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Let ( ξ k, k ≥ 0) be a Markov chain on {−1, +1} with ξ  0 = 1 and 
transition probabilities P ( ξ k+1 = 1  ξ k =1) = a and P  
( ξ k+1  = − 1 ξ k = − 1) = b<a.  Set X0 = 0, Xn = ξ 1 + … + ξ n and 
Mn = max0 ≤ k ≤ n X k. We  prove that the process 2M -X has the 
same law as that of X conditioned to stay non-negative. 
 
Pitman's representation theorem [18] states that, if (X t, 
t ≥ 0 ) is a standard Brownian motion and Mt = maxs ≤ t X s , 
then 2M - X has the same law as the 3-dimensional Bessell 
process. This was extended in [19] to the case of non-zero drift, 
where it is shown that, if Xt is a standard Brownian motion with 
drift, then 2M -X is a certain diffusion process.  This diffusion 
has the significant property that it can be interpreted as the law 
of X conditioned to stay positive (in an appropriate sense). 
Pitman's theorem has the following discrete analogue [18, 15] : 
if  X is a simple random walk with non-negative drift (in 
continuous or discrete time) then 2M - X has the same law as X 
conditioned to stay non-negative (for the symmetric random 
walk this conditioning is in the sense of Doob). Here we present 
a non-Markovian version of Pitman's theorem. Let ( ξ k, k ≥ 0) be 
a Markov chain on {−1, +1} with ξ 0 = 1 and transition 
probabilities P ( ξ k +1 = 1 ξ k =1) = a and P ( ξ k +1 = − 1ξ k = 
− 1) = b. We will assume that 1 > a > b > 0. Set X0=0, Xn = ξ 1 
+…+ ξ n and Mn = max0 ≤ k ≤ n Xk. 
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Abstract

Let (�k; k � 0) be a Markov chain on f�1;+1g with �0 = 1 and transition

probabilities P (�k+1 = 1j �k = 1) = a and P (�k+1 = �1j �k = �1) = b < a.

Set X0 = 0, Xn = �1 + � � � + �n and Mn = max0�k�nXk. We prove that

the process 2M � X has the same law as that of X conditioned to stay

non-negative.

Pitman's representation theorem [18] states that, if (Xt; t � 0) is a standard
Brownian motion and Mt = maxs�tXs, then 2M � X has the same law as the
3-dimensional Bessel process. This was extended in [19] to the case of non-zero
drift, where it is shown that, if Xt is a standard Brownian motion with drift, then
2M � X is a certain di�usion process. This di�usion has the signi�cant property
that it can be interpreted as the law of X conditioned to stay positive (in an
appropriate sense). Pitman's theorem has the following discrete analogue [18, 15]:
if X is a simple random walk with non-negative drift (in continuous or discrete
time) then 2M � X has the same law as X conditioned to stay non-negative (for
the symmetric random walk this conditioning is in the sense of Doob).

Here we present a non-Markovian version of Pitman's theorem. Let (�k; k � 0)
be a Markov chain on f�1;+1g with �0 = 1 and transition probabilities P (�k+1 =
1j �k = 1) = a and P (�k+1 = �1j �k = �1) = b. We will assume that 1 > a > b > 0.
Set X0 = 0, Xn = �1 + � � �+ �n and Mn = max0�k�nXk.

Theorem 1 The process 2M � X has the same law as that of X conditioned to

stay non-negative.

Note that, if b = 1� a, then X is a simple random walk with drift and we recover
the original statement of Pitman's theorem in discrete time.

To prove Theorem 1, we �rst consider a two-sided stationary version of �, which
we denote by (�k; k 2 Z), and de�ne a stationary process fQn; n 2 Zg by

Qn = max
m�n

 
�

nX
j=m

�j

!+
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Note that Q satis�es the Lindley recursion Qn+1 = (Qn � �n+1)
+, and we have the

following queueing interpretation. The number of customers in the queue at time n
is Qn; if �n+1 = �1 a new customer arrives at queue and Qn+1 = Qn+1; if �n+1 = 1
and Qn > 0, a customer departs from the queue and Qn+1 = Qn � 1; otherwise
Qn+1 = Qn.

Note that the process � can be recovered from Q, as follows:

�n =

(
�1 if Qn > Qn�1

1 otherwise.
(1)

For n 2 Z, set �Qn = Q�n.

Theorem 2 The processes Q and �Q have the same law.

Proof: We �rst note that it suÆces to consider a single excursion of the process Q
from zero. This follows from the fact that, at the beginning and end of a single
excursion, the values of � are determined, and so these act as regeneration points
for the process. To see that the law of a single excursion is reversible, note that
the probability of a particular excursion path depends only on the numbers of
transitions (in the underlying Markov chain �) of each type which occur within
that excursion path, and these numbers are invariant under time-reversal. 2

Thus, if we de�ne, for n 2 Z,

�̂n =

(
�1 if Qn > Qn+1

1 otherwise,
(2)

we have the following corollary of Theorem 2.

Corollary 3 The process �̂ has the same law as �.

Proof of Theorem 1: Note that we can write �̂n = �n+1 + 2(Qn+1 �Qn). Summing
this, we obtain, for n � 1,

n�1X
j=0

�̂j = ~Xn + 2(Qn �Q0): (3)

where ~Xn =
Pn

j=1 �j. If we adopt the convention that empty sums are zero, and

set ~X0 = 0, then this formula remains valid for n = 0. It follows that, on fQ0 = 0g,

n�1X
j=0

�̂j = 2 ~Mn � ~Xn; (4)
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where ~Mn = max0�m�n ~Xm.

Note also that, for m 2 Z,

Qm = (Qm+1 � �̂m)
+ = max

n�m

 
�

nX
j=m

�̂j

!+

: (5)

The law of X conditioned to stay non-negative is the same as the law of ~X con-
ditioned to stay non-negative, since the events X1 � 0 and ~X1 � 0 respectively
require that �1 = 1 and �1 = 1, and so the di�erence in law between � and �
becomes irrelevant. By Corollary 3, the law of ~X conditioned to stay non-negative
is the same as the law of the process 

n�1X
j=0

�̂j; n � 0

!

given that

Q0 = max
n�0

 
�

n�1X
j=0

�̂j

!
= 0:

By (4) this is the same as the law of 2 ~M � ~X given that Q0 = 0 or, equivalently,
that �0 = 1; but this is the same as the law of 2M �X, so we are done. 2

In the queueing interpretation, �̂ = �1 whenever there is a departure from the queue
and �̂ = 1 otherwise. Thus, Corollary 3 states that the process of departures from
the queue has the same law as the process of arrivals to the queue; it can therefore
be regarded as a non-Markovian analogue of the celebrated theorem in queueing
theory, due to Burke [3], which states that the output of a stable M=M=1 queue
in equilibrium has the same law as the input (both are Poisson processes). Note,
however, that in this non-Markovian queueing process, the arrivals and services are
not independent (being mutually exclusive). Our proof of Theorem 2 is inspired
by the kind of reversibility arguments used often in queueing theory, although
usually in a Markovian setting. For general discussions on the role of reversibility
in queueing theory, see [2, 10, 17]; the idea of using reversibility to prove Burke's
theorem is originally due to Reich [16].

Finally, we remark that the following analogue of Theorem 1 holds in continuous
time: let (�t; t � 0) be a continuous-time Markov chain on f�1;+1g with �0 = 1,
and set Xt =

R t
0
�sds, Mt = max0�s�tXs. We assume that the transition rates

of the chain are such that event that X remains non-negative forever has positive
probability. Then 2M �X has the same law as that of X conditioned to stay non-
negative. The proof is identical to that of Theorem 1; in particular, the following
analogues of Theorem 2 and Corollary 3 also hold: if we let (�t; t 2 R) be a
stationary version of � and, for t 2 R, set

Qt = max
s�t

�
�

Z t

s

�sds

�
;
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the �Q (de�ned as �Qt = Q�t) has the same law as Q, and �̂, de�ned by

�̂t =

(
�1 if �t = 1 and Qt > 0

1 otherwise,
(6)

has the same law as �. The process X in this setting is sometimes called the
telegrapher's random process, because it is connected with the telegrapher equation.
It was introduced by Kac [9], where it is also shown to be related to the Dirac
equation. There is a considerable literature on this process and its connections with
relativistic quantum mechanics (see, for example, [4, 5] and references therein).

For other variants and multidimensional extensions of Pitman's theorem see [1, 7,
8, 11, 6, 12, 13, 14, 15] and references therein.
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