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spin-statistics We give a group-theoretical generalization of Berry and
relation, Pauli Robbins' treatment of identical particles with spin. The original
exclusion construction, which leads to the correct spin-statistics relation,
principle, iIs seen to arise from particular irreducible representations -
guantum the totally symmetric representations - of the group SU(4).
mechanics Here we calculate the exchange signs and corresponding

statistics for all irreducible representations of SU(4).
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Abdract. We give a group-theoreticd generdization of Berry and Robbins treatment of
identical particles with spin.  The origind construction, which leads to the correct spinstatistics
relation, is seen to aise from particular irreducible representations — the totaly symmetric
representations - of the group SU(4). Here we cdculate the exchange sgns and corresponding
gatistics for dl irreducible represantations of SU(4).

INTRODUCTION

Bery and Robbins [1 - 3] formulate quantum mechanics for identicad spin-S
paticles — here we suppose there are two - on a configuraion space in which
permuted configurations are identified. The twoepartide wavefunctions are expanded

in a basis of transported spin states |m,my(r)) which are made to vary smoothly with
the relaive coordinate r =r, - r, 0 that spins are exchanged with postions up to a
son (- 1), ie

mmy(- 1)) =(- 2f jm,m(r)). M

The pogtion, momentum and spin operaors are defined 0 as to satidy the standard

commutation relations, and the datistics are determined by the exchange sign: +1 for
bosonsand - 1 for fermions.

The condruction in [1] is based on the Schwinger modd for spin, in which each

$in is dexribed in tems of a par of hamonic osdllaors  The spin angular

momentum S is expressed in terms of the creation and annihilation operators, and the

gin-s basis sates |m) - eigendtates of S - correspond to number dates with s+
(resp. s- ) quanta in the osdillators.  Twospin eigenstates |mm,) are andogousy
represented in terms of two pairs of oscillators.

The transported basis |m my(r)) is obtained from the Schwinger states |mm,) by a
unitary exchange rotation,

mmE)=U()mm,). whee U()=eql- iai()E). @

The exchange angular momentum E , which generates the exchange rotation, couples
quanta between pars of osdllators just as spin angula momentum couples quanta



within a sngle oscillator par. An exchange rotation by p about an axis perpendicular
to z tekes |mm,), up to a phase factor, to [m,m) (in andogy with the fact that a
spin rotationby p about an axis perpendicular to z takes |m), up to a phase factor, to
|- m) ). Becausethe |m,m) statesarenull eigenstatesof E,, i.e.

E,|mm,)=0, 3
the phase factor accompanying exchange is an axis-independent dgn.  Cdculdion
gives exp(- ip E,)mm,) =(- 17mm). It follows that the exchange condition (1) is
stisfied, with k =2s, if ad only if U(-r) ad U(r) differ on the right by the
exchange rotation exp(- ip E, )" exp(- ia(r)E,). A smple choice which satifies this
condition is to let U(r) be an exchange rotation corresponding to any Spatiad rotation
which maps Z tor .

In [1] it was suggested that certain features of the trangported bass (smooth
exchange, pardld transgport) might characterize the spin-datidtics rdaion. In [2] it
was pointed out that this is not so; there are other condructions of the transported basis
which have these feastures and yet yidd different datisics.  While the Schwinger
condruction gppears to be the smplest in cetan respects, specific princples ae
needed to establish ardation between spin and Satistics.

Here we examine in a sysematic way a family of dternative congructions
motiveted by grouptheoreticadl condderations We observe tha the spin rotations

condtitute a group, SU(2)” SU(2) (there is one SU(2) factor for each spin), and the
exchange rotaions form another SU(2) group. Together, the spin and exchange
rotations generate, and are subgroups of, a larger group, SU(4). The Schwinger
representation corresponds to particular irreducible representations, one for each s, of
SU(4) but there are many others, and the condruction (2) of the transported besis
generdizes to them. What is required is that the states [mm,) transform under spin
rotations as an (s,s)-multiplet, and thet they are null eigendtates of E, (cf. (3)). The
exchangesgnin

exp(- ip E, )mym,) = (- m, m), @
which determines the particde daidtics as above, depends on the chosen representation
and multiplet. It turns out tha not dl irreducible representations support the

condruction, but for those that do the exchange sgn need not be unique. A detaled
account of thiswork will be given esawhere [4].



REPRESENTATIONS OF SU(4)

The defining representation of the generatorsof SU (4) is
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where s; are the Pauli matrices and | isthe 2~ 2 identity matrix. The operators
S S, ae the usud spin opeaors for the two particles and generate the
SU(2)" sU(2) sin sibgroup.  The irreducible representations of SU(4) are
condructed by applying maximad symmetry conditions to a tensor product of bess
daes of the defining representation [5].  The symmetry conditions goplied to the
tensor product are recorded in a Young tableau. A Young tableau, denoted by
(nl,nz,_,_,n), is a series of rows of boxes where row i has length n and

n3n?3..3n. The imedudble represntations of SU(4) ae in one-to-one
correspondence with Young tableaux containing up to three rows and the
representations of SU(2) with tableaux of one row. We refer to the representations of

SU(4) by using the notation (n,n,,n,), where n, +n, +n,=n. SU(2) tableax can
be augmented on the left by any number of columns of two; an SU(Z) tableau with
two rows (I,,1,) is equivdent to one with a sngerow (I,-1,). This equivaence is
usedin SU(2)" SU(2) content of the irreducible representation of SU(4).

CALCULATING THE EXCHANGE SIGN

An irreducible representetion (nl,nz,ng) of SU(4) when redricted to the subgroup
of sin rotations SU(2)” SU(2), is redudble, and can be decomposed into its
ireducible spin components.  These are labded by two SU(2) tableax (k. ,k,) and
(I,1,), coresponding to spins (I, - 1,)/2 and (k- k,)/2. Reuiring the two spins to
have the same vaue s and that the component be a nullspace of E,, we find that
(k.. k,) and (I,,1,) must coincide, with

S= (Il' |2)/2. ©

Using the rules for decomposing the SU(2)" SU(2) subspace [6], we find that the
number p of these (s,s) multiplets in a representation of SU(4) is the minimum of
the eleven integers



l) |2 +1 7) r1_|_+n2' 2|1 +1

2) n-n+1 8 L +l,-n,+1

3 n-1+1 9 n+n,-2,-1,+1

4 n-2+1 10) n+2n,-2 - 2,+1

5) n2' |2 +1 11) 2|l+2|2' nl_ n2+1

6) I,-1,+1
(Interetingly, none of the quantities 1) — 11) are redundant). If the minimum of (7) is
negetive or zero, there are no dlowed spin-s multiplets in the representation. If p is
even, there are equa numbers of bosonic (exchange sgn = +1) and fermionic
(exchange sgn = -1) multiplets. If p is odd, there is ether an extra bosonic or
fermionic multiplet; the exchange sgn of the extra multiple can be cdculaed
expliatly.

Table 1 shows an example of the dlowed (s,s) multipets in the (8,5,3)
representation of SU(4), dong with ther exchange signs. For the case s=1, the
representation of SU(2) is described by a tableau with two rows, I, =5 and |, =3.
There are three s=1 multiplets, one with exchange dgn +1 (the physcaly correct
ggn) and two with exchangedgn - 1.

U]

TABLE 1. Decomposing the (8,5,3) representation of SU(4) intoits (s, s) multiplets.

Spin Number of multiplets Exchange signs
2 3 -1, +1,-1
1 3 1, +1,-1
0 1 -1

The derivation of these results will be given elsawhere [4].

CONCLUSION

From the perspective of representation theory, the expresson (2) for the transported
bass for two spins generdizes to other irreducible representations of SU(4) and the
exchange dgns for dl admissble representations can be cdculated. These generdized
results do not yidd any soindatigics rdaion, much less the physicaly correct one
A typicd irreducible representation gives rise to trangported bases for saverd vaues
of soin, and for each vaue may lead to transported bases with either exchange sign.
The only systematic scheme for associating representations to spin to have suggested
itsdf is the one provided implicitly by the Schwinger modd of [1]. The completey
symmetric  representations, the Imples from the point of view of representation
theory, give rise to a sngle trangoorted bass for just one vdue of soin, and thus leed
to a definite spin-datigticsreaion.

Within  this  representationtheoretic  framework, the completdy symmetric
representations provide a naturd mechanism for incorporating the indistinguishability
of spins dong with pogtions of idetticd patides in  nonrdaividic quantum



mechanics. But the framework itsdf requires judtification. A compeling derivation
of the goinddidics rdation should proceed from generd principles motivated by
condderations of physcs and/or mathematicd smplicity. The models introduced here
should prove useful in formulating and testing such principles.
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