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Let A (t) be a nxp matrix with independent standard complex 
Brownian entries and set M (t) = A (t)* A (t). This is a
process version of the Laguerre ensemble and as such we
shall refer to it as the Laguerre process. The purpose of this 
note is to remark that, assuming n > p- 1, the eigenvalues of M
(t) evolve like p independent squared Bessel processes of 
dimension 2(n-p+ 1), conditioned (in the sense of Doob) never to 
collide. More precisely, the function h (χ ) = ∏i<j(

χ
i
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j) is
harmonic with respect to p independent squared Bessel               
processes of dimension 2(n-p+ 1), and the eigenvalue process 
has the same law as the corresponding Doob h-transform. In 
the case where the entries of A (t) are real Brownian motions, 
(M (t)) t ≥ 0 is the Wishart process considered by Bru [Br91]. 
There it is shown that the eigenvalues of M (t) evolve according 
to a certain diffusion process, the generator of which is given 
explicitly. An interpretation in terms of non-colliding processes 
does not seem to be possible in this case. We also identify a 
class of processes (including Brownian motion, squared Bessel 
processes and generalised Ornstein-Uhlenbeck processes) 
which are all amenable to the same h-transform, and compute 
the corresponding transition densities and upper tail   
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* Internal Accession Date Only    Approved for External Publication  
1  Fachbereich Mathematik, MA 7-5, room MA783 Technische Universitat Berlin Strasse des 17. 
   Juni 136 D-10623 Berlin Germany 
 Copyright Hewlett-Packard Company 2001 



EIGENVALUES OF THE LAGUERRE PROCESS AS

NON-COLLIDING SQUARED BESSEL PROCESSES

Wolfgang K�onig1;2 and Neil O'Connell1

1BRIMS, Hewlett-Packard Laboratories, Filton Road,
Stoke Gi�ord, Bristol BS12 6QZ, United Kingdom

noc@hplb.hpl.hp.com, koenig@math.tu-berlin.de

2on leave from TU Berlin, Germany

(March 30, 2001)

Abstract: Let A(t) be a n� p matrix with independent standard complex Brow-
nian entries and set M(t) = A(t)�A(t). This is a process version of the Laguerre
ensemble and as such we shall refer to it as the Laguerre process. The purpose of

this note is to remark that, assuming n > p�1, the eigenvalues ofM(t) evolve like p
independent squared Bessel processes of dimension 2(n�p+1), conditioned (in the
sense of Doob) never to collide. More precisely, the function h(x) =

Q
i<j(xi� xj)

is harmonic with respect to p independent squared Bessel processes of dimension
2(n � p + 1), and the eigenvalue process has the same law as the corresponding
Doob h-transform.

In the case where the entries of A(t) are real Brownian motions, (M(t))t�0 is the
Wishart process considered by Bru [Br91]. There it is shown that the eigenvalues
of M(t) evolve according to a certain di�usion process, the generator of which is
given explicitly. An interpretation in terms of non-colliding processes does not

seem to be possible in this case.

We also identify a class of processes (including Brownian motion, squared Bessel

processes and generalised Ornstein-Uhlenbeck processes) which are all amenable

to the same h-transform, and compute the corresponding transition densities and

upper tail asymptotics for the �rst collision time.
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sions, non-colliding squared Bessel processes.



2 WOLFGANG K�ONIG AND NEIL O'CONNELL

1. Introduction

Let A(t) be a n � p matrix with independent standard complex Brownian entries (so that
each entry of A(t) has variance 2t) and set M(t) = jA(t)j2 = A(t)�A(t). We shall refer to
M = (M(t))t2[0;1) as the Laguerre process. In the case p = 1, M is a squared Bessel process of
dimension 2n, usually denoted by BESQ2n.

Let �(t) = (�1(t); : : : ; �p(t)) be the vector of eigenvalues of M(t), ordered decreasingly such
that �p(t) � � � � � �1(t) � 0. (Note that M(t) is almost surely nonnegative de�nite for any
t � 0.) The process (�(t))t�0 is a di�usion on [0;1)p with generator given by

Hn;p = 2

pX
i=1

xi@
2
i + 2

pX
i=1

h
n+

pX
j=1

j 6=i

xi + xj
xi � xj

i
@i: (1.1)

This follows from the arguments given by Bru [Br91] for the Wishart case, with minor modi-
�cations. We remark that the Focker-Planck equation associated with (�(t))t�0 was formally
derived in [AW97].

We will assume that n > p � 1. Our main observation is that the process (�(t))t�0 can be
identi�ed as the h-transform of p independent squared Bessel processes of dimension 2(n�p+1),
where the function h : [0;1)p ! R is given by

h(x) =

pY
i;j=1

i<j

(xj � xi); x = (x1; : : : ; xp) 2 [0;1)p: (1.2)

In other words, the process � behaves like p independent BESQ2(n�p+1) processes conditioned
never to collide.

To justify this claim, we will show that the function h given by (1.2) is harmonic with respect
to the generator

Gp;d = 2

pX
i=1

xi@
2
i + d

pX
i=1

@i (1.3)

of a vector of p independent BESQd, and use standard methods to compute the generator bGp;d

of the h-transform. We obtain

bGp;d = 2

pX
i=1

xi@
2
i + d

pX
i=1

@i + 2

pX
i=1

h pX
j=1

j 6=i

�xi + xj
xi � xj

+ 1
�i
@i: (1.4)

It is now easy to see that Hn;p = bGp;2(n�p+1). This will be presented carefully in the next
section.

As is well-known, the function h is also harmonic with respect to the generator of p-
dimensional Brownian motion. This also arises in the context of random matrices. It is a
classical result, due to Dyson [Dy62], that the eigenvalues of Hermitian Brownian motion (the
process-version of the Gaussian unitary ensemble) evolve like independent Brownian motions
conditioned never to collide (see also [Gr00]). In Lemma 3.1 below we identify a class of gen-
erators for which the function h is harmonic which includes both of the above. We remark
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that Dyson also considered unitary Brownian motion, and showed that the eigenvalues in this
case behave like independent Brownian motions on the circle conditioned never to collide via
the complex analogue of the function h. (For more detailed information about this process see
[HW96].)

In the Wishart case, where the entries of A = (A(t))t�0 are independent standard real Brow-
nian motions, we do not see how to give a similar interpretation for the eigenvalue process. In
this case, Bru [Br91] identi�ed the generator of the process of eigenvalues of M(t) as

2

pX
i=1

xi@
2
i +

pX
i=1

h
n +

pX
j=1

j 6=i

xi + xj
xi � xj

i
@i: (1.5)

Note the missing factor of 2 in front of the drift term.

Similar remarks apply to the Gaussian ensembles: in Dyson's work [Dy62] it turned out that,
in contrast to the complex case, the process version of the Gaussian orthogonal ensemble (the
real case) does not admit a representation of the eigenvalue process in terms of a system of
independent particles conditioned never to collide.

The interpretation of the Laguerre eigenvalue processes as h-transforms can be applied to
obtain alternative derivations for the eigenvalue densities of the corresponding ensemble. As is
known from the theory of random matrices (see, e.g., [Ja64]), these densities are given in the
following closed form. We have

P(�(1) 2 dx) =
1

Zp;�

pY
i;j=1

i<j

(xi � xj)
2

pY
j=1

�
x�j e

�xj� dx; x1 > � � � > xp � 0; (1.6)

where � = n�p denotes the index of BESQ2(n�p+1), and Zp;� denotes the normalisation constant.
In words, �(1) has the distribution of p independent Gamma(�)-distributed random variables,
transformed with the density h(x)2.

In Section 2 we introduce the h-transform of (BESQd)
p and its generator, and in Section 3 we
establish the harmonicity of h for a certain class of processes having independent components,
which includes Brownian motion, squared Bessel processes and generalized Ornstein-Uhlenbeck
processes driven by Brownian motion. Furthermore we calculate the transition densities of the
transformed process started at the origin and describe the upper tail asymptotics of the �rst
collision time of the components.

2. Non-colliding squared Bessel processes

Fix p 2 N and let X = (X(t))t2[0;1) = (X1(t); : : : ; Xp(t))t2[0;1) be a di�usion on [0;1)p

whose components are independent squared Bessel processes (BESQd) of dimension d. In the
following, the dimension d is any nonnegative number. The process X has the generator Gp;d

given by (1.3). We denote the distribution of X when started at x 2 [0;1)p by Px. Note
that 0 is an entrance boundary for the BESQd. In dimensions d � 2, the process X stays in
(0;1)p after time zero for ever, and the domain of the generator consists of the functions f
such that Gp;df is continuous and bounded on [0;1) and f+(0+) = 0. If the dimension d is
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smaller than two, then the components of X hit zero with probability one, the boundary point
0 is non-singular. If 0 is re
ecting, then Gp;d has the same domain as above.

As follows from the more general Lemma 3.1 below, the function h in (1.2) is harmonic
with respect to Gp;d, hence the h-transform of (BESQd)
p is well-de�ned. Let us compute its
generator.

Lemma 2.1. The generator of the h-transform of X is given by

bGp;df(x) = Gp;df(x) + 2

pX
i=1

h pX
j=1
j 6=i

�xi + xj
xi � xj

+ 1
�i
@if(x): (2.1)

Proof. We have bGp;d = Gp;d + �(logh; � ), where �(g; f) = Gp;d(f � g)� fGp;d(g)� gGp;d(f) is
the so-called op�erateur carr�e du champs (see, for example, [RY91]). Hence,bGp;df �Gp;df = Gp;d(f � logh)� fGp;d(log h)� loghGp;d(f)

= 2

pX
i=1

xi
�
@2i (f log h)� f@2i log h� logh @2i f

�
+ d

pX
i=1

�
@i(f logh)� f@i log h� logh @if

�
= 2

pX
i=1

xi2(@i log h)(@if) = 4

pX
i=1

xi
@ih

h
@if

= 4

pX
i=1

xi
X
j 6=i

1

xi � xj
@if = 2

pX
i=1

h pX
j=1

j 6=i

�xi + xj
xi � xj

+ 1
�i
@if(x):

(2.2)

3. Generalisations and applications

In this section, we introduce further non-colliding processes by means of h-transforms
of processes with independent components. Fix p 2 N and let X = (X(t))t2[0;1) =
(X1(t); : : : ; Xp(t))t2[0;1) be a di�usion on a (possibly in�nite) interval I which contains 0. By

Gf(x) =

pX
i=1

1

2
�2(xi) @

2
i f(x) +

pX
i=1

�(xi) @if(x); x = (x1; : : : ; xp) 2 Ip: (3.1)

we denote the generator of X, where �2 : I ! (0;1) and � : I ! R. In the following we identify
a class of processes for which the function h in (1.2) is harmonic.

Lemma 3.1. Assume that any of the following cases is satis�ed: Either 1
2
�2(x) = ax + b and

�(x) = c with some a; b; c 2 R, or (in the case p > 2) 1
2
�2(x) = x2 + ax + b and �(x) =

2(p � 2)x=3 + c for some a; b; c 2 R, or (in the case p = 2) 1
2
�2(x) is arbitrary and �(x)

constant. Then h is harmonic with respect to G, i.e., Gh � 0.
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Proof. Abbreviate G = G� + G� with obvious notation. Using the Leibniz rule
�Q

i gi
�0

=P
i g
0
i

Q
j 6=i gj, one easily derives that

G�h(x) = h(x)
X
i<j

�(xi)� �(xj)

xi � xj
;

G�h(x) = �h(x)
X
i<j<k

1

(xk � xj)(xj � xi)

h
�2(xj)� �2(xk)

xj � xi
xk � xi

� �2(xi)
xk � xj
xk � xi

i
:

Hence, both G�h and G�h are identically zero if � is constant and 1
2
�2 a polynomial of �rst

order. However, if p > 2 and �(x) = cx and 1
2
�2(x) = x2, then G�h = cp

2
(p � 1)h, and

G�h = �1
3
p(p � 1)(p � 2)h. Hence, Gh � 0 for the choice c = 2(p � 2)=3. Lastly, in the case

p = 2, we have that G�h � 0 since h is a polynomial of �rst order in this case.

Note that Lemma 3.1 covers in particular the cases of Brownian motion, squared Bessel pro-
cesses and generalised Ornstein-Uhlenbeck processes driven by Brownian motion (see [CPY01]).

As an application, we compute the transition densities of the h-transform of X, started at
the origin, and the upper tails of the �rst collision time

T = infft > 0: X(t) =2 Wg; (3.2)

where

W = fx = (x1; : : : ; xp) 2 Ip : xp > � � � > x1g: (3.3)

Let pt(x; y) denote the transition density of the process (X1(t))t�0, say. We will �rst state a
general result and later discuss the special cases of Brownian motion and BESQd.

Lemma 3.2. Assume that h is harmonic for the generator of X, and assume that there is a
Taylor expansion

pt(x; y)

pt(0; y)
= ft(x)

1X
m=0

(xy)mam(t); t � 0; y 2 I; (3.4)

for x in a neighborhood of zero, where am(t) > 0 and ft(x) > 0 satisfy limt!1 am+1(t)=am(t) = 0
and ft(0) = 1 = limt!1 ft(x). Then, for any t > 0 and y 2 W ,

lim
x!0

x2W

bPx(X(t) 2 dy) = Cth(y)
2
P0(X(t) 2 dy); (3.5)

where Ct =
Qp�1

m=0 am(t). Furthermore, for any x 2 W ,

Px

�
T > t

�
� Cth(x) E 0

�
h(X(t))1lfX(t) 2 Wg

�
; t!1: (3.6)

Proof. We are going to use the formula [KM59]

Px(T > t;X(t) 2 dy) =
X
�2Sp

sign(�)

pY
i=1

pt(xi; y�(i)) dy; x; y 2 W; (3.7)
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where Sp denotes the set of permutations of 1; : : : ; p, and sign denotes the signum of a permu-
tation. Use (3.4) in (3.7) to obtain that

Px

�
T > t;X(t) 2 dy

�
P0

�
X(t) 2 dy

� =

pY
i=1

ft(xi)
X

m1;:::;mp2N0

pY
i=1

�
xmi

i ami
(t)
� X
�2Sp

sign(�)

pY
i=1

ymi

�(i): (3.8)

Observe that X
�2Sp

sign(�)

pY
i=1

ymi

�(i) = det
h�
y
mj

i

�
i;j=1;:::;p

i
(3.9)

is equal to zero if m1; : : : ; mp are not pairwise distinct. Hence, in (3.8), we may restrict the
sum on m1; : : : ; mp 2 N0 to the sum on 0 � m1 < m2 < � � � < mp and an additional sum on
� 2 Sp and write m�(1); : : : ; m�(p) instead of m1; : : : ; mp. This yields that

Px

�
T > t;X(t) 2 dy

�
P0

�
X(t) 2 dy

� =

pY
i=1

ft(xi)
X

0�m1<���<mp

pY
i=1

ami
(t) det

h�
y
mj

i

�
i;j=1;:::;p

i
det
h�
x
mj

i

�
i;j=1;:::;p

i
:

(3.10)

Now use that the two determinants may be written using the so-called Schur function [Ma79]
as

det
h�
x
mj

i

�
i;j=1;:::;p

i
= h(x) Schurm(x); (3.11)

where we abbreviated m = (m1; : : : ; mp). The Schur function Schurm(x) is a certain multi-
polynomial in x1; : : : ; xp whose coeÆcients are nonnegative integers and may be de�ned com-
binatorially. It is homogeneous of degree m1 + � � �+mp �

p
2
(p� 1) and has the properties

Schurm(1; : : : ; 1) =
h(m)Q

1�i<j�p(j � i)
;

Schur(0;1;:::;p�1)(x) = 1;

Schurm(0; : : : ; 0) =

(
1 if m = (0; 1; : : : ; p� 1);

0 otherwise.

(3.12)

Using (3.11) in (3.8), we arrive at

Px

�
T > t;X(t) 2 dy

�
P0

�
X(t) 2 dy

� = h(x)h(y)

pY
i=1

ft(xi)
X

0�m1<���<mp

Schurm(x) Schurm(y)

pY
i=1

ami
(t): (3.13)

In order to derive (3.5), note that

bPx(X(t) 2 dy) = Px(T > t;X(t) 2 dy)
h(y)

h(x)
; (3.14)

multiply (3.13) by P0(X(t) 2 dy)h(y)=h(x) and note that limx!0 Schurm(x) = 0 unless m =
(0; 1; : : : ; p� 1) in which case Schurm(x) = 1. Recall that ft(0) = 1 to derive that (3.5) holds.
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Let us derive the asymptotics of Px(T > t). We multiply (3.13) by P0(X(t) 2 dy) and
integrate on y 2 W to obtain

Px(T > t) = h(x)

pY
i=1

ft(xi)
X

0�m1<���<mp

Schurm(x)

pY
i=1

ami
(t)

Z
W

P0(X(t) 2 dy) h(y) Schurm(y):

(3.15)

Because of the assumption that limt!1 am+1(t)=am(t) = 0 for any m 2 N0 , it is clear that in
the limit t!1 only the term for m = (0; 1; : : : ; p� 1) survives. Recall that limt!1 ft(x) = 1
to derive (3.6).

The case of Brownian motion on I = R is a special case of Lemma 3.2 with ft(x) = e�x
2=(2t)

and am(t) = t�m=m!. In (3.5) we recover Weyl's formula for the joint density of the eigenvalues
of the Gaussian unitary ensemble (see [Me91]). The upper tail asymptotics given by (3.6) were
previously obtained in [Gr00].

Let us check that the BESQd satis�es the assumptions of Lemma 3.2. The transition density
is given [BS96] by

pt(x; y) =

(
1
2t

�
y
x

��=2
e�(x+y)=(2t)I�

�pxy

t

�
; if x > 0;

y�

(2t)�+1�(�+1)
e�y=(2t); if x = 0;

(3.16)

where � = d
2
� 1 is the index of BESQd, and � denotes the Gamma function and

I�(z) =
1X

m=0

�
z
2

�2m+�

m! �(� +m + 1)
(3.17)

is the modi�ed Bessel function of index �. Hence, (3.4) is satis�ed with ft(x) = e�x=(2t) and
am(t) = �(� + 1)[m!�(� +m + 1)]�1(2t)�2m. In particular

Ct =
�(� + 1)p

(2t)p(p�1)

pY
i=1

1

�(i)�(� + i)
: (3.18)

Hence, we recover (1.6) from (3.5), with explicit identi�cation of the normalisation constant.

The right hand side of (3.6) is identi�ed as follows. Use (3.16) and make the change of
variable z = y=(2t) to get that

E 0

�
h(X(t))1lfX(t) 2 Wg

�
=

(2t)
p

2
(p�1)

�(� + 1)p

Z
W

h(z)

pY
i=1

�
z�i e

�zi� dz: (3.19)

Now use Selberg's integral (see (17.6.5) in [Me91]) to �nally deduce that (3.6) reads

Px(T > t) � (2t)�
p

2
(p�1)h(x)K; t!1; (3.20)

where

K =

R
W
h(z)

Qp
i=1

�
z�i e

�zi
�
dzQp

i=1

�
�(i)�(� + i)

� =
�(� + 1)

�(� + 1 + p
2
)

1

p!�(3+p
2
)�(3

2
)

pY
j=1

�(� + 1 + p
2
)�(3+j

2
)

�(j)�(� + j)
: (3.21)
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