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We give a group-theoretical generalization of Berry and                      
Robbins' treatment of identical particles with spin. The original 
construction, which leads to the correct spin-statistics relation, 
is seen to arise from particular irreducible representations −
the totally symmetric representations − of the group SU(4). 
Here we calculate the exchange signs and corresponding 
statistics for all irreducible representations of SU(4). 
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Abstract.  We give a group-theoretical generalization of Berry and Robbins’ treatment of 
identical particles with spin.  The original construction, which leads to the correct spin-statistics 
relation, is seen to arise from particular irreducible representations – the totally symmetric 
representations - of the group SU(4).  Here we calculate the exchange signs and corresponding 
statistics for all irreducible representations of SU(4). 

INTRODUCTION 

Berry and Robbins [1 - 3] formulate quantum mechanics for identical spin- s  
particles –  here we suppose there are two - on a configuration space in which 
permuted configurations are identified.  The two-particle wavefunctions are expanded 
in a basis of transported spin states ( )r21 mm  which are made to vary smoothly with 

the relative coordinate 21 rrr −=  so that spins are exchanged with positions up to a 

sign ( )k1− , i.e. 

 ( ) ( ) ( )rr 1221 1 mmmm k−=− . (1) 
The position, momentum and spin operators are defined so as to satisfy the standard 
commutation relations, and the statistics are determined by the exchange sign: 1+  for 
bosons and 1−  for fermions. 

The construction in [1] is based on the Schwinger model for spin, in which each 
spin is described in terms of a pair of harmonic oscillators.  The spin angular 
momentum S  is expressed in terms of the creation and annihilation operators, and the 
spin- s  basis states m  - eigenstates of zS - correspond to number states with ms +  

(resp. ms − ) quanta in the oscillators.  Two-spin eigenstates 21 mm  are analogously 
represented in terms of two pairs of oscillators. 

The transported basis ( )r21 mm  is obtained from the Schwinger states 21 mm  by a 
unitary exchange rotation , 
 ( ) ( ) ( ) ( )( )Ernrrr .ˆexpwhere,2121 θiUmmUmm −== . (2) 
The exchange angular momentum E , which generates the exchange rotation, couples 
quanta between pairs of oscillators, just as spin angular momentum couples quanta 



within a single oscillator pair.  An exchange rotation by π  about an axis perpendicular 
to z  takes 21 mm , up to a phase factor, to 12 mm  (in analogy with the fact that a 

spin rotation by π  about an axis perpendicular to z  takes m , up to a phase factor, to 

m−  ).  Because the 12 mm  states are null eigenstates of zE , i.e. 

 021 =mmEz , (3) 
the phase factor accompanying exchange is an axis-independent sign.  Calculation 

gives ( ) ( ) 12
2

21 1exp mmmmEi s
y −=− π .  It follows that the exchange condition (1) is 

satisfied, with sk 2= , if and only if ( )r−U  and ( )rU  differ on the right by the 
exchange rotation ( ) ( )( )zy EiEi rαπ −×− expexp .  A simple choice which satisfies this 

condition is to let ( )rU  be an exchange rotation corresponding to any spatial rotation 
which maps ẑ  to r̂ . 

In [1] it was suggested that certain features of the transported basis (smooth 
exchange, parallel transport) might characterize the spin-statistics relation.  In [2] it 
was pointed out that this is not so; there are other constructions of the transported basis 
which have these features and yet yield different statistics.  While the Schwinger 
construction appears to be the simplest in certain respects, specific principles are 
needed to establish a relation between spin and statistics. 

Here we examine in a systematic way a family of alternative constructions 
motivated by group-theoretical considerations.  We observe that the spin rotations 
constitute a group, ( ) ( )22 SUSU ×  (there is one ( )2SU  factor for each spin), and the 
exchange rotations form another ( )2SU  group. Together, the spin and exchange 
rotations generate, and are subgroups of, a larger group, ( )4SU . The Schwinger 
representation corresponds to particular irreducible representations, one for each s , of 

( )4SU , but there are many others, and the construction (2) of the transported basis 

generalizes to them.  What is required is that the states 21 mm  transform under spin 

rotations as an ( )ss, -multiplet, and that they are null eigenstates of zE  (cf. (3)).  The 
exchange sign in 
 ( ) ( ) 1221 1exp mmmmEi k

y −=− π , (4) 
which determines the particle statistics as above, depends on the chosen representation 
and multiplet.  It turns out that not all irreducible representations support the 
construction, but for those that do the exchange sign need not be unique. A detailed 
account of this work will be given elsewhere [4]. 
 
 
 
 



REPRESENTATIONS OF )4(SU  

The defining representation of the generators of ( )4SU  is 

 







−

=




 −
=





=









=








=

I

I
E

iI

iI
E

I

I
E

SS

zyx

i
i

i
i

0

0

0

0

0

0

0

00

00
0

2
1

2
1

2
1

2
1

22
1

1 σ
σ

, (5) 

where iσ  are the Pauli matrices and I  is the 22 ×  identity matrix.  The operators 

ii SS 21  are the usual spin operators for the two particles and generate the 

( ) ( )22 SUSU ×  spin subgroup.  The irreducible representations of ( )4SU  are 
constructed by applying maximal symmetry conditions to a tensor product of basis 
states of the defining representation [5].  The symmetry conditions applied to the 
tensor product are recorded in a Young tableau.  A Young tableau, denoted by 
( )rnnn ,,, 21 K , is a series of rows of boxes where row i  has length in  and 

rnnn ≥≥≥ K21 .  The irreducible representations of ( )4SU  are in one-to-one 
correspondence with Young tableaux containing up to three rows, and the 
representations of ( )2SU , with tableaux of one row.  We refer to the representations of 

( )4SU  by using the notation ( )321 ,, nnn , where nnnn =++ 321 .  ( )2SU  tableaux can 

be augmented on the left by any number of columns of two; an ( )2SU  tableau with 
two rows ( )21, ll  is equivalent to one with a single row ( )21 ll − .  This equivalence is 
used in ( ) ( )22 SUSU ×  content of the irreducible representation of ( )4SU . 
 

CALCULATING THE EXCHANGE SIGN 

An irreducible representation ( )321 ,, nnn  of ( )4SU , when restricted to the subgroup 

of spin rotations ( ) ( )22 SUSU × , is reducible, and can be decomposed into its 
irreducible spin components.  These are labeled by two ( )2SU  tableaux ( )21,kk  and 
( )21,ll , corresponding to spins ( ) 221 ll −  and ( ) 221 kk − .  Requiring the two spins to 
have the same value s  and that the component be a nullspace of zE , we find that 
( )21,kk  and ( )21,ll  must coincide, with 
 ( ) 221 lls −= . (6) 

Using the rules for decomposing the ( ) ( )22 SUSU ×  subspace [6], we find that the 
number p  of these ( )ss,  multiplets in a representation of ( )4SU  is the minimum of 
the eleven integers 
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(Interestingly, none of the quantities 1) –  11) are redundant).  If the minimum of (7) is 
negative or zero, there are no allowed spin- s  multiplets in the representation.  If p  is 
even, there are equal numbers of bosonic (exchange sign = +1) and fermionic 
(exchange sign = -1) multiplets.  If p is odd, there is either an extra bosonic or 
fermionic multiplet; the exchange sign of the extra multiplet can be calculated 
explicitly. 

Table 1 shows an example of the allowed ( )ss,  multipets in the ( )3,5,8  
representation of ( )4SU , along with their exchange signs. For the case 1=s , the 
representation of ( )2SU  is described by a tableau with two rows, 51 =l  and 32 =l .  
There are three 1=s  multiplets, one with exchange sign 1+  (the physically correct 
sign) and two with  exchange sign 1− . 

 
TABLE 1.  Decomposing the ( )3,5,8  representation of ( )4SU  into its ( )ss,  multiplets. 

Spin Number of multiplets Exchange signs 
2 3 -1, +1, -1 
1 3 -1, +1, -1 
0 1 -1 

 
The derivation of these results will be given elsewhere [4]. 
 

CONCLUSION 

From the perspective of representation theory, the expression (2) for the transported 
basis for two spins generalizes to other irreducible representations of ( )4SU , and the 
exchange signs for all admissible representations can be calculated.  These generalized 
results do not yield any spin-statistics relation, much less the physically correct one.  
A typical irreducible representation gives rise to transported bases for several values 
of spin, and for each value may lead to transported bases with either exchange sign. 
The only systematic scheme for associating representations to spin to have suggested 
itself is the one provided implicitly by the Schwinger model of [1]. The completely 
symmetric representations, the simplest from the point of view of representation 
theory, give rise to a single transported basis for just one value of spin, and thus lead 
to a definite spin-statistics relation. 

Within this representation-theoretic framework, the completely symmetric 
representations provide a natural mechanism for incorporating the indistinguishability 
of spins along with positions of identical particles in nonrelativistic quantum 



mechanics.  But the framework itself requires justification.  A compelling derivation 
of the spin-statistics relation should proceed from general principles motivated by 
considerations of physics and/or mathematical simplicity.  The models introduced here 
should prove useful in formulating and testing such principles. 
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