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Pitman's Let ( X x, k3 0) be a Markov chain on {-1, +1} with x =1 and
representation transition probabilities P ( X 1 = 1 %2Xx «=1) = aand P
theorem, (X1 =-1¥&,=-1)=b<a. Set Xo=0, Xn=%x1+ “+xnand
telegrapher’s Mn=maxo £ KE£ n X . We prove that the process 2M -X has the
process same law as that of X conditioned to stay non-negative.

Pitman's representation theorem [18] states that, if (X ¢,
t3 0) is a standard Brownian motion and M{=maxs £ X s,
then 2M - X has the same law as the 3-dimensional Bessell
process. This was extended in [19] to the case of non-zero drift,
where it is shown that, if X:is a standard Brownian motion with
drift, then 2M -X is a certain diffusion process. This diffusion
has the significant property that it can be interpreted as the law
of X conditioned to stay positive (in an appropriate sense).
Pitman's theorem has the following discrete analogue [18, 15] :
if X is a simple random walk with non-negative drift (in
continuous or discrete time) then 2M - X has the same law as X
conditioned to stay non-negative (for the symmetric random
walk this conditioning is in the sense of Doob). Here we present
a non-Markovian version of Pitman's theorem. Let (X «, k3 0) be
a Markov chain on {-1, +1} with x o = 1 and transition
probabilities P (xk+1=1Y k=1)=aand P (Xk+ =- 1¥X k=

- 1) = b. We will assume that 1 >a > b > 0. Set Xo=0, Xn=x 1
+”+ X n and My, = max, £ k £ n X«.
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Abstract

Let (&, k& > 0) be a Markov chain on {—1,+1} with £ = 1 and transition
probabilities P({x11 = 1| § = 1) = a and P(§p41 = —1| § = —1) = b < a.
Set Xg =0, X,, =& + -+ &, and M,, = maxg<p<n Xip. We prove that
the process 2M — X has the same law as that of X conditioned to stay
non-negative.

Pitman’s representation theorem [18] states that, if (X;, ¢ > 0) is a standard
Brownian motion and M; = maxs<; X, then 2M — X has the same law as the
3-dimensional Bessel process. This was extended in [19] to the case of non-zero
drift, where it is shown that, if X; is a standard Brownian motion with drift, then
2M — X is a certain diffusion process. This diffusion has the significant property
that it can be interpreted as the law of X conditioned to stay positive (in an
appropriate sense). Pitman’s theorem has the following discrete analogue [18, 15]:
if X is a simple random walk with non-negative drift (in continuous or discrete
time) then 2M — X has the same law as X conditioned to stay non-negative (for
the symmetric random walk this conditioning is in the sense of Doob).

Here we present a non-Markovian version of Pitman’s theorem. Let (&, k& > 0)
be a Markov chain on {—1,+1} with § = 1 and transition probabilities P(&,, =
11 ¢ =1) =aand P(&41 = —1| & = —1) = b. We will assume that 1 > a > b > 0.
Set Xog =0, X, =& +---+ & and M,, = maxo<p<p Xp.

Theorem 1 The process 2M — X has the same law as that of X conditioned to
stay non-negative.

Note that, if b = 1 — a, then X is a simple random walk with drift and we recover
the original statement of Pitman’s theorem in discrete time.

To prove Theorem 1, we first consider a two-sided stationary version of &, which
we denote by (1, k € Z), and define a stationary process {Q,,n € Z} by

n +
Qn = max (— Z%’) :
j=m
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Note that @) satisfies the Lindley recursion Q.11 = (Qn — 7n21)", and we have the
following queueing interpretation. The number of customers in the queue at time n
is Q,; if n,41 = —1 a new customer arrives at queue and Q1 = Q,+1;if 9, =1
and @, > 0, a customer departs from the queue and ),,; = @, — 1; otherwise

Qn-l—l = Qn

Note that the process 1 can be recovered from @), as follows:

{_1 if Qn > Qn—l
M =

1 otherwise.

Forn € Z, set Q, = Q_,.
Theorem 2 The processes () and Q have the same law.

Proof: We first note that it suffices to consider a single excursion of the process )
from zero. This follows from the fact that, at the beginning and end of a single
excursion, the values of 1 are determined, and so these act as regeneration points
for the process. To see that the law of a single excursion is reversible, note that
the probability of a particular excursion path depends only on the numbers of
transitions (in the underlying Markov chain n) of each type which occur within
that excursion path, and these numbers are invariant under time-reversal. O

Thus, if we define, for n € Z,

77 _{_1 ian>Qn+1

1 otherwise,

we have the following corollary of Theorem 2.

Corollary 3 The process 1) has the same law as 7.

Proof of Theorem 1: Note that we can write 7, = 7,11 + 2(Qni1 — Qn). Summing
this, we obtain, for n > 1,

D i = Xn +2(Qn — Qo). (3)

J=0

WherNe X, = Z?Zl n;. If we adopt the convention that empty sums are zero, and
set Xy = 0, then this formula remains valid for n = 0. It follows that, on {Qy = 0},

n—1
> iy =2M, - X,, (4)
§=0



where M,, = maxXo<m<n Xm.

Note also that, for m € Z,

n>m

n +
Qm = (Qm+1 - ﬁm)—i— = max <_ Aj) . (5)
J

i—m

The law of X conditioned to stay non-negative is the same as the law of X con-
ditioned to stay non-negative, since the events X; > 0 and )N(l > 0 respectively
require that & = 1 and 7y = 1, and so the difference in law between ¢ and 7
becomes irrelevant. By Corollary 3, the law of X conditioned to stay non-negative
is the same as the law of the process

n—1
(z o> o)
§=0
given that
n—1
Qo = max (— Z;%) = 0.
]:

By (4) this is the same as the law of 2M — X given that Qo = 0 or, equivalently,
that 79 = 1; but this is the same as the law of 2M — X, so we are done. O

In the queueing interpretation, 7 = —1 whenever there is a departure from the queue
and 1) = 1 otherwise. Thus, Corollary 3 states that the process of departures from
the queue has the same law as the process of arrivals to the queue; it can therefore
be regarded as a non-Markovian analogue of the celebrated theorem in queueing
theory, due to Burke [3], which states that the output of a stable M/M/1 queue
in equilibrium has the same law as the input (both are Poisson processes). Note,
however, that in this non-Markovian queueing process, the arrivals and services are
not independent (being mutually exclusive). Our proof of Theorem 2 is inspired
by the kind of reversibility arguments used often in queueing theory, although
usually in a Markovian setting. For general discussions on the role of reversibility
in queueing theory, see [2, 10, 17]; the idea of using reversibility to prove Burke’s
theorem is originally due to Reich [16].

Finally, we remark that the following analogue of Theorem 1 holds in continuous
time: let (&, t > 0) be a continuous-time Markov chain on {—1,+1} with § =1,
and set X; = f(f §sds, My = maxo<s<; Xy. We assume that the transition rates
of the chain are such that event that X remains non-negative forever has positive
probability. Then 2M — X has the same law as that of X conditioned to stay non-
negative. The proof is identical to that of Theorem 1; in particular, the following
analogues of Theorem 2 and Corollary 3 also hold: if we let (n;, t € R) be a
stationary version of £ and, for ¢t € R, set

t
Q; = max (—/ 77st> :
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the @ (defined as Q; = Q_;) has the same law as @, and 7, defined by

(6)

. )1 ifp,=1and Q; >0
"= 1 otherwise,

has the same law as 7. The process X in this setting is sometimes called the

telegrapher’s random process, because it is connected with the telegrapher equation.

It was introduced by Kac [9], where it is also shown to be related to the Dirac

equation. There is a considerable literature on this process and its connections with

relativistic quantum mechanics (see, for example, [4, 5] and references therein).

For other variants and multidimensional extensions of Pitman’s theorem see [1, 7,
8, 11, 6, 12, 13, 14, 15] and references therein.
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