bounded jumps, we see that g is regular for PW . We
also deduce that the Doob transform of PW by g has the same law as �(X). It remains to show
that g = h. To do this we use Lemma 3.2 and a theorem of Doob (see [D094] or [Wi79, Theorem
III.49.3]), by which it suÆces to show that 1

n
�(X)(n) ! p1l almost surely as n ! 1. But this

follows from the fact that, with probability one, 1
n
X(sn) ! sp1l uniformly for s 2 [0; 1]. So we are

done.

Using both Proposition 3.1 and Theorem 4.6, we recover the following result due to Johansson
[Jo99, Proposition 5.2].

Corollary 4.7 (Johansson). For any n 2 N, the law of (X1
 � � � 
Xk)(n) is equal to that of the

smallest component in the Krawtchouk ensemble KrWk;n+k�1;p. That is,

P
�
(X1 
 � � � 
Xk)(n) � m

�
=

X
x2Nk0 : x1�m

KrWk;n+k�1;p(x); m � 0:
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Finally, we relate this to another discrete orthogonal ensemble called the Meixner ensemble.
This is de�ned (on W ) by

MeWk;n;q(x) =
1

Z
h(x)2

kY
i=1

�xi + n� 1

xi

�
qxi; x = (x1; : : : ; xk) 2 W \ Nk

0 ; (4.39)

where 0 < q < 1, k; n 2 N , and Z is a normalisation constant. For notational convenience,
set eX = �k(X). We begin by giving a queueing interpretation to the random variable eX1(n) =
(X1 
 � � � 
Xk)(n). Consider a tandem of k queues, labelled by 1; : : : ; k. At time zero there are
in�nitely many customers stacked up at the �rst queue and the other k � 1 queues are empty.
The customers are also labelled in the order they appear in the �rst queue at time zero; that
is, the `�rst customer' is the customer initially at the head of the �rst queue, and so on. By
(4.27), if Xj(n) is the cumulative service process associated with the jth queue, then eX1(n) is the
number of departures from the kth queue upto (and including) time n. Now, there is an equivalent
formulation of this Markovian queueing system in temporal units. If w(i; j) denotes the service

time of the ith customer at the jth queue (that is, the length of time spent by customer i at the
head of queue j), then these are i.i.d. geometric random variables with parameter q = 1�p, that is,
P (w(i; j) = l) = ql(1� q) for l 2 N0 . Let D(m; k) denote the departure time of the mth customer

from the kth queue. Then D(m; k) = eX�1
1 (m); that is, D(m; k) � l if, and only if, eX1(l) � m. It

is well-known that we have the following representation for D(m; k) (see, for example, [GW91]):

D(m; k) = max
�2�(m;k)

X
(i;j)2�

w(i; j); (4.40)

where �(m; k) is the set of non-decreasing connected paths

(1; 1) = (i1; j1) � (i2; j2) � � � � � (im+k; jm+k) = (m; k):

By [Jo00a, Proposition 1.3], for m � k,

P (D(m; k) � l) =
X

x2Nk0 : xk�l+k�1

MeWk;m�k+1;q(x); l 2 N0 : (4.41)

(Note that by symmetryD(k;m) has the same law asD(m; k).) Combining this with Corollary 4.7,
we recover the following relationship between the Meixner and Krawtchouk ensembles which was
presented in [Jo00b, Lemma 2.9]: for m � k,X

x2Nk0 : x1�m

KrWk;l+k�1;p(x) =
X

x2Nk0 : xk�l+k�1

MeWk;m�k+1;q(x); l 2 N0 : (4.42)

Given this connection, we see that Theorem 4.6 also yields a representation for the largest com-
ponent in the Meixner ensemble, in terms of the rightmost of a collection of independent random
walks, each with a geometric step distribution, conditioned in an appropriate sense on the order
of the walks to be �xed forever.

Similarly, the analogue of Theorem 4.6 given in [OY01b] for the Charlier process yields a rep-
resentation for the largest eigenvalue in the Laguerre ensemble: in this case the w(i; j) are i.i.d.
exponentially distributed random variables. We remark that this is quite di�erent from the rep-
resentation of the Laguerre process, presented in [KO01], as a system of non-colliding squared
Bessel processes.
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5. The discrete circular ensemble

For completeness, we now present related results for random walks on the discrete circle. As we
shall see, the invariant distribution for the system of non-colliding walks on the circle is a discrete
orthogonal polynomial ensemble which can be regarded as the discrete analogue of the circular
unitary ensemble (CUE). The latter arises in random matrix theory as the law of the eigenvalues
of a random unitary matrix chosen according to Haar measure on the group of unitary matrices of
a particular dimension. In the continuous case, a connection with non-colliding Brownian motions
has been made in [Dy62] and [HW96].

Since in this case, we are dealing with a �nite-space Markov chain, there is no positive harmonic
function for the process killed at the �rst collision time; instead we shall be working with the
Perron-Frobenius eigenfunction associated with the killed walk, which will play a role similar to
that played by h in Section 2.

Consider a random walk X = (X(n))n2N0 on on the circle Zk
N with associated probability Px,

where x 2 Z
k
N is the starting point and ZN is the set of integers modulo N . Assume that X is

irreducible and aperiodic. Furthermore, we assume that its step distribution is exchangeable with
support in f0; 1gk. We denote, for L 2 f0; : : : ; kg


L = fs 2 f0; 1gk : jsj = Lg; (5.1)

where j � j again denotes the lattice norm. Note that 
L contains precisely
�
k
L

�
elements. By

exchangeability, the step distribution induces the uniform distribution on 
L for any L. Hence,
any transition in 
L has the same probability which we denote pL. In particular, 1 =

Pk
L=0 pLj
Lj,

where j
j denotes the cardinality of a set 
.

We are concerned with the process conditioned never to collide. From now on, we assume that
N > k and that the starting point x is such that

x1 mod N < x2 mod N < � � � < xk mod N; (5.2)

where the inequality holds in Z. This is always possible by renumbering the particles and assuming
that they start at di�erent positions. We denote the state space of this process by WN which is
the set of points in y 2 Zk

N for which there exists a cyclic permutation � of 1; : : : ; k such that
x = y� satis�es (5.2). We note by WN the set of points such that the non-strict inequalities hold
for a cyclic permutation, and @WN = WN nWN . Denote by PWN

the restriction of the transition
kernel of the walk to WN .

An equivalent useful representation is given by considering a random walk on Zk conditioned
to stay in

VN = fx 2 Z
k : x1 < x2 < � � � < xk < x1 +Ng: (5.3)

V N and @VN are the equivalent of WN and @WN . Denote by PVN the restriction of the transition
kernel of this walk to VN . For � 2 Zk, consider the function �� : VN ! C and �� 2 C given by

��(y) = det
h�

exp
�
i
2�

Nk
�lym

��
l;m=1;:::;k

i
; y 2 VN ; (5.4)

�� =
kX

L=0

pL
X
s2
L

exp
�
i
2�

Nk
s � �

�
: (5.5)
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Note that �� � 0 if the components of � are not distinct and that �� does not depend on the
order of the components. Furthermore, we have �� = 0 on @VN if �1 � �2 � � � � � �k mod k.

One easily checks for any � 2 Z
k that �� is an eigenfunction of PVN :

X
y2VN

P (x; y)��(y) =
kX

L=0

pL
X
s2
L

X
�2Sk

sign(�)exp
�
i
2�

Nk

kX
l=1

��(l)(xl + sl)
�

=
kX

L=0

pL
X
�2Sk

sign(�)exp
�
i
2�

Nk

kX
l=1

��(l)xl
� X
s2
L

exp
�
i
2�

Nk

kX
l=1

��(l)sl
�

= ����(x)

(5.6)

A particular role is played by the parameter �� = (lk � k(k + 1)=2)l=1;:::;k. The projection of
the eigenfunction ��� to WN induced by the natural projection of VN onto WN can be written

 (x) =
Y

1�l<m�k

jei 2�N xm � ei
2�
N
xlj; x 2 WN : (5.7)

Note the resemblance between  and h in (1.2). The function  is obviously positive. But
by Theorem 4.4 in [Mi88, Chapter I], an irreducible nonnegative matrix has only one positive
eigenvector, the Perron-Frobenius eigenvector. Therefore,  is the Perron-Frobenius eigenvector
and � � ��� is the associated Perron-Frobenius eigenvalue.

Now, we de�ne bPx to be the law of the Markov chain X = (X(n))n2N0 on WN , started at x,

with transition matrix bP given by

bP (x; y) = PWN
(x; y)

1

�

 (y)

 (x)
; x; y 2 WN : (5.8)

The n-th power of the transition matrix is then given by bP n(x; y) = ��n (y)P n
WN

(x; y)= (x), and
from [DS65] it follows that

bPx(X(n) = y) = lim
m!1

Px(X(n) = y jT > m); x; y 2 WN ; n 2 N : (5.9)

Thus, bPx can be interpreted as the law of X conditioned never to leave WN .

The invariant distribution of the conditioned process is given by  2=Z on WN , where Z is the
appropriate normalising constant. This follows from results presented in [DS65] (it also follows
easily from (5.8) if one makes use of the dynamic reversibility of the random walk). This distribu-
tion is the orthogonal polynomial ensemble on the discrete circle corresponding to the Chebyshev
polynomials.

The kernel P n
WN

may be expressed in terms of the eigenfunctions by using the Karlin-MacGregor
formula and the discrete Fourier transform [HW96]. We have

P n
WN

(x; y) =
X
�2Sk

X
�2Bk

sign(�)

kNk

� kX
L=0

pL
X
s2
L

exp
�
i 2�
Nk
s � ���nexp�i 2�

Nk
� � (y� � x)

�

=
1

kNk

X
�2Bk

�n���(x)��(y); (5.10)
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where �� is the complex conjugate of ��, and the parameter set Bk is given by

Bk =
�
� 2 Z

k
N : � dNk=2e + 1 � �l � dNk=2e 8l; �1 < �2 < � � � < �k;

and �1 � �2 � � � � � �k mod k
	
:

Note that jBkj = jWN j.

Let us mention two important examples to which the preceding applies. The binomial walk

on the circle is obtained by setting pL = pL(1 � p)k�L for some parameter p 2 (0; 1) and all

L 2 f0; : : : ; kg (recall that
Pk

L=0 pLj
Lj = 1). In this case the Perron-Frobenius eigenvalue is
identi�ed as

� =
kY
l=1

h
(1� p) + p exp

�
i 2�
N

�
l � k+1

2

��i
=

b k
2
cY

l=1

h
(1� p)2 + p2 + 2p(1� p) cos

�
2�
N

�
l � k+1

2

��i
:

(5.11)

We also mention the multinomial walk on the circle. In this case, pL = 1
k
if L is 1 and pL = 0

otherwise. Then, the Perron-Frobenius eigenvalue is given by

� =
1

k

kX
l=1

exp
�
i 2�
N

�
l � k+1

2

��
=

1

k
1lfk oddg +

2

k

b k
2
cX

l=1

cos
�
2�
N

�
l � k+1

2

��
(5.12)

These results may be compared with those obtained in [HW96] for the case of Brownian motions
on the circle. There, the leading eigenfunction is also given by (5.7) and the principal eigenvalue
is k(k � 1)(k + 1)=24. See also [Pi85] for related work for di�usions in a more general context.
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