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1 Introduction

The trace formula (Gutzwiller 1971) provides a semiclassical link between
the quantum energy levels and classical periodic orbits in bound systems.
Our purpose here is, as a contribution to Martin Gutzwiller's 75th birthday
celebrations, to use this centrally important result to investigate the conse-
quences for the periodic orbits of the fundamental fact that the quantum
energy spectrum is real and discrete in such systems.

We argue that, in the absence of systematic degeneracies, both universal
and non-universal correlations must exist between these orbits as a direct
result of quantum discreteness. The universal correlations are consistent
with those conjectured by Argaman et al. (1993). In addition, we exploit the
quantum-classical duality embodied in the trace formula to recover certain
components of the universal and non-universal correlations in the energy
spectrum (Berry 1985; Agam et al. 1995; Bogomolny & Keating 1996b), in
this case assuming only that the periodic orbit actions are not systematically
degenerate.

For simplicity, we consider two-dimensional, classically chaotic systems,
although, as we shall indicate, our results generalize straightforwardly. De-
noting the quantum energy spectrum by fEng, the density of states is

d(E) =
X
n

�(E � En) = d(E) + dosc(E) ; (1)

where the mean density d is given, to leading order semiclassically, by

d(E) � 
(E)

4�2~2
; (2)


(E) being the volume of the phase-space shell of energy E. In the semiclas-
sical limit, dosc(E) can be expressed, via Gutzwiller's trace formula, in terms
of the periodic orbits of the classical dynamics (Gutzwiller 1971):

dosc(E) ' 1

�~

X
p

Ap(E) cos

�
Sp(E)

~
� �

2
�p

�
; (3)

where p labels the periodic orbits, which have actions Sp(E) and Maslov
indices �p, and

Ap(E) =
Tp(E)

rp
pjdet(Mp � I)j ; (4)
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Tp(E) = dSp(E)=dE being the period of the p-th orbit, Mp the monodromy
matrix, and rp the repetition number. The Maslov index plays only a
marginal role in our analysis, and so often, for simplicity, we will incorporate
it into the amplitude.

We shall be concerned with the statistical distributions of energy levels
and periodic orbits. The spectral two-point correlation function, ~R2(x), is
de�ned in terms of the 
uctuating part of the density of states by

~R2(x;E) =
1

d
2

�
dosc

�
E +

x

2d

�
dosc

�
E � x

2d

��
E

; (5)

where the angular brackets, h : iE, denote an energy average over a range �E

that satis�es d
�1 � �E � E (or, if desired, an average over momentum or

~
�1). The Fourier transform of ~R2 is the form factor

K(� ;E) =

Z 1

�1

~R2(x;E)e
2�i�x dx : (6)

Substituting the trace formula (3) into (6) gives a semiclassical represen-
tation for the form factor (Berry 1985),

Ksc(�) =
1

2�~d

*X
p;q

ApAq cos
h1
~

�
Sp � Sq

�i�
� �

�
T � 1

2

�
Tp + Tq

��+
E

; (7)

from which it can be argued that long-time classical ergodicity implies uni-
versality (modulo symmetry), consistent with random matrix theory, when
� ! 0 after the semiclassical limit has been taken (Hannay & Ozorio de
Almeida 1984; Berry 1985), and that K(�) has non-universal structure, re-
lated to the short-time dynamics, when � = O(1=~d). It follows from (6)
and (5), the fact that the quantum spectrum is real and discrete, and the
assumption that it is also not systematically degenerate, that K(�) ! 1 as
� !1, but demonstrating this semiclassically, directly from (7), is a major
unsolved problem.

Our strategy here is to invert this problem. The question we ask is:
assuming that Ksc(�) ! 1 as � ! 1, what does this imply about the sta-
tistical distribution of periodic orbits? This is clearly related to the work of
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Argaman et al. (1993) and Cohen et al. (1998) on action correlations. The
di�erences are, �rst, that there it was assumed that Ksc(�) coincides with
the appropriate random matrix form for all � , which is much stronger than
the assumptions we make here, and second, that we also recover information
about non-universal correlations between the periodic orbits. In addition,
we investigate the corresponding universal and nonuniversal correlations be-
tween the energy levels that are necessary in order that the trace formula
be compatible with the fact that the actions of the periodic orbits are all
real and discrete (and assumed non-degenerate). The results to be reported
formed the basis of Connors (1998).

Our approach is based on the following observation. For any real, dis-
crete spectrum with no systematic degeneracies, Berry (1985) noted that the
Lorentz-smoothed density

d�(E) =
1

�

X
n

�

(E � En)2 + �2
(8)

satis�es

2�� d2�(E) ' d �
2
(E) for �d(E)� 1 : (9)

This will here be referred to as the quantum distribution rule. (Corresponding
relations can be written down for other choices of smoothing.) It follows that

lim
�!0

2��d2�(E) = d(E) : (10)

Substituting the trace formula (3) for the denisty of states into (10) and
averaging locally with respect to E gives the semiclassical sum rule (Berry
1985):

lim
�!0

�

�~2

*X
q;p

ApAq cos
h1
~
(Sp � Sq)

i
e�

�
~
(Tp+Tq)

+
E

' d(E) : (11)

Essentially, this suggest that the mean level density is encoded into the pair-
wise distribution of the long periodic orbits satisfying Sp ' Sq.

Our speci�c aim here is to determine what the semiclassical sum rule im-
plies about correlations between the periodic orbits. We also investigate the
more general semiclassical implications of (10), and the corresponding for-
mulae for correlations in the energy spectrum itself that follow from Fourier-
inverting the trace formula. The results are illustrated by reference to the
correlations between the Riemann zeros and the primes.
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2 Universal periodic orbit correlations

Our goal in this section is to derive information about classical periodic orbit
correlations from the semiclassical sum rule (11). To achieve this we remove
all quantum variables from (11) by a series of transforms as follows.

The diagonal sum in (11), can be evaluated using the classical sum rule
of Hannay & Ozorio de Almeida (1984) to give

X
p

A2
pe
� 2�

~
Tp ' g

Z 1

0

Te�
2�
~
TdT =

g~2

4�2
; (12)

where g is the mean orbit multiplicity; g = 1 for systems without time-
reversal invariance and g = 2 for systems that are time-reversal invariant.
The o�-diagonal sum is therefore* X

q;p

Sp 6=Sq

ApAq cos
h1
~
(Sp � Sq)

i
e�

�
~
(Tp+Tq)

+
E

' 


4��
� g~2

4�2
; (13)

where we have replaced d(E) by 

4�2~2

, the Thomas-Fermi estimate for two-
dimensional systems.

We now take an inverse Laplace transform in 2�
~
, which introduces a con-

jugate classical time T . This gives* X
q;p

Sp 6=Sq

ApAq cos
h1
~
(Sp � Sq)

i
�
h
T � 1

2
(Tp + Tq)

i+
E

' 


2�~
� gT : (14)

The condition for the validity of the quantum distribution rule (see (9)), that
�d � �
=~2 � 1, transforms to T � 


~
.

We next make a further transform in z, de�ned by

z =
1

�
=

2�~d

T
=




2�T~
: (15)

Given a function F (z), this transform is de�ned by

1

�
p
�y

Z 1

0

Z 1

�1

e
�x2

y2 cos(xz)F (z)dxdz =
1

�

Z 1

0

e�
z2y2

4 F (z)dz : (16)

The validity condition now corresponds to y � 1.

5



We next de�ne a classical action correlation function C(y; T ) by

C(y; T ) =
1

yT
p
�

* X
q;p

Sp 6=Sq

ApAq exp
h
� 4�2T 2


2y2
(Sp � Sq)

2
i
�
h
T � 1

2
(Tp + Tq)

i+
E

:

(17)

This correlation function depends solely on properties of the classical dy-
namics; it picks out pairs of periodic orbits of average period T with action
di�erence Sp � Sq = O(
2y2=T 2).

Note that C(y; T ) is related to the semiclassical form factor by the trans-
form (16). The large-� asymptotic behaviour of the form factor thus corre-
sponds to the large y behaviour of C(y; T ). It is worth pointing out that
this correlation function di�ers from the one introduced by Argaman et al.

(1993), the di�erence being due to the Gaussian transform on the left-hand
side of (16).

Returning to the transformed semiclassical sum rule, (14), on applying
the transform (16) we get a universal classical sum rule for two-dimensional
chaotic systems:

C(y; T ) ' 2

�y2
� gp

�y
for y � 1 ; (18)

independent of T as T ! 1. This is the main result of this section. It de-
scribes correlations between pairs of periodic orbit actions that are necessary
for the trace formula to be consistent with a real discrete, non-systematically-
degenerate quantum spectrum.

The curious implication of this is that the quantum mechanics of any
bound system in
uences the corresponding classical dynamics; in order that
the classical dynamics be semiclassically compatible with quantum mechan-
ics, correlations must exist in the distribution of periodic orbits. In this case
we have identi�ed the correlations that are universal in that their behaviour
depends only on symmetry.

For a chaotic system with d degrees of freedom (d � 2) the Thomas-Fermi
estimate for the mean density of states is d = 
=(2�~)d, which results in

C(y; T ) ' � gp
�y

+
1

�yd

�T



�d�2
�
( p

�[1:3:5 : : : (d� 2)]2
d�1
2 if d odd

(d�2
2
)!2d�1 if d even ;

(19)
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valid for yd � 1. This reproduces (18) when d = 2.
We note in passing that for integrable systems C(y; T ) vanishes in the

range under consideration, because the diagonal terms themselves give the
large-� asymptotics of the form factor.

In addition to that identi�ed above, there may be a background compo-
nent to C(y; T ) arising from the uncorrelated component in the distribution
of periodic orbits. In cases where the Maslov indices are themselves uncorre-
lated, each term in the double sum appears with an e�ectively random phase
and hence, in the averaging, terms cancel and there is no background. How-
ever, in cases where every Maslov index is zero (modulo 4), the phase factor
associated with each term vanishes. The uncorrelated contributions from
terms in the double sum in (17) then give rise to a background component,
CB(y; T ), which we now compute.

We approximate the amplitude terms using Ap ' Tp exp(�1
2
�Tp), with �

the metric entropy. Expressing the actions in terms of their periods Sp(E) =
�(E)Tp(E), where �(E) is constant on the energy shell (see Hannay & Ozorio
de Almeida 1984), we can rewrite the sums as integrals to give

CB(y; T ) =
1

yT
p
�

Z
Tp

Z
Tq

Tpe
� 1

2
�TpTqe

� 1
2
�Tq exp

h
� 4�2T 2


2y2
�2(E)(Tp � Tq)

2
i

� �
h
T � 1

2
(Tp + Tq)

iehtTp
Tp

dTp
ehtTq

Tq
dTq : (20)

Assuming that Pesin's theorem applies, that is � = ht, where ht is the topo-
logical entropy,

CB(y; T ) =



4��T 2
ehtT

�
1 + erf

h4��T 2


y

i�
: (21)

The analysis leading to (18) is semiclassical and relies on the assumption
that the trace formula is able to reproduce a discrete spectrum. The fact that
the trace formula is only a semiclassical approximation formally restricts the
range of values of y for which C(y; T ) can be calculated, because it leads to
a divergence in the semiclassical approximation to the form factor (Keating
1994). Speci�cally, if the divergence occurs when 1

z
> � � = O(1), then the

integral form of C(y; T ) is only valid in the range y < y� = O(1). This
is potentially in con
ict with the condition that y � 1 (which corresponds
to � � 1) and might mean that our approach is not applicable to typical
systems. It suggests that we might have to restrict our interest to cases where
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the trace formula is exact, such as geodesic motion on surfaces of constant
negative curvature and the cat maps.

There are, however, several reasons why the correlations we predict might
be more robust than this formal argument suggests. Those systems for which
the trace formula is exact are considered to be paradigms of classical chaos,
and the fact that universal classical action correlations are predicted in them
hints at the existence of similar correlations in other strongly chaotic systems.
Put another way, the correlations are a property of the classical dynamics;
there is no a priori reason why their existence should depend on whether the
trace formula is exact or not.

Further evidence is provided by the numerical work of Argaman et al.,
(1993), Cohen et al. (1998), and Tanner (1999), who examined various sys-
tems for which the trace formula is a semiclassical approximation and yet
found periodic orbit correlations which, at least qualitatively, match the the-
oretical predictions of Argaman et al. (1993).

It is instructive to compare the large-y asymptotic approximation (18)
with the formulae that follow from assuming that the form factor is given
exactly by one of the corresponding random-matrix expressions. If K(�)
coincides with the Gaussian Unitary Ensemble (GUE) form factor, then

CGUE(y) =
1

�

Z 1

0

exp
�
� y2z2

4

�
[z � 1]dz

=
2

�y2
� 1p

�y
+O

� 1

y2
e�

y2

4

�
: (22)

Setting g = 1 in (18), the asymptotic approximation to C(y; T ) may be seen
to match CGUE(y) up to an exponentially small error. Thus in this case C is
almost entirely determind by quantum discreteness.

For systems whose energy-level statistics match those of the Gaussian
Orthogonal Ensemble (GOE) of random matrix theory, we �nd in the same
way that

CGOE(y) =
2

�y2
� 2p

�y
+O

� 1

y4

�
; (23)

which coincides with the g = 2 form of (18).
The above calculations obviously generalize to higher order semiclassical

sum rules. Extending (9) to the cubic case gives

d 3
8
�(E) '

8

3
�2�2 d3�(E) for �d(E)� 1 : (24)
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For example, for a two dimensional chaotic system without time-reversal
invariance we obtain the following classical correlation formula,

C3(y; T ) ' 2

�y2
for y � 1 ; (25)

where C3(y; T ) is de�ned by

C3(y; T ) =
1

yT 2
p
�

* X
p1;p2;p3

Ap1Ap2Ap3 exp
h
� 4�2T 2


2y2
(Sp1 � Sp2 � Sp3)

2
i
�

��
h
T � 1

2
(Tp1 + Tp2 + Tp3)

i+
E

; (26)

the sum running over all triples of periodic orbits.

3 Prime correlations

As has been discussed extensively elsewhere (see, for example, Berry & Keat-
ing 2000), the Riemann zeta function, �(s), provides a remarkably useful
mathematical model for many problems in quantum chaos. Riemann conjec-
tured that all of its complex zeros lie on the line Res = 1=2. Taking them to
be at positions s = 1=2+iEn, the hights En can, conjecturally, be interpreted
as quantum energy levels. The density

dR(E) =
X
n

�(E � En) (27)

has an explicit formula in terms of the primes

dR(E) = dR(E)� 1

�

X
p;k

log pp
pk

cos(E log pk) ; (28)

which plays the role of a trace formula. The primes are thus identi�ed with
classical periodic orbits. Here

dR(E) ' 1

2�
log(jEj) : (29)

To illustrate the methods outlined in the previous section, we now analyse
prime correlations exactly as we did for periodic orbits. The only di�erence
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is due to the fact that the mean density of the Riemann zeros increases as
the logarithm of the asymptotic parameter E, rather than as a power of it.

The analogue of the semiclassical sum rule (11) for the Riemann zeros is

lim
�!0

�

�

* X
primes
p;q

1X
j;k=1

log p log qp
pkql

�

� cos[E(k log p� l log q)]e��(k log p+l log q)

+
E

= dR(E) ; (30)

where the �rst sum includes all primes p; q.
The diagonal sum may be estimated using the prime number theorem:

X
primes
p

log2 p

p
e�2� log p '

1X
n=no

logn

n
e�2� log n '

Z 1

log no

xe�2�xdx ' 1

4�2
; (31)

to leading order. Higher powers of the primes do not contribute and have
been ignored.

We now take an inverse Laplace transform ( 2�$ L) and apply a trans-
form in (E $ y) as in (16). This gives, for y � e�T ,

CR(y; T ) ' � 1p
�y

(log y + T +



2
+ log 2�) ; (32)

with CR(y; T ) de�ned by

CR(y; T ) ' 1p
�y

X
primes

p6=q

log p log qp
pq

exp
h
� 1

y2
log2

�p
q

�i
�
h
T � 1

2
log pq

i
: (33)

We have again ignored prime powers because these do not contribute at
leading order. As before, the discreteness of the Riemann zeros determines
the asymptotic (in y) behaviour of correlations in the pairwise distribution
of the primes.

There is also a background component to CR(y; T ) that arises from the
uncorrelated component in the distribution of the primes. From the above
de�nition of CR(y; T ), (33), we evaluate the sums independently using the
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prime number theorem. The background component CB
R (y; T ) is then found

to be

CB
R (y; T ) ' eT as

T

y
!1 : (34)

Unlike the general case, here we can calculate the o�-diagonal double
sum explicitly, and hence directly verify this prime correlation formula (32).
Whereas in the general case the only means of evaluating the double sum was
to use random-matrix results, here we can use the prime correlation informa-
tion contained in the conjecture of Hardy & Littlewood (1923) to calculate
the value of the sums and hence CR(y; T ). This method of estimating prime
sums is exactly that previously used to verify the sum rule (30) (Keating
1991), and in calculating other statistical properties of the Riemann zeros
(Keating 1993; Bogomolny & Keating 1995, 1996a). We �nd (Connors 1998)
that

CR(y; T ) ' eT � 1p
�y

�
log y + T +O(1)

�
; (35)

in agreement with the prime correlations, (32), derived from the discreteness
of the Riemann zeros and the background component, (34), of CR(y; T ).

4 Correlations and duality

We now return to the quantum distribution rule (9) in an attempt to un-
cover more information about classical correlations; in particular we will
show that the discreteness of the quantum spectrum implies the existence of
non-universal classical correlations, in addition to the universal ones already
discussed.

For simplicity, we consider the representative case of two-dimensional
chaotic billiards which are not time-reversal invariant. The results generalize
easily to the time-reversal invariant case and to higher dimensional systems.

11



4.1 Quantum correlation functions

The density of momentum states and its semiclassical representation are
given by

d(k) =
1X

n=�1

�(k � kn) = d(k) + dosc(k) (36)

' 1

2�

k +

1

�

X
p

Ap cos(kLp) ; (37)

where the area of the billiard is 
, and Lp denotes the periodic orbit lengths.
From (5), a semiclassical expression for ~R2 is therefore

~R2(x) ' 1

2�2

�X
p;q

ApAq cos
h
(Lp � Lq)k + xLp

i�
k

; (38)

and for the form factor,

K(�) ' 1

2�d

�X
p;q

ApAq cos[(Lp � Lq)k] �[L� Lp]

�
k

; (39)

with � = L

2�d
.

4.2 Classical correlation functions

We now de�ne

dc(L) =
X
p

Ap�(L� Lp) = dc(L) + dcosc(L) : (40)

For simplicity, we assume that all Maslov phases (which are here implicit in
the amplitudes) vanish and that all Lyapunov exponents are equal (to �);
that is

Ap =
Lp

2 sinh
�
�Lp
2

� : (41)

Then

dc(L) =
L

2 sinh
�
�L
2

�X
p

�(L� Lp) ; (42)
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where, in the limit L ! 1, the leading-order asymptotic behaviour of the
smooth mean density of states, dc, is given by

dc(L) ' e
1
2
�L : (43)

(We note that while the conditions imposed may appear somewhat restric-
tive, they are satis�ed for geodesic motion on surfaces of constant negative
curvature and for the cat maps.)

Fourier transforming the trace formula (37), as in Colin de Verdiere (1973)
and Chazarain (1974), we have, in the limit L!1, that

dc(L) ' e
1
2
�L + 2

1X
n=1

cos(knL) : (44)

De�ning a classical two-point correlation function by

~R2
c
(x) =



dcosc(L + x)dcosc(L)

�
L
; (45)

where the average is over a range of size �L around L,

~R2
c
(x) =

X
p;q

ApAq�(Lp � Lq � x)��L

h
L� 1

2
(Lp + Lq)

i
� e�L ; (46)

where ��L(�) is a �-function of width �L centred at L. This classical two-
point correlation function is related to C(y; T ) by the transform

C(y; L) =
1

yL
p
�

*Z 1

�1

exp
�
� x2

y2

�h
~Rc
o�(x) + eL

i
dx

+
; (47)

where ~Rc
o� comprises the o�-diagonal terms of ~R2

c
(x).

Substituting the trace formula (44) for dc(L) into (46),

~R2
c
(x) '2

�X
m;n

cos[(km � kn)L+ xkn]

�
L

; (48)

that is, the classical periodic orbit correlation function can be expressed
semiclassically in terms of the quantum eigenmomenta. The diagonal terms
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in this expression may be summed to give, for systems without time-reversal
invariance, 


~Rc
2(x)

�
x
= � 


�x2
; (49)

where the average in x is over a range �x� e�
1
2
�L. Note that if x is measured

in units of
p

, then this result becomes universal (i.e. system-independent).

We can obviously de�ne a classical form factor by

Kc(�) =
1

e�L

Z 1

�1

e2�i�x ~Rc
2

� x

e
1
2
�L

�
dx : (50)

Taking

k = 2�e
1
2
�L� ; (51)

we then have that

Kc

�
k

2�e
1
2
�L

�
=e�

1
2
�L
X
p;q

ApAqe
ik(Lp�Lq)��L

h
L� 1

2
(Lp + Lq)

i
� 2�e

1
2
�L�(k) :

(52)

Note that under any �-averaging,

Kc(�)

�
�
� Le�

1
2
�L (53)

as � !1, with � de�ned in (51).
A semiclassical expression for the classical form factor follows immediately

from (48) and (50). In the limit L!1,

Kc

�
k

2�e
1
2
�L

�
'2�e� 1

2
�L

�X
n;m

cos[(km � kn)L] �[k � kn]

�
L

: (54)

In direct analogy with the quantum form factor, here we �nd �-functions po-
sitioned at the smallest quantum eigenmomenta, on the scale � ' k0e

� 1
2
�L,

where k0 is the smallest eigenmomentum. These correspond to non-universal
correlations in the distribution of classical periodic orbit lengths, here ex-
pressed in terms of the low lying quantum levels. Later we will show that
these non-universal classical correlations can also be expressed in terms of
the short periodic orbits.

The diagonal approximation for the classical form factor gives

Kc(�)

�
k
= 2�e�

1
2
�Ld(k) ; (55)

with � as above in (51). Here the averaging is over a su�ciently large range
that all the o�-diagonal terms are removed from the double sum.
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4.3 The semiclassical sum rule

The semiclassical sum rule for the quantum density of states, (11), can be
written in terms of the quantum form factor as

K(�) ' 1 when � � 1 : (56)

It can also be written in terms of the classical form factor, (52):

Kc(�)

�
k
'2�e� 1

2
�Ld(k) ; (57)

valid in the region d� L or equivalently, � ' ke�
1
2
�L � p

k.
We have already seen that the fact that the quantum spectrum is real and

discrete (and not systematically degenerate) is equivalent to the asymptotic
behaviour of the quantum form factor. What (57) demonstrates is that it is
also equivalent to the diagonal terms of the classical form factor.

4.4 A classical sum rule

We now examine the dual of the semiclassical sum rule for quantum spectra:
a classical sum rule for the density of periodic orbit lengths.

A classical periodic orbit length spectrum with no systematic degenera-
cies, which is accurately reproduced by its trace formula (44), satis�es the
quantum distribution rule (9). For strongly hyperbolic billiard systems we
can remove the weightings of the classical spectrum as a smooth function of
the length. We then have that�

e
1
2
�L

L
dc(L)

�
L

= lim
�!0

2��

�he 1
2
�L

L
dc�(L)

i2�
L

: (58)

Writing this in terms of the trace formula for the classical spectrum gives

4��

L

�X
m;n

cos[(km � kn)L]e
��(km+kn)

�
L

' 1 ; (59)

with the condition that �e
1
2
�L � 1 to ensure that the smoothed �-functions

do not overlap.
Taking an inverse Laplace transform in the length smoothing parameter

(2�$ k) gives�X
m;n

cos[(km � kn)L]�
h
k � 1

2
(km + kn)

i�
L

' L

2�
; (60)
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which holds in the semiclassical limit k ! 1. The condition �e
1
2
�L � 1

transforms to e
1
2
�L � k.

Writing this in terms of the classical form factor gives

Kc(�) ' Le�
1
2
�L ; (61)

for � � 1 and with � de�ned by (51). This is the large argument behaviour of
Kc(�) noted earlier, (53). The classical sum rule therefore corresponds to the
asymptotic behaviour of the classical form factor, just as the semiclassical
sum rule can be written in terms of the asymptotic behaviour of the quantum
form factor.

In terms of the quantum form factor, the classical sum rule for systems
without time-reversal invariance is simply

K(�) '� ; (62)

for � � log k=(�
k)). This is exactly the diagonal approximation to the
quantum form factor which is the correct (GUE) behaviour of K(�) for small
� .

We thus see that the classical sum rule, the dual of the semiclassical sum
rule for the quantum spectrum, corresponds to the diagonal approximation
to the quantum form factor, and the large-� asymptotics of the classical form
factor.

4.5 A generalized semiclassical sum rule

We can now extend this dualistic approach and derive a generalized semi-
classical sum rule (GSCSR) for both the quantum density of states and, in
the next section, the classical density dc(L).

As in Keating (1991), we introduce a phase factor, cos(kx), into the
semiclassical sum rule. In the limit �! 0, we therefore have, from (11), that

�

2�

�X
p;q

ApAq cos[(Lp � Lq � x)k]e��(Lp+Lq)
�
k

' 

d(k) cos(kx)

�
k
� 1

2�

�X
Ap cos[(Lp � x)k]e�

1
2
�Lp

�
k

: (63)

with the condition that �d(k)� 1.
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We now follow the method already used for the semiclassical sum rule
and take an inverse Laplace transform of (63) in the momentum smoothing
parameter (2�$ L). This gives

1

4�

�X
p;q

ApAq cos[(Lp � Lq � x)k]�
h
L� 1

2
(Lp + Lq)

i�
k

' 

d(k) cos(kx)

�
k
� 1

2�

�X
Ap cos[(Lp � x)k]�

h
L� 1

4
Lp

i�
k

; (64)

in the limit L!1, for k � L.

We next make the following transformation, de�ned by its action on a
function f(k) by

4y

�

Z 1

0

1

y2 + x2

Z 1

0

cos(kx)f(k)dxdk = 2

Z 1

0

e�kyf(k)dk : (65)

Implementing this k-integral constitutes an evaluation of the k-averaging
denoted by the angular brackets. We arrive at the result

1

4

X
p;q

ApAq �y[Lp � Lq � x]�
h
L� 1

2
(Lp + Lq)

i

' 


2�

y2 � x2

(y2 + x2)2
� 1

2

X
p

�y[Lp � x]�
h
L� 1

4
Lp

i
; (66)

where �y[�] = y=[�(y2+�2)], a Lorentzian of width y centred at � = 0 which
gives a �-function in the limit y ! 0. The condition k � L transforms to
y � 1

L
. Taking the limit y ! 0 therefore requires L!1. Rewriting this in

terms of the two-point classical correlation function, (48), we have that

~Rc
2(x) '�




�x2
� lim

y!0

X
Lp<4L

�y[Lp � x] : (67)

The �rst term is exactly the diagonal approximation to the classical two-point
correlation function (49). This is the leading order behaviour of the universal
correlations which exist in the distribution of classical periodic orbits. There
are oscillatory corrections to this which appear in the (unsmoothed) result
of Argaman et al. (1993) for systems with RMT spectral statistics.
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The GSCSR for the quantum density of states therefore implies that there
exist non-universal correlations in the distribution of long classical periodic
orbits that can be described in terms of the short periodic orbits. It is
thus an explicit example of bootstrapping. Note that our derivation of these
system-speci�c �-functions requires no assumptions regarding the statistical
distribution of high-lying quantum energy levels; they are correlations arising
from the fact that the quantum spectrum is discrete, non-degenerate and is
described by a semiclassical trace formula.

4.6 A generalized classical sum rule

Introducing into (59) a phase factor, cos(kx), in the same way as in the
previous section, allows us to write down a generalized classical sum rule:

2��

�X
m;n

cos[(km � kn � x)L]e��(km+kn)

�
L

' 

L cos(xL)

�
L
+ Le�

1
2
�L
DX

n

cos[(kn � x)L]e�
1
2
�kn

E
L
; (68)

with the condition �e
1
2
�L � 1.

As for the quantum case, we now implement an inverse Laplace transform
(2�$ k), giving

�

�X
m;n

�
cos[(km � kn � x)L]

�
�
h
k � 1

2
(km + kn)

i�
L

' 

L cos(xL)

�
L
+ Le�

1
2
�L
DX

n

cos[(kn � x)L]�
h
k � 1

4
kn
iE

L
(69)

in the limit k!1. The condition �e
1
2
�L � 1 transforms to e

1
2
�L � k.

Laplace transforming (L$ y) (69) gives

2�2
X
m;n

�y[km � kn � x] �
h
k � 1

2
(km + kn)

i

' y2 � x2

[y2 + x2]2
+
X
n

�
y + �

2

�2
� (kn � x)2h�

y + �
2

�2
+ (kn � x)2

i2�hk � 1

4
kn

i
: (70)
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In the limit y ! 0, we can express this formula in terms of the quantum
two-point correlation function:

~R2(x) = � 1

2�2x2
+

1

2�2

X
n

�
�
2

�2
� (kn � x)2h�

�
2

�2
+ (kn � x)2

i2 � d
2
: (71)

The sum includes only those quantum eigenmomenta satisfying kn < 4k, but
since the sum converges we allow all terms to contribute.

The �rst term on the right-hand side is the non-oscillatory component of
the GUE two-point correlation function. The oscillatory component is not
reproduced here. We initially made an �-smoothing of the spectrum in order
to remove the o�-diagonal terms in the squared spectrum of the quantum
distribution rule (9). We therefore only recover the diagonal behaviour of
~R2(x); the oscillatory component arises from the o�-diagonal terms, as shown
by Bogomolny & Keating (1996b).

In addition to the universal component of ~R2(x) arising from the diagonal
approximation, we have here recovered non-universal two-point correlations
in the quantum density of states. These have been derived from the fact
that the classical spectrum is discrete with no assumptions regarding the
distribution of classical periodic orbit lengths, or quantum energy levels. We
have imposed conditions on the classical dynamics of the system regarding
the Lyapunov exponents and the Maslov indices, but since the resulting
formula is entirely quantum we expect this sophisticated form of quantum
bootstrapping, between the two-point statistics of the high energy levels and
the low-lying energy levels, to be independent of detailed assumptions about
the classical dynamics and the methods of semiclassical analysis.

These non-universal correlations are exactly those related to the short
periodic orbits of the system, as seen in the semiclassical formula for the
quantum form factor by Berry (1985). Bogomolny & Keating (1996b) and
Agam et al. (1995) showed that they can be expressed in terms of the
analytic structure of the Ruelle zeta function. Under the assumptions made
at the beginning of this section, that the Lyapunov exponents are all equal
and all Maslov indices are zero mod 4, the (classical) Ruelle zeta function
can be considered as an analytic continuation of the Selberg zeta function,
which is related to the spectral determinant of the quantum Hamiltonian.
Bogomolny & Keating (1996b) not only uncovered the same universal and
non-universal correlations for the (diagonal part of) ~R2(x), but also summed
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the o�-diagonal terms to recover the oscillatory part of the GUE two-point
correlation function. The appropriate part of their results, written in terms
of the Ruelle zeta function, can be expressed as in (71). We make this
connection explicitly for the Riemann case below. This formula for ~R2(x) is
therefore a strong con�rmation of the integrity of our method.

5 The Riemann zeta function

The calculations of the previous sections can be worked through for the case
of the Riemann zeta function. In this particular example, the behaviour of
the two-point correlation function, ~R2(x), implied by the generalized prime
sum rule coincides with the results of Bogomolny & Keating (1996b).

5.1 The primes

The density of the logarithms of the primes is de�ned (by analogy with the
classical density of states in Section 4.2) to be

dp(L) =
X
p

X
k

log pp
pk

�(L� k log p) : (72)

This can be expressed (Banham 1995) in terms of the Riemann zeros as

dp(L) 'e 1
2
L � 2

1X
n=1

cos(EnL) : (73)

We de�ne a two-point correlation function on the prime spectrum to be

~R2
p
(x) =

X
pk;ql

log p log qp
pkql

�(k log p� l log q � x)��L

h
L� 1

2
log pkql

i
� eL ;

(74)

where ��L(�) is a �L-width �-function with centre L. This can be written
in terms of the Riemann zeros, from (73), as

~R2
p
(x) =2

�X
m;n

cos[(Em � En)L + xEn]

�
L

: (75)
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De�ning � = E

2�e
1
2
L
, the prime form factor is

Kp(�) =e�
1
2
L
X
p;q

log p log qp
pkql

eiE log p
q ��L

h
L� 1

2
log pq

i
� 2�e

1
2
L�(E) : (76)

The asymptotic behaviour of Kp(�) is easily determined. In the limit
� ! 1, any �nite-width averaging removes all o�-diagonal terms, and we
�nd that 


Kp(�)
�
�
' Le�

1
2
L as L!1 : (77)

Semiclassically, the prime form factor can be expressed in terms of the
Riemann zeros as

Kp(�) =2�e�
1
2
L

�X
n;m

cos[(Em � En)L] �[E � En]

�
L

: (78)

Notice that �-functions occur at the low-lying Riemann zeros on the scale � '
E0e

� 1
2
L, where E0 is the Riemann zero with smallest imaginary part. These

�-functions describe non-universal correlations in the distribution of prime
numbers related to the low-lying Riemann zeros (rather than the universal
correlations described by the Hardy & Littlewood conjectures). This non-
universality is the analogue of that seen earlier, in the distribution of periodic
orbits.

The diagonal approximation to the prime form factor gives

Kp(�)

�
E
= 2�e�

1
2
LdR(E) : (79)

valid in the limit as � ! 0.

5.2 The Riemann zeta sum rule

Using the prime conjectures of Hardy & Littlewood (1923), the sum rule for
the Riemann zeta function, (30), was explicitly veri�ed by Keating (1991),
who evaluated the double sum over primes and recovered dR.

In terms of the form factor this semiclassical sum rule states that

K(�) ' 1 ; (80)

in the region � � 1.
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In terms of the prime form factor this can be written

Kp(�)

�
�
'2�dRe� 1

2
L (81)

for dR � L or equivalently, � ' Ee�
1
2
L � p

E. This is the diagonal approx-
imation to Kp(�).

The semiclassical sum rule therefore corresponds to the diagonal approx-
imation, or the averaged behaviour, of the prime form factor, and to the
asymptotic behaviour of the form factor of the Riemann zeros.

5.3 A prime sum rule

The primes can be treated in the same way to give a formula analogous to the
classical sum rule. After removing the degeneracy weightings, in the limit
�! 0,

4��

L

�X
m;n

cos[(Em � En)L]e
��(Em+En)

�
L

' 1 : (82)

In terms of the prime form factor this states that

Kp(�) ' Le�
1
2
L when � � 1 ; (83)

and in terms of the form factor, it can be written

K(�) '� when � � 1 : (84)

This is the diagonal, or averaged behaviour of the form factor in this region.
The discreteness of the prime spectrum therefore corresponds to the di-

agonal approximation to the form factor of the Riemann zeros, and to the
asymptotic behaviour of the prime form factor.

5.4 The generalized Riemann sum rule

Rewriting the generalized semiclassical sum rule, (63), for the Riemann case
gives, in the limit �! 0,

�

2�

�X
p;q

log p log qp
pq

�
cos

h
E log

p

�q

i
+ cos

h
E log

�p

q

i�
e�� log pq

�
E

' 

dR cos(E log�)

�
E
� 1

2�

�X log pp
pk

cos
h
E log

pk

�

i
e�

1
2
� log pk

�
E

: (85)
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Applying the now familiar sequence of transforms and expressing the
result in terms of the two-point prime correlation function (74), we have that

~Rp
2(x) '�

1

2x
� lim

y!0

X
pk<e4L

log pp
pk

�y[x� log pk]� eL : (86)

for y � eL, with �y[x] = y=[�(y2 + x2)].
Connors & Keating (2001) use the prime conjectures of Hardy & Little-

wood (1923) to evaluate the double sum (inherent in ~Rp
2(x)) explicitly, re-

covering the delicate structure of Kronecker �-functions positioned at prime
powers, � = pk.

5.5 A generalized prime sum rule

Introducing a phase factor, cos(xL), into the prime sum rule (82) gives, in
the limit �! 0,

2��
e
1
2
L

L

�X
m;n

cos[(Em � En � x)L]e��(Em+En)

�
L

' 

e
1
2
L cos(xL)

�
L
�
DX

n

cos[(En � x)L]e�
1
2
�En

E
L
: (87)

The usual sequence of transforms begins by taking an inverse Laplace trans-
form (2�$ E). The Fourier transform (in L) that follows, requires a convo-
lution to maintain the condition L� logE. This results in

2�
X
m;n

y

y2 + (Em � En � x)2
�
h
E � 1

2
(Em + En)

i

' 2
y2 � x2

[y2 + x2]2
� 2

X
n

�
y + 1

2

�2
� (En � x)2h�

y + 1
2

�2
+ (En � x)2

i2�(E � 1

4
En) : (88)

In terms of the two-point correlation function, in the limit y ! 0 this is

~R2(x) ' � 1

2�2x2
� 1

2�2

X
En<4E

1
4
� (En � x)2h

1
4
+ (En � x)2

i2 � d
2
: (89)
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This formula is equivalent to a result obtained by Bogomolny & Keating
(1996b) who express the correlations of ~R2(x) in terms of the behaviour of the
Riemann zeta function near its pole. It derives from the discreteness of the
prime spectrum and describes both universal (GUE) and non-universal (non-
GUE) correlations in the distribution of Riemann zeros. In addition to the
leading order GUE behaviour that arises from the prime sum rule, here we
see the existence of (�nite width) Lorentzians centred at each Riemann zero.
These represent 
uctuations in the distribution of Riemann zeros that are
not predicted by RMT. They are the same non-universal features described
in terms of primes by Berry (1988) and, as already noted, in terms of the
analytic structure of �(1 + ix) by Bogomolny & Keating (1996b).

As in the billiard case, we only recover the non-oscillatory part of the
GUE two-point correlation function. The smoothing required to construct
the quantum distribution rule removes the o�-diagonal terms and it is these
which reproduce the oscillatory terms.
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