
 

The Perron-Frobenius Theorem for  
Homogeneous, Monotone Functions 
 
Stephane Gaubert1, Jeremy Gunawardena 
Basic Research Institute in the Mathematical Science 
HP Laboratories Bristol 
HPL-BRIMS-2001-12 
May 16th , 2001* 
 
 
Collatz-Wielandt 
property, Hilbert 
projective 
metric,                      
nonexpansive 
function, 
nonlinear 
eigenvalue, 
Perron-
Frobenius 
theorem, 
strongly 
connected graph,
supereigenspace, 
topical function 

 

If A is a nonnegative matrix whose associated directed graph is
strongly connected, the Perron-Frobenius theorem asserts that 
A has an eigenvector in the positive cone, (R+)n . We associate a 
directed graph to any homogeneous, monotone function,
f : (R+)n ? (R+)n , and show that if the graph is strongly 
connected then f has a (nonlinear) eigenvector in (R+)n . Several 
results in the literature emerge as corollaries. Our
methods are based on the boundedness of invariant subsets in 
the Hilbert projective metric and lead to further existence 
results and several open problems. 

 

 

* Internal Accession Date Only    Approved for External Publication  
INRIA, Domaine De Voluceau, B.P. 105,78153 Le Chesnay Cedex, France 
 Copyright Hewlett-Packard Company 2001 



THE PERRON-FROBENIUS THEOREM FOR HOMOGENEOUS,

MONOTONE FUNCTIONS

ST�EPHANE GAUBERT AND JEREMY GUNAWARDENA

Abstract. If A is a nonnegative matrix whose associated directed graph is
strongly connected, the Perron-Frobenius theorem asserts that A has an eigen-
vector in the positive cone, (R+)n. We associate a directed graph to any ho-
mogeneous, monotone function, f : (R+)n ! (R+)n, and show that if the
graph is strongly connected then f has a (nonlinear) eigenvector in (R+)n.
Several results in the literature emerge as corollaries. Our methods are based
on the boundedness of invariant subsets in the Hilbert projective metric and
lead to further existence results and several open problems.

1. Introduction and statement of main results

This introduction provides an overview of the paper. We state the main results
but defer some de�nitions to later sections.

1.1. The Perron-Frobenius theorem. The classical Perron-Frobenius theorem
may be stated as follows (see [3, Chapter 2] for more background). Let A be a n�n
nonnegative matrix. The graph associated to A, G(A), is the directed graph with
vertices 1; � � � ; n and an edge from i to j if, and only if, Aij 6= 0. A directed graph
is said to be strongly connected if there is a directed path between any two distinct
vertices. The strong connectedness of G(A) is equivalent to requiring that A is an
irreducible matrix. Let R+ = fx 2 R j x > 0g denote the positive reals.
Theorem 1 (Classical Perron-Frobenius theorem). If G(A) is strongly connected
then A has an eigenvector in (R+ )n, unique up to a scalar multiple, whose associated
eigenvalue is the spectral radius of A.

Now let f : (R+ )n ! (R+ )n be a self-map of the positive cone which satis�es
the following properties.

8� 2 R+ and 8x 2 (R+ )n; f(�x) = �f(x) ;(1)

8x; y 2 (R+ )n; x � y =) f(x) � f(y) :(2)

The �rst property is called homogeneity; the second monotonicity. Here, x � y
denotes the product ordering on Rn : x � y if, and only if, xi � yi for all 1 � i � n.
If A is a n � n nonnegative matrix, the map f(x) = Ax satis�es both properties,
although only those matrices with no zero row|nondegenerate matrices|yield
self-maps of the positive cone.
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2 ST�EPHANE GAUBERT AND JEREMY GUNAWARDENA

If u 2 R+ and J � f1; � � � ; ng, let uJ 2 (R+ )n denote the vector de�ned by

(uJ )i =

�
u if i 2 J
1 if i 62 J :

(3)

If f : (R+ )n ! (R+ )n is any homogeneous, monotone function, then fi(uJ ) is a
monotone function of u for any J . De�ne the associated graph of f , G(f), to be
the directed graph with vertices 1; � � � ; n and an edge from i to j if, and only if,

lim
u!1

fi(ufjg) =1 :(4)

If f is a linear map, represented by the nonnegative matrix A, then it is clear
that G(f) is identical to G(A). A vector x 2 (R+ )n is a (nonlinear) eigenvector if
f(x) = �x, for some (nonlinear) eigenvalue � 2 R

+ . We prove the following.

Theorem 2 (Generalised Perron-Frobenius theorem). Let f : (R+ )n ! (R+ )n be
any homogeneous, monotone function. If G(f) is strongly connected then f has an
eigenvector in (R+ )n.

The eigenvalue, which is the same for any eigenvector in (R+ )n|see (20), is
characterised in Proposition 1 below. Readers familiar with the linear theory will
recognise this as a Collatz-Wielandt property. (We note that this is suÆcient to
obtain the spectral radius statement in Theorem 1). The eigenvalue may be con-
sidered as a spectral radius, in a limited sense, by extending f to the boundary of
(R+ )n, which may always be done continuously, [4, Corollary 4.6], and considering
eigenvectors lying in the boundary; see [18, Theorem 3.1(1)].

Consider as an example the homogeneous, monotone function

f(x) =

0
@ a

p
x1x2 ^ a0

p
x2x3

b
p
x2x3 _ b0

p
x3x1

cx1 _ c0x3

1
A ;(5)

where a; a0; b; b0; c; c0 are arbitrary parameters in R
+ . We use _ and ^ as in�x

notations for max and min, respectively. Using (4), it is easy to see that G(f) is
the graph
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which is strongly connected. Hence, by Theorem 2, f has an eigenvector, indepen-
dently of the values of the parameters. In contrast to the linear case, the eigenvector
need not be unique, even up to a positive scalar multiple. For instance, the homo-
geneous, monotone function

f(x1; x2) = (x1 _ x2=2 ; x1=2 _ x2) ;(6)

has eigenvalue 1 and eigenspace fx 2 (R+ )2 j x1=2 � x2 � 2x1g. Here, G(f) is
not just strongly connected; it is fully connected, with an edge between any pair of
vertices. In the linear case, this would correspond to a positive matrix.

There is an extensive literature on homogeneous, monotone functions; see [10, 19]
for references. Several results somewhat similar to Theorem 2 have appeared, the
most relevant among them, to the best of our knowledge, being those of Nussbaum,
[18, Theorem 4.1], and Amghibech and Dellacherie, [1].

Nussbaum makes the following de�nition. Let f : (R+ )n ! (R+ )n be a homoge-
neous, monotone function and A an n�n nonnegative matrix. f is said to have A as
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an incidence matrix with respect to being power-bounded below, [18, De�nition 4.2],
if, whenever Aij 6= 0, there exists c 2 R

+ and a stochastic vector � 2 (R+ )n with
�j > 0, such that, for all x 2 (R+ )n,

fi(x) � cx�11 � � �x�nn :(7)

Nussbaum shows that if A is irreducible then f has an eigenvector in (R+ )n, [18,
Theorem 4.1]. (The statement of [18, Theorem 4.1] uses the additional hypothesis
that f is superadditive and then deduces that the eigenvector is unique. However,
as pointed out in [18], superadditivity is not required to show existence.) Since
(7) and the condition �j > 0 together imply (4), G(f) must be strongly connected
whenever A is irreducible. Hence, [18, Theorem 4.1] is a corollary of Theorem 2. It
is also not diÆcult to check that there is no irreducible 3�3 matrix which can be an
incidence matrix for example (5). The result of Amghibech and Dellacherie follows
from Theorem 2 and Proposition 1 of the present paper but it will be convenient,
for notational reasons, to defer a discussion to x3.2.

Among classical results which are corollaries of Theorem 2 we should mention
those of Bather, [2, Theorem 2.4], in stochastic control, and Zijm, [23, Theorem 3.4],
in mathematical economics. We leave the deductions to the interested reader.
When f satis�es a suitable convexity condition, a simpli�ed construction of G(f)
is possible; see Proposition 2 in x3.2.

The methods needed to prove Theorem 2 require several ideas|orbits, invariant
subsets, super-eigenspaces, Hilbert's projective metric|which do not appear in its
statement. These give rise to a new way of thinking about the eigenvector problem,
to further results on existence of eigenvectors and to several open problems. We
discuss these in the remainder of this Introduction.

1.2. Invariant sets and Hilbert's projective metric. Hilbert's projective met-
ric, de�ned in (16), is a function dH : (R+ )n� (R+)n ! R

+ [f0g which satis�es all
the conditions of a metric except that dH(y; z) = 0 if, and only if, y = �z for some
� 2 R

+ . It gives rise to a metric on the projective space of lines in (R+ )n, from
which property it gets its name. An important observation|see (18)|is that any
homogeneous, monotone function f : (R+ )n ! (R+ )n is nonexpansive with respect
to the Hilbert metric: for all x; y 2 (R+ )n,

dH(f(x); f(y)) � dH(x; y) :(8)

The following characterisation is at the heart of the present paper. Up to a trivial
modi�cation, it is a special case of a theorem of Nussbaum, [19, Theorem 4.1],
stated in the context of nonexpansive functions acting on cones in Banach spaces.
To keep our account both elementary and self-contained, we state and prove the
special case expressed in Theorem 3. Recall that an orbit of f is any set of the
form ffk(x) j k 2 Ng for some x 2 (R+ )n.

Theorem 3. Let f : (R+ )n ! (R+ )n be a homogeneous, monotone function. f
has an eigenvector in (R+ )n if, and only if, some (and hence all) orbits of f are
bounded in the Hilbert projective metric.

If f has an eigenvector, f(x) = �x, then the orbit of x is f�kxg. This is evidently
bounded in the Hilbert metric: its diameter is zero. If any orbit is bounded, then
(8) shows that all orbits must be so too. The force of Theorem 3 lies in the assertion
that some orbit being bounded is suÆcient for the existence of an eigenvector.
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Theorem 3 provides a simple prescription for determining the presence of an
eigenvector: �nd an invariant subset of (R+ )n|a subset A such that f(A) � A|
which is bounded in the Hilbert projective metric. Since A is invariant, it must
decompose into orbits, all of which must then be bounded. For a speci�c function,
an appropriate invariant subset may present itself naturally. However, there are
invariant subsets that can be de�ned for all homogeneous, monotone functions.

Let f : (R+ )n ! (R+ )n be a homogeneous, monotone function and let � 2 R
+ .

The super-eigenspace of f corresponding to �, S�(f), is de�ned by S�(f) = fx 2
(R+ )n j f(x) � �xg. Properties (1) and (2) show that S�(f) is invariant under f .
Note that S�(f) 6= ;, if � is large enough.

Theorem 4. If f : (R+ )n ! (R+ )n is a homogeneous, monotone function such
that G(f) is strongly connected, then all super-eigenspaces of f are bounded in the
Hilbert projective metric.

Super-eigenspaces are interesting, as invariant subsets, because their bound-
edness in the Hilbert metric can be determined by such combinatorial (graph-
theoretic) constructions. These provide an e�ective mechanism for using Theo-
rem 3; so e�ective, indeed, that its use can be distilled into Theorem 2, which
follows immediately from Theorems 3 and 4 and makes no mention of orbits, in-
variant subsets or Hilbert's projective metric.

Super-eigenspaces appear at least as far back as Krein and Rutman's famous
result on the existence of eigenvectors for linear functions acting on cones in Ba-
nach spaces, [15]. This was inspired by topological �xed point theory, particular-
ly Brouwer's Theorem and Schauder's in�nite dimensional generalisation. While
broadly applicable, these give little control over the location of a �xed point: the
eigenvector may lie in the boundary of the cone, not in its interior. Krasnosel-
skii's classic text, building on Krein and Rutman's work, makes extensive use of
lattice structures as an alternative to �xed point theory; see, for instance, [14,
Theorem 4.1]. The principal di�erence between the present paper and that of the
Russian school lies in the use of the Hilbert projective metric, for the origins of
which, see [19].

The ideas introduced in this sub-section suggest many further questions, some
of which are discussed in sub-sections x1.3 and x1.4 which follow.

1.3. Indecomposability. The boundedness of all super-eigenspaces can be char-
acterised by a combinatorial property, at the expense of comparing subsets of ver-
tices. This is related to ideas developed in the mathematical economics literature,
which we discuss further below.

We use the notation introduced in (3). A homogeneous, monotone function
f : (R+ )n ! (R+ )n is decomposable if there is a partition I [ J = f1; � � � ; ng,
I \ J = ;, such that, 8i 2 I ,

lim
u!1

fi(uJ ) <1 :(9)

f is indecomposable if it is not decomposable.

Theorem 5. All the super-eigenspaces of a homogeneous, monotone function, f :
(R+ )n ! (R+ )n, are bounded in the Hilbert projective metric if, and only if, f is
indecomposable.

It is not in fact necessary to consider all partitions of f1; � � � ; ng. There is an
alternative test which relies on the recursive construction of directed graphs Gk(f).
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We give details in x3.4. For the moment, let us say that G1(f) coincides with
G(f), while, for k � 2, Gk(f) is obtained from Gk�1(f) by aggregating its strongly
connected components. The process stabilises in the sense that there is a least
integerN � n, such that GN (f), GN+1(f), � � � are isomorphic. Let G1(f) = GN (f).
(If f satis�es the same convexity conditions as for Proposition 2 in x3.2, then the
aggregation process stops at or before k = 2; see Proposition 3 in x3.4.)
Theorem 6. A homogeneous, monotone function f : (R+ )n ! (R+ )n is indecom-
posable if, and only if, G1(f) is strongly connected.

Consider the following homogeneous, monotone function

f(x) =

0
BB@

x1 _ 2=(1=x2 + 2=x3 + 1=x4)
7x3 ^ x4
8 3
p
x1x2x4

x3 _ x4

1
CCA :(10)

G(f) is easily seen to be

1 2 3 4

which is not strongly connected, so we cannot apply Theorem 2. However, it will
follow from the discussion in x3.4 that G1(f), which coincides with G4(f), is strong-
ly connected. Hence, by Theorems 3, 5 and 6, f has a positive eigenvector. Indeed,
f(u) = 2u, with u = (1; 2; 8; 4)T .

Oshime, [21], following earlier work of Morishima, [17, Appendix], has intro-
duced non-sectional functions. These are close to indecomposable functions but
yield a unique eigenvector in (R+ )n, [21, Theorem 8]. Uniqueness is important in
the mathematical economics tradition; properties (1) and (2) reect consumption
behaviour in an economy and uniqueness presumably conveys a comforting sense
of stability. Dietzenbacher, [6], summarises work in this direction, going back to
Solow and Samuelson's 1953 paper, [22]. A similar concern with uniqueness can
be seen in the population biology literature; see [18, 20] for references. As we ob-
served with example (6), uniqueness of the eigenvector cannot be expected, even
when Theorem 2 can be applied. Unlike the classical linear case, conditions which
guarantee uniqueness are quite restrictive.

On the subject of uniqueness, we note that example (6) cannot be a contraction
in the Hilbert metric or any other metric, or else the Banach Contraction Theorem
would yield a unique eigenvector, [9, Chapter 2]. (Eigenvectors correspond to �xed
points, either projectively or by rescaling the function.) This rules out the possibil-
ity, suggested by (8), of using the Contraction Theorem in the manner of Birkho�'s
proof of Perron's theorem on positive matrices, [13]. It can be brought into play
more subtly, using the vanishing discount method of stochastic optimal control, but
this leads to rather di�erent results, which relate the existence of eigenvectors to
the asymptotic dynamics of f , [7, 12].

1.4. Slice spaces and recession functions. Super-eigenspaces are not the only
invariant subsets that can be de�ned for all homogeneous, monotone functions.
They have dual sub-eigenspaces, S�(f) = fx 2 (R+ )n j �x � f(x)g. The duality
comes from the functional f ! f�, such that f�(x) = f(x�1)�1. (We denote by
x�1 the vector (x�11 ; � � � ; x�1n ).) Results for super-eigenspaces have corresponding
dual results for sub-eigenspaces. For instance, in the dual graph to G(f), there is
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an edge from i to j if limu!0+ fi(ufjg) = 0. We generally leave it to the reader to
state these dual results.

The intersection of a super-eigenspace and a sub-eigenspace forms a slice space,
S��(f) = S�(f)\S�(f), which is also clearly invariant under f . Slice spaces are more
powerful than either super-eigenspaces or sub-eigenspaces, since the boundedness
of S��(f) follows from that of either S�(f) or S�(f). The following result gives a
suÆcient condition for the boundedness of slice spaces.

Let f : (R+ )n ! (R+ )n be a homogeneous, monotone function. Suppose that,
for each x 2 (R+ )n, the limit

f̂(x) = lim
k!1

f(xk1 ; � � � ; xkn)1=k

exists, the k-th root being applied to each component of f . The function x! f̂(x)
is then seen to be another homogeneous, monotone function, which we refer to as
the recession function associated to f . (Recession functions do not always exist,
as we show by example in x3.5, but they do for all reasonable functions, including,
in particular, all the other examples discussed in this paper.) Recession functions
always have the unit vector as an eigenvector:

f̂(1; � � � ; 1) = (1; � � � ; 1) :
Theorem 7. Let f : (R+ )n ! (R+ )n be a homogeneous, monotone function whose

associated recession function, f̂ , exists. Suppose that f̂ has only the unit vector as
an eigenvector, up to a positive scalar multiple. Then all the slice spaces of f are
bounded in the Hilbert projective metric.

We note that f̂ encodes both the behaviour of f at1 and at 0. (It is a self-dual

notion: if f̂ exists, then so does cf� and cf� = f̂�.) Here, the uniqueness of the

eigenvector for f̂ implies the existence of an eigenvector for f .
Consider the homogeneous, monotone function

f(x) =

0
@ x2 _ x3

(x1 _ x2) ^ x3
(x2 _ x3) ^ x1

1
A :(11)

It is easy to check that f = f̂ and that if f̂(x) = x then x1 = x2 = x3. It follows from
Theorem 7 that all slice spaces of f are bounded in the Hilbert metric. However,
for all � � 1, (�; 1; 1) 2 S1(f) and (�; 1; �) 2 S1(f), which shows that all the non-
empty sub- and super-eigenspaces of f are unbounded. Of course, in this example
the existence of an eigenvector is trivial. However, f can be altered in interesting
ways without changing its recession function. Consider the homogeneous, monotone
function

g(x) =

0
@ a1x2 + b1x3

((a2x1 + b2x2)
�1 + c2x

�1
3 )�1

((a3x2 + b3x3)
�1 + c3x

�1
1 )�1

1
A ;(12)

where the a1; � � � ; a3, b1; � � � ; b3 and c1; � � � ; c3 are all in R+ . It is easy to see that
ĝ = f . It follows that g has an eigenvector in (R+ )3.

It remains an open problem whether the boundedness of all slice spaces can
be determined by combinatorial or graph-theoretic constructions as in Theorems 4
and 6.
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1.5. Summary and conclusions. Functions which are homogeneous and mono-
tone on the positive cone provide a natural generalisation of nonnegative matrices
and have a correspondingly wide range of application: in population biology, math-
ematical economics, discrete event systems and stochastic control, among others,
[10, 19]. A fundamental property of such functions is their nonexpansiveness in the
Hilbert projective metric, (8). From the perspective of the present paper, func-
tions which are homogeneous and monotone di�er from functions which are only
nonexpansive, in having invariant subsets, such as super-eigenspaces, which can be
de�ned uniformly for all such functions. Our main contribution here has been to
develop methods for determining the boundedness of these invariant subsets in the
Hilbert metric|Theorems 4, 5, 6 and 7|from which the existence of a positive
eigenvector follows. (This last implication, proved independently in Theorem 3, is
due to Nussbaum, who demonstrates it in the context of nonexpansive functions
on cones in Banach spaces, [19, Theorem 4.1].) This gives a new perspective on
the classical Perron-Frobenius theorem, which is generalised in Theorem 2 to any
homogeneous, monotone function.

There are two main directions to explore in the light of the present results.
Firstly, they apply to functions in which all invariant subsets of a particular type
are bounded. Such functions have a quality of stability, in that graphs like G(f)
depend only the behaviour of f at 1: the existence, or not, of an eigenvector
is invariant under perturbations which preserve (1) and (2) and do not alter the
divergence in (4). (We observed this behaviour with (5) as well as (11) and (12).)
A more delicate question arises for functions in which some, but not all, non-empty,
invariant subsets of a particular type are bounded. The existence of an eigenvector
then depends sensitively on the structure of f and on the values of its parameters.
While the methods developed here for estimating boundedness|see Lemma 4|are
sometimes helpful, we lack general results to handle this situation.

Secondly, all the concepts used here can be de�ned for functions acting on cones
in Banach spaces. It is particularly interesting, in the light of Nussbaum's general
theorem on orbits, to ask if the perspective and methods of the present paper can
be extended to this more general setting. We know of no way to do this.

A preliminary account of some of these results appeared in [8]. We are grateful
to the reviewer of this for directing our attention to the mathematical economics lit-
erature and to Cormac Walsh for pointing out the signi�cance of [19, Theorem 4.1],
which we had not observed when [8] was written.

2. The eigenvalue and the Collatz-Wielandt property

2.1. The additive framework. In the rest of the paper we shall work in the
additive framework. We �rst introduce this and then explain our reasons.

The whole space, Rn , can be placed in bijective correspondence with the positive
cone, (R+ )n, via the mutually inverse bijections exp : Rn ! (R+ )n and log :
(R+ )n ! R

n , where exp(x) = (exp(x1); � � � ; exp(xn)), for x 2 R
n , and log(y) =

(log(y1); � � � ; log(yn)), for y 2 (R+ )n. If f : (R+ )n ! (R+ )n is any self-map of the
positive cone, let E(f) : Rn ! R

n denote the function E(f)(x) = log(f(exp(x))).
This induces a bijective functional between self-maps of (R+ )n and self-maps of Rn .
Clearly, E(fg) = E(f)E(g), so that the dynamics of f on (R+ )n and E(f) on Rn are
equivalent. Let f : Rn ! R

n . The properties of exp and log show that homogeneity
and monotonicity of E�1(f) are equivalent, respectively, to the following properties
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of f :

8h 2 R and 8x 2 R
n ; f(x+ h) = f(x) + h ;(13)

8x; y 2 Rn ; x � y =) f(x) � f(y) :(14)

The partial order is, as before, the product ordering on R
n . We use in (13) the

following vector-scalar convention: if, in a binary relation or operation, a vector and
a scalar appear together, the relation is taken to hold, or the operation is applied,
to each component of the vector. We are accustomed to this with �x, where � 2 R
and x 2 R

n , but it is useful to extend it to, for instance, (x + h) and x � h. If
x 2 R

n and h 2 R, these mean, respectively, that, for all 1 � i � n,

(x+ h)i = xi + h and xi � h :

Gunawardena and Keane refer to functions f : Rn ! R
n , which satisfy (13) and

(14), as topical, [11]. We shall use this terminology here and reserve the quali�ers
homogeneous and monotone for functions on (R+ )n which satisfy (1) and (2). It
is equivalent to work either additively, with topical functions, or multiplicatively,
with homogeneous, monotone functions. However, certain constructions are more
intuitive on one side than the other: we �nd the Hilbert projective metric easier to
work with additively, as in (15).

We choose, as a matter of technical convenience, to make our proofs in the ad-
ditive framework. All the concepts and results introduced in the Introduction have
equivalent additive formulations, for which we use the same names. For instance,
the topical function f : Rn ! R

n has an eigenvector, u 2 R
n , if f(u) = u + h for

some h 2 R; the duality functional on topical functions takes f(x) to �f(�x); and
so on. For the most part, we give new de�nitions and state separate versions of
the theorems above, so that the rest of the paper should be self-contained. As a
general rule, we leave it to the reader to formulate any dual results.

2.2. Nonexpansiveness and cycle times. A key property of topical functions is
their nonexpansiveness with respect to certain norms and metrics. Let t; b : Rn ! R

be de�ned as (\top") t(x) = x1 _ � � � _ xn, and (\bottom") b(x) = �t(�x) =
x1 ^ � � � ^ xn. Note that both t and b satisfy the analogues of (13) and (14) for
functions Rn ! R

1 . The supremum norm and the Hilbert semi-norm on R
n are

given, respectively, by

kxk1 = t(x) _ �b(x) and kxkH = t(x)� b(x) :(15)

In the notation of (8), if y; z 2 (R+ )n, then

dH(y; z) = k log(y)� log(z)kH :(16)

The multiplicative version of the supremum metric is known as Thompson's part
metric on (R+ )n, [19, Chapter 1].

An elementary application of (13) and (14), [11, Proposition 1.1], shows that a
function f : Rn ! R

n is topical if, and only if,

8x; y 2 R
n ; t(f(x)� f(y)) � t(x� y) :

(This provides some justi�cation for the term topical.) We see immediately that a
topical function is nonexpansive with respect to both the supremum norm and the
Hilbert semi-norm: 8x; y 2 Rn ,

kf(x)� f(y)k1 � kx� yk1(17)

kf(x)� f(y)kH � kx� ykH :(18)
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In fact, as observed by Crandall and Tartar [5], if f is homogeneous, then it is
monotone if, and only if, it is nonexpansive in the supremum norm, [11, Proposi-
tion 1.1].

The nonexpansiveness property (17) implies that all trajectories of f are asymp-
totically the same to within a constant:

fk(x) = fk(y) +O(1) as k !1 :(19)

(We mean by this that the function N ! R given by k ! kfk(x)� fk(y)k1 is
bounded as k ! 1.) Taking for x an eigenvector of f with associated eigenvalue
�, it follows from (13) and (14) that fk(x) = k�+ x. Hence, using (19),

� = lim
k!1

fk(y)=k ;(20)

for all y 2 Rn . In particular, the eigenvalue � is unique.
More generally, nonexpansiveness allows us to deduce that certain averages on

trajectories are independent of the trajectory and give rise to functionals on the
space of topical functions. For instance, an elementary argument using (13) and
(14) shows that the sequence t(fk(0)) is sub-additive,

t(fk+l(0)) � t(fk(0)) + t(f l(0)) :

A dual inequality holds for b(fk(0)). It follows that the sequences t(fk(x)=k) and
b(fk(x)=k) both converge as k !1 and that the limits are independent of x. The
upper cycle-time of f , �(f) 2 R, [11, De�nition 2.1], is de�ned as

�(f) = lim
k!1

t(fk(x)=k) :(21)

Dually, the lower cycle-time is �(f) = limk!1 b(fk(x)=k). We observe from this
that, for any k 2 N,

�(fk) = k�(f) ;(22)

and similarly for �. We will make use of of this below.

The existence of the cycle-time vector of f , �(f) = limk!1 fk(x)=k 2 R
n , is

more delicate. It does not always exist, [11, Theorem 3.1], and one of the central
problems in the subject is to characterise those topical functions for which it does.

One class of functions for which it does are functions with an eigenvector. In this
case, all the functionals discussed here collapse to the eigenvalue, since, by (20),

�(f) = � = �(f) and(23a)

�(f) = (�; � � � ; �) :(23b)

2.3. Sub-eigenspaces, super-eigenspaces and slice spaces. Let f : Rn ! R
n

be a topical function and �; � 2 R. The super-eigenspace, S�(f), sub-eigenspace,
S�(f), and slice space, S��(f), are de�ned by

S�(f) = fx 2 Rn j f(x) � �+ xg
S�(f) = fx 2 Rn j �+ x � f(x)g
S��(f) = fx 2 Rn j �+ x � f(x) � �+ xg :

It follows immediately from (13) and (14) that all such spaces are invariant subsets.
When working with super-eigenspaces we leave it to the reader to formulate the
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dual results for sub-eigenspaces. It is easy to see that for any topical functions
f; g : Rn ! R

n and any �; � 2 R,
� � � =) S�(f) � S�(f) ;(24)

Let �(f) � R denote the set of those � for which the corresponding super-eigenspace
is non-empty: �(f) = f� 2 R j S�(f) 6= ;g. It follows from (24) that �(f) must
be an interval of the form (�1;1), (a;1) or [a;1).

The �rst form can be ruled out. Suppose that f : Rn ! R
n is a topical function

and that f(x) � � + x for some x 2 R
n and some � 2 R. Using (13) and (14),

fk(x) � k�+ x. Hence,

t(fk(x)=k) � �+ t(x=k) :

Letting k !1, we deduce the following lemma.

Lemma 1. If f : Rn ! R
n is a topical function then either �(f) = (a;1) or

�(f) = [a;1), where �(f) � a.

Both possibilities can occur. It follows from (23a) and Proposition 1 below that
if f has an eigenvector, f(x) = � + x, then �(f) = [�;1). If f = E(A) where A is
the nonnegative matrix below �

1 1
0 1

�
then it is easy to see that �(f) = (0;1).

2.4. A key lemma and the Collatz-Wielandt property. It remains to identify
the a that appears in Lemma 1. We shall show that, in fact, a = �(f). This
requires the following simple but crucial lemma. We extend the in�x notation ^
and _ componentwise to vectors in Rn .

Lemma 2. Let f : Rn ! R
n be a topical function and let k be any positive integer.

If S�(fk) 6= ;, then S�=k(f) 6= ;.
Proof. If S�(fk) 6= ;, then fk(x) � �+ x for some x 2 Rn . Let

y = x ^ (f(x)� �=k) ^ � � � ^ (fk�1(x)� (k � 1)�=k) :

Using (1) and (2) we see that

f(y) � f(x) ^ (f2(x) � �=k) ^ � � � ^ (fk(x) � (k � 1)�=k)

� f(x) ^ (f2(x) � �=k) ^ � � � ^ (x + �=k)

= y + �=k :

Thus, y 2 S�=k(f) 6= ;.
Lemma 2 allows us to give the following characterisation of �(f) which is an

additive version of the classical Collatz-Wielandt formula, [16, x1.3].
Proposition 1 (Generalised Collatz-Wielandt formula). Let f : Rn ! R

n be a
topical function. Then,

inf �(f) = inf
x2Rn

t(f(x) � x) = �(f) :(25)
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Proof. Let a = inf �(f). Since f(x) � x+� if, and only if, t(f(x)�x) � � the �rst
equality in (25) follows easily. Lemma 1 has already shown that �(f) � a. Now
choose � > 0. For suÆciently large k, fk(0) � (�(f)+ �)k. Hence, S(�(f)+�)k(fk) 6=
;. By Lemma 2, S�(f)+�(f) 6= ;. Hence, a � �(f)+�. Since � was chosen arbitrarily,
a � �(f) and so a = �(f).

2.5. Coordinates which realise cycle times. (The results of this sub-section
are not required in the rest of the paper). As a byproduct of the method of Lem-
ma 2, we can answer in the aÆrmative a conjecture of Gunawardena and Keane,
[11, Conjecture 2.1]. We begin with a more precise statement; the conjecture is
Corollary 1 below.

Theorem 8. Let f : Rn ! R
n be a topical function, and let x 2 R

n . There exists
1 � i � n, such that, for all k 2 N,

xi + k�(f) � fki (x) :(26)

Proof. Let g = f � �(f). By (13), �(g) = 0. For all k 2 N let y(k) = x ^ g(x) ^
� � � ^ gk(x). Note that t(y(k) � x) � 0. We claim that t(y(k) � x) = 0. Suppose
not, so that t(y(k) � x) < 0 for some k, which we may assume satis�es k � 1. It
then follows that

y(k) = g(x) ^ � � � ^ gk(x) :(27)

Now choose a > 0 such that t(y(k)� x+ ka) � 0, which we may clearly do. De�ne
z(k) 2 R

n so that

z(k) = x ^ (g(x) + a) ^ � � � ^ (gk�1(x) + (k � 1)a) :

Using (13), (14), we see that

g(z(k)) � g(x) ^ � � � ^ (gk(x) + (k � 1)a) :

Since a > 0, the right hand side is dominated by y(k) + (k � 1)a. Hence,

g(z(k)) � �g(x) ^ � � � ^ (gk(x) + (k � 1)a)
� ^ (y(k) + (k � 1)a)

= g(x) ^ � � � ^ (gk�1(x) + (k � 2)a) ^ (y(k) + (k � 1)a) :

By choice of a, y(k) + (k � 1)a � x� a. It follows that

g(z(k)) � (x� a) ^ g(x) ^ � � � ^ (gk�1(x) + (k � 2)a) = z(k)� a :

But now, Proposition 1 implies that �(g) � t
�
g(z(k)) � z(k)

� � �a < 0, which is
a contradiction. Hence, t(y(k)� x) = 0 for all k 2 N, as claimed.

Since y(k) � x is sequence of nonpositive vectors, each of which has at least
one component 0, there must be at least one coordinate, 1 � i � n, such that
(y(k) � x)i = 0 for in�nitely many k 2 N. But then, since y(k) � x is decreasing,
(y(k) � x)i = 0 for all k 2 N. Hence, gki (x) � y(k)i = xi, from which (26)
follows.

Corollary 1 (Conjecture 2.1 of [11]). Let f : Rn ! R
n be a topical function.

There exists 1 � i � n such that

lim
k!1

fki (y)=k = �(f) ;

for all y 2 Rn .
Proof. Since fki (x)=k � tfk(x)=k, this follows from Theorem 8 by letting k ! 1
and using (19).
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3. Existence of eigenvectors

3.1. Eigenvectors and bounded orbits. To prove Theorem 3, we need the result
of an earlier paper, [10, Lemma 4.2]. We give the proof, for completeness. The result
is a variant of Theorem 3 for the supremum norm, where we take advantage of the
lattice structure of Rn . We note, following the comments before Theorem 3, that
this is similarly a special case of a general result of Nussbaum in the context of
nonexpansive functions on cones, [19, Theorem 4.3].

Lemma 3. Let f : Rn ! R
n be a topical function. f has an eigenvector with

eigenvalue h if, and only, if there exists x 2 R
n such that fk(x) = kh + O(1) as

k !1. (That is, kfk(x) � khk1 is bounded as k !1.)

Proof. If f(x) = x + h, then by (13), fk(x) � kh = x for all k 2 N, which shows
that the conclusion is necessary. Now suppose that the conclusion is satis�ed and
let g = f � h, so that gk(x) is bounded in the supremum norm as k !1. Let

u = lim
k!1

^
`�k

g`(x)

where the �niteness of u follows from the boundedness of gk(x). By continuity and
monotonicity of g,

g(u) = lim
k!1

g(
^
`�k

g`(x)) � lim
k!1

^
`�k

g`+1(x) = u :

It follows from (14) that gk(u) is nonincreasing as k !1. Since gk(x) is bounded
as k ! 1, it follows from (19), that gk(u) is bounded too, so that gk(u) must
converge to a limit, v 2 R

n . But then, by continuity of g, g(v) = v, so that
f(v) = h+ v, as required.

Lemma 3 leads to the additive version of Theorem 3.

Theorem 9. Let f : Rn ! R
n be a topical function. f has an eigenvector in Rn if,

and only if, some (and hence all) orbits of f are bounded in the Hilbert semi-norm.

Proof. Suppose that the orbit ffk(0) j k 2 Ng is bounded in the Hilbert semi-
norm, so that kfk(0)kH � M for all k 2 N, for some M > 0. We show that f
has an eigenvector in R

n . As discussed in x1.2, the rest of the argument is clear.
Let g = f � �(f), so that �(g) = 0. It follows from the de�nition of the Hilbert
semi-norm that kgk(0)kH = kfk(0)kH � M for all k 2 N. By (22), �(gk) = 0 and
so �(gk) � 0. By Proposition 1, tgk(0) � 0 � bgk(0). Note that if a; b � 0, then
a _ b � a+ b. It follows that

kgk(0)k1 = tgk(0) _ �bgk(0) � tgk(0)� bgk(0) = kgk(0)kH �M :

Hence gk(0) satis�es the conditions for Lemma 3 with h = 0 and so g(x) = x for
some x 2 R

n . It follows that f(x) = x+ �(f), as required.

3.2. The associated graph. We adapt the notation of (3) to suit the additive
framework. If J � f1; � � � ; ng, let eJ 2 Rn denote the characteristic vector of J :

(eJ)i =

�
1 if i 2 J
0 if i 62 J :

(28)

Let f : Rn ! R
n be a topical function. De�ne the associated graph of f , G(f),

to be the directed graph with vertices 1; � � � ; n and an edge from i to j, which we
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denote i ! j, if, and only if, limu!1 fi(uefjg) = 1. (The reader may care to

check that if f : (R+ )n ! (R+ )n is a homogeneous, monotone function then G(f),
as de�ned in x1.1, and G(E(f)), as de�ned here, are identical.) What follows is the
additive version of Theorem 4 of x1.2.
Theorem 10. If f : Rn ! R

n is a topical function such that G(f) is strongly
connected, then all super-eigenspaces of f are bounded in the Hilbert semi-norm.

The proof of this relies on the following construction. For each edge i ! j of
G(f), de�ne hji : R [ f�1g ! R [ f�1g by

hji(x) = supfu 2 R j fi(uefjg) � xg ;

with the usual convention that sup ; = �1. (So that hji(�1) = �1.) Note
that hji(x) < 1 because there is an edge i ! j. For any � 2 R, we set h�ji(x) =
hji(�+ x).

Lemma 4. Let f : Rn ! R
n be a topical function and let � 2 R. Let i = i1 !

i2 ! � � � ! ik = j be any directed path from i to j in G(f). Then, for all x 2 Rn

(f(x) � �+ x and x � 0) =) xj � h�ikik�1 Æ � � � Æ h�i2i1(xi) :(29)

Proof. Choose x 2 R
n and � 2 R satisfying the conditions of (29). Since x � 0, it

follows from (28) that xipefipg � x, for all 1 � p � k. Hence,

fip�1(xipefipg) � fip�1(x) � �+ xip�1

and so xip � h�ipip�1(xip�1). Putting these together, we deduce (29).

Proof of Theorem 10. Since G(f) is strongly connected, we may choose, for each
pair of vertices i 6= j, a directed path, i = i1 ! � � � ! ik = j, from i to j
in G(f). Now choose � so that S�(f) is nonempty and choose x 2 S�(f). Let
y = x � bx. Note that y 2 S�(f), kykH = kxkH and by = 0. It follows from (15)
that kykH = kyk1. Since by = 0, we may choose i such that yi = 0. Let j be any
other coordinate. By (29), using the chosen path from i to j, 0 � yj � h�ikik�1 Æ� � �Æ
h�i2i1(0). It follows that kyk1 is bounded for all y. Hence, kxkH = kykH = kyk1 is

also bounded, for all x 2 S�(f), from which the result follows.

As mentioned in the Introduction, Amghibech and Dellacherie have introduced
a graph, Gr(f), along the same lines as G(f). However, their construction uses a
two-sided limit condition for an edge from i to j:

lim
u!1

fi(uefjg) =1 and lim
u!�1

fi(uefjg) = �1 :

If Gr(f) is strongly connected, so that G(f) is also strongly connected, Amghibech
and Dellacherie make several deductions about the modi�ed eigenvalue problem,
f(x) = u + x + �, where u 2 R

n is an arbitrary constant. By using the fact that
f(x) � u is also a topical function, their conclusions follow from Theorem 2 and
Proposition 1.

If f is convex, the graph G(f) may be constructed more simply. Recall that a
function h : Rn ! R is convex if, for all x; y 2 R

n , h(�x + �y) � �h(x) + �h(y),
where 0 � �; � � 1 and � + � = 1. A function f : Rn ! R

n is convex if each
component function fi : R

n ! R is convex. A simple deduction, which is left to
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the reader, captures the intuition that the derivative of h is increasing. With the
same notation, let x0 = �x+ �y = x+ �(y � x) = y � �(y � x). Then,

h(x0)� h(x)

�
� h(y)� h(x0)

�
:(30)

For any function f : Rn ! R
n de�ne its syntactic graph, Gs(f), to be the directed

graph with vertices 1; � � � ; n and an edge from i to j if, and only if, fi depends
on xj in the following sense: there is no map h : Rn�1 ! R such that fi(x) =
h(x1; : : : ; xj�1; xj+1; : : : ; xn).

Proposition 2. Let f : Rn ! R
n be a convex topical function. Then G(f) is

identical to Gs(f).
Proof. G(f) and Gs(f) have the same vertices, so it suÆces to show that they have
the same edges. It is clear that an edge of G(f) is also an edge of Gs(f). Conversely,
suppose there is an edge from i to j in Gs(f). Then we can �nd x; x0 2 R

n such
that xk = x0k for all k 6= j, xj 6= x0j , and fi(x) 6= fi(x

0). Without loss of generality,
assume that x0j > xj , so that fi(x

0) > fi(x). Let u > 0 and let y = x0+uej . We may

�nd �; �, satisfying the convexity conditions, such that x0 = �x + �y. Rewriting
(30), we see that

fi(x
0 + uej) � u

x0j � xj
(fi(x

0)� fi(x)) + fi(x
0) ;

so that limu!1 fi(x
0+uej) =1. Now x0+uej � tx0+uej , so using (13) and (14)

we see that fi(uej) � fi(x
0 + uej) � tx0. It follows that limu!1 fi(uej) = 1 so

that there is an edge from i to j in G(f).
Proposition 2 applies in particular to a nonnegative matrix, A, acting on the

positive cone, as in the Introduction. Since the function R
2 ! R which takes

x 7! log(exp(x1) + exp(x2)) is convex, it is not diÆcult to show that E(A) is a
convex topical function.

3.3. Indecomposability. We next prove the additive version of Theorem 5. Re-
call that f is decomposable if there is a partition I [J = f1; � � � ; ng, I \J = ;, such
that, 8i 2 I ,

lim
u!1

fi(ueJ) <1 ;(31)

and that f is indecomposable if it is not decomposable.

Theorem 11. Let f : Rn ! R
n be a topical function. All super-eigenspaces of f

are bounded in the Hilbert semi-norm if, and only if, f is indecomposable.

Proof. If f : Rn ! R
n is a topical function for which, for some � 2 R, S�(f) is

unbounded in the Hilbert semi-norm, we can �nd a sequence x(k) 2 S�(f) such
that, bx(k) = 0 for all k 2 N and limk!1 tx(k) =1. Since [0;1]n is compact for
the usual topology, we may, possibly after replacing x(k) by a subsequence, assume
that x(k) converges in [0;1]n. Let I = f1 � i � n j limk!1 x(k)i < +1g, and
J = f1; : : : ; ng n I . By construction, J 6= ;, and, since bx(k) = 0 for all k, I 6= ;.
Moreover, for all i 2 I , limu!1 fi(ueJ) � limk!1 fi(x(k)) < +1, which shows
that f is decomposable.

Conversely, let us assume that f is decomposable, so that (31) holds for some
non-trivial partition I [ J = f1; : : : ; ng. Possibly after a reordering of indices, we
may assume that I = f1; : : : ; pg, J = fp+1; : : : ; ng. Let q = n� p and let y 2 Rp ,
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z 2 R
q . We may write f(x) = (g(y; z); h(y; z)), where g : Rp � R

q ! R
p and

h : Rp � R
q ! R

q . Let w = limz!1 g(0; z). The decomposability of f implies
that w < 1. Now choose � 2 R. If w � �, then, for all z 2 R

q , g(0; z) � 0 + �.
Moreover, taking any � 2 R with � � 0, and letting z = (�; : : : ; �) 2 R

q , we see
that h(0; z) � h(�; z) = � + h(0; 0) � z + h(0; 0). If we now choose w _ h(0; 0) � �,
then (0; z) 2 S�(f), for all � � 0. Hence, S�(f) is unbounded in the Hilbert
semi-norm.

3.4. Aggregated graphs. In this section, we de�ne the sequence of aggregated
graphs used in Theorem 6 to characterize indecomposable topical functions.

For a set X , we denote by P(X) the set of subsets of X . Given a positive
integer n, we de�ne inductively P1 = f1; : : : ; ng, and, for k � 2,Pk =P(Pk�1).
We also de�ne inductively the map � : [k�1Pk ! P2, by �(i) = fig for all
i 2 P1, and, for X 2 Pk with k � 2, �(X) =

S
Y 2X �(Y ). For notational

convenience, if X 2 [k�1Pk, we use eX in place of e�(X). For instance, for n = 4,
X = ff1; 2g; f4gg 2P3, �(X) = f1; 2; 4g, and eX = (1; 1; 0; 1).

Recall that a strongly connected component of a directed graph is an equivalence
classes of vertices under the relation of communication, [3, De�nition 2-3.7)]: i
communicates with j if, and only if, either i = j or there are paths in both directions,
from i to j and from j to i. If X;Y � f1; � � � ; ng are strongly connected components
then Y is accessible from X if either X = Y or there is a path from some vertex of
X to some vertex of Y . Accessibility is a partial order on the strongly connected
components.

If f : Rn ! R
n is a topical function, we de�ne inductively the directed graphs

Gk(f), for k � 1, as follows. The graph G1(f) is by de�nition G(f). For k � 2,
the vertices of Gk(f) are the strongly connected components of Gk�1(f), and there
is an edge from the strongly connected component I to the strongly connected
component J if, and only if,

9i 2 �(I) such that lim
u!1

fi(ueJ) =1 :(32)

If there is at least one strongly connected component of Gk(f) not reduced to a single
element, then, the number of vertices of Gk+1(f) is strictly less than the number
of vertices of Gk(f). Otherwise, Gk+1(f) is isomorphic to Gk(f). We conclude that
there is a least integer N � n such that, for all k � N , Gk(f) are isomorphic as
directed graphs. We set G1(f) = GN (f). All the strongly connected components
of G1(f) have only one element.

To understand this construction, it may be helpful to consider the topical func-
tion f : R4 ! R

4 below.

f(x) =

0
BB@

x1 _ (x2 ^ x3 ^ x4)
x3 ^ x4

(x1 + x2 + x4)=3
x3 _ x4

1
CCA :(33)

The sequence of graphs G1(f); � � � ;G4(f) = G1(f) is shown below.
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{1}

1

3

2
{2}

{3,4}

{{1}}

{{2},{3,4}}

4

{{{1}},{{2},{3,4}}}

G4(f)G1(f) G2(f) G3(f)

The additive version of Theorem 6 requires the following lemma.

Lemma 5. Let f : Rn ! R
n be a topical function and let � 2 R. There is

a function Hk : R [ f�1g ! R [ f�1g, such that, for all strongly connected
components X of Gk(f), for all x 2 R

n and for all i; j 2 �(X),

(f(x) � �+ x and x � 0) =) xj � Hk(xi) :(34)

Proof. For k = 1 this follows from Lemma 4. There are only �nitely many triples
(X; i; j), where X is a strongly connected component of G(f) and i; j 2 X . For
each triple, either i = j or we can �nd a path from i to j in G(f). In the latter case,
Lemma 4 gives a function R [ f�1g ! R [ f�1g; in the former case, simply take
the identity function. The pointwise maximum of these functions, over all triples,
gives a function H which satis�es (34).

Now assume that k � 2. As before, there are �nitely many triples of the form
(X; i; j), where X is a strongly connected component of Gk(f) and i; j 2 �(X). It
is suÆcient, by the same process of maximization as before, to choose a function
R [ f�1g ! R [ f�1g satisfying (34) for each triple (X; i; j). Let I and J be the
vertices of Gk(f) such that i 2 �(I) and j 2 �(J). If I = J , which includes the case
i = j, then choose the function, H = Hk�1, provided by the inductive hypothesis.

Now assume that I 6= J . Then there is a path I1 ! I2 ! � � � ! I` in Gk(f),
such that I = I1 and J = I`. By (32) we can �nd r1 2 �(I1); � � � ; r`�1 2 �(I`�1)
such that, for 1 � m � `� 1,

lim
u!1

frm(ueIm+1
) =1 :(35)

For all � 2 R, p 2 f1; : : : ; ng andK 2 Sk�1Pk, de�ne the maps h
�
K;p : R [ f�1g !

R [ f�1g by
h�K;p(t) = supfu 2 R j fp(ueK) � �+ tg ;

with the usual convention that sup ; = �1. (So that h�K;p(�1) = �1.) For

1 � m � `� 1, if p = rm and K = Im+1, then by (35), h�K;p(t) < 1 for all t. We

claim that if f(x) � �+ x and x � 0 then

xj � Hk�1 Æ h�I`;r`�1 ÆHk�1 Æ � � � ÆHk�1 Æ h�I2;r1 ÆHk�1(xi) ;(36)

which provides the required function R [ f�1g ! R [ f�1g for this triple. To
conclude the proof, it suÆces to show (36).

Choose the vertex sm 2 �(Im) for 2 � m � `, so that xsm = minv2�(Im) xv .
Since 0 � x, we have xsmeIm � x and so

frm�1(xsmeIm) � frm�1(x) � �+ xrm�1 :
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It follows that, for 2 � m � `,

xsm � h�Im;rm�1(xrm�1) :(37)

Moreover, by the inductive hypothesis, we have, for 2 � m � `� 1,

xrm � Hk�1(xsm)(38)

while at the ends of the path,

xr1 � Hk�1(xi) and xj � Hk�1(xs`) :(39)

Composing the inequalities in (37), (38) and (39) we get (36), as claimed.

Theorem 12. A topical function f : Rn ! R
n is indecomposable if, and only if,

G1(f) is strongly connected.

Proof. Assume that G1(f) is strongly connected and let k be such that Gk(f) =
G1(f). If x 2 S�(f) and y = x�bx then, arguing as in the proof of Theorem 10, we
can use Lemma 5 to show that kxkH = kyk1 � Hk(0). Hence, all nonempty super-
eigenspaces of f are bounded in the Hilbert semi-norm and so, by Theorem 11, f
is indecomposable.

Conversely, let us assume that G1(f) = Gk(f) is not strongly connected. Recall
the partial order of accessibility de�ned above. Choose a vertex X of Gk(f) which
is minimal in this partial order. Let J = �(X) and I = f1; : : : ; ng n J . For all
i 2 I , there is a strongly connected component Y of Gk(f) such that i 2 �(Y ).
Note that Y 6= X . If limu!1 fi(ueJ) = 1, then by (32) there would be an edge
from Y to X in Gk(f), which contradicts the minimality of X . Therefore, for all
i 2 I , limu!1 fi(ueJ) <1, which implies by (31) that f is decomposable.

As might be expected in the light of Proposition 2, the aggregation process
simpli�es when f is convex.

Proposition 3. If f : Rn ! R
n is a convex topical function then G1(f) is iso-

morphic to G2(f).
Proof. It suÆces to show that the aggregation process stabilises by k = 2. Let I and
J be strongly connected components of G(f) for which there is an edge I ! J in
G2(f). By (32), 9i 2 �(I) such that limu!1 fi(ueJ) =1. It follows that 9j 2 �(J)
such that there is an edge i ! j in the syntactic graph, Gs(f), for otherwise, fi
would not depend on any of the components xj for j 2 J . By Proposition 2, there
is an edge i! j in G(f). Since I and J are strongly connected components of G(f),
there is then a path in G(f) from any vertex of I to any vertex of J . It follows that
G2(f) cannot have any strongly connected components other than single vertices,
so that the aggregation process must have stabilised by k = 2.

3.5. Slice spaces and recession functions. Let f : Rn ! R
n be a topical

function. In the additive context, the recession function of f , f̂ : Rn ! R
n is de�ned

by f̂(x) = limt!1 t�1f(tx). The recession function does not exist in general. For
example, any function of the form f : R2 ! R

2 , (x1; x2) 7! (x1; x1 + h(x2 � x1))
is topical provided h has a derivative which satis�es 0 � h0(t) � 1, for all t. It
is not diÆcult to �nd such an h such that limt!1 t�1h(t) does not exist, so that
limt!1 t�1f(tx) does not exist at x = (0; 1). Nevertheless, the recession function
does exist for many interesting examples of topical functions, including all convex
topical functions and all the other examples discussed in this paper.
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It is not diÆcult to see that f̂ is also a topical function and that it is multi-

plicatively homogeneous: f̂(tx) = tf̂(x), 8t > 0. It follows that f has the trivial
eigenvectors, (u; � � � ; u). The following is the additive version of Theorem 7.

Theorem 13. If a topical function f has a recession function whose only eigen-
vectors are trivial, then all slice spaces of f are bounded in the Hilbert semi-norm.

Proof. If S��(f) is unbounded in the Hilbert semi-norm, then we can �nd a sequence

x(k) 2 S��(f) such that bx(k) = 0 for all k 2 N and limk!1 tx(k) = +1. We may
assume that tx(k) > 0 for all k 2 N. Since y(k) = x(k)=tx(k) 2 [0; 1]n, then,
possibly after replacing x(k) by a subsequence, we may assume that y(k) ! y as
k ! 1, for some y 2 [0; 1]n. Note that by = 0 and ty = 1, so that y is not of the
form (u; � � � ; u). By (17),

kf(tx(k):y(k))� f(tx(k):y)k1 � tx(k)ky(k)� yk1 :

Dividing by tx(k) and letting k !1, so that tx(k)!1, we see that

lim
k!1

(tx(k))�1f(tx(k):y(k)) = f̂(y) :

Since x(k) 2 S��(f), � � f(x(k))�x(k) � �. Dividing by tx(k) and letting k !1,

we see that f̂(y) = y. Hence f̂ has a non-trivial eigenvector. The result follows.

The condition of Theorem 13 is not necessary for all the slice spaces of f to be
bounded. For example, let h : R ! R be de�ned by h(t) = 1 + t � p

1 + t and
h(�t) = �h(t) for t � 0. It is clear that h(t) is di�erentiable and that 0 � h0(t) � 1
for all t 2 R, so that the function f : R2 ! R

2 , (x; y) 7! (x; x+h(y�x)), is topical.
If (x; y) 2 S��(f), then �+ y � x+ h(y � x) � �+ y. It follows easily that y � x is
bounded, so that all slice spaces are bounded in the Hilbert semi-norm. However,

f̂(x) = x, so that every vector is an eigenvector.
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