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Abstract

A polymer chain with attractive and repulsive forces between the monomers is modeled by at-
taching a weight e�� for every self-intersection and e
=(2d) for every self-contact to the probability
of an n-step simple random walk on Zd, where �; 
 > 0 are parameters. It is known that for d = 1
and 
 > � the chain collapses down to �nitely many sites, while for d = 1 and 
 < � it spreads out
ballistically.

Here we study for d = 1 the critical case 
 = � and show that the end-to-end distance runs on
the scale �n =

p
n(logn)�1=4. We describe the asymptotic shape of the accordingly scaled local

times in terms of an explicit variational formula and prove that the scaled polymer chain occupies a
region of size �n times a constant. Moreover, we derive the asymptotics of the partition function.

MSC 2000. 60F05, 60J15, 60J55.

Keywords and phrases. One-dimensional polymers, repulsive and attractive interaction, phase transi-
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0 Introduction and main results

Introduction

Polymers are large molecules that are built of smaller units. These smaller units are either all of the
same type or of two or at most a small number of di�erent types. Typically these building blocks allow
two chemical bonds (of �xed length, e.g., 1:5 � 10�10m for polyethylene) to neighboring monomers.
Hence a polymer is typically a linear structure. The stereometric angels between the bonds may vary.
Thus the geometry of a polymer is typically quite complicated. Under thermic in
uences it is even
random.

A fundamental quantity in both the experimental and theoretical study of polymers is the quantita-
tive connection between the number of monomers in a polymer chain and the radius of gyration which
is a measure for the spatial extent of the polymer. For the theoretical study of polymers the chemist
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P.J. Flory suggested (see [Fl71]) the following stochastic model as a caricature of a polymer with n+1
monomers: A polymer corresponds to a random walk path (S0; : : : ; Sn) in Z

d with law P . Attractive
and repulsive forces between monomers (other than the forces of the direct bonds), are modeled by a
Hamiltonian (energy function) Hn which is a function of the path (S0; : : : ; Sn). The distribution Qn of
the random polymer is then the Boltzmann distribution de�ned by

dQn

dP
= Z�1

n e�Hn ; (0.1)

where Zn = E(e�Hn) is the partition function (normalizing constant). (Expectations w.r.t. P are
denoted by E.)

For an expository paper on mathematical polymer models, see [dH96]. For a survey paper on results
for one-dimensional polymers, see [HK�o01]. For an introduction to polymers from a physicist's point
of view, see [Va98].

In this paper we consider the situation where the Hamiltonian H�;

n depends on two parameters

�; 
 2 [0;1) and is de�ned by

H�;

n = �

nX
i;j=0

1lfSi = Sjg � 


2d

nX
i;j=0

1lfjSi � Sj j = 1g: (0.2)

In words, H�;

n is equal to � times the number of self-intersections minus 
 times the number of self-

contacts by time n.

The law Q�;

n is called the n-polymer measure with strength of repellence � and strength of attrac-

tion 
. It gives a penalty e�2� to every pair of monomers at the same site and a reward e
=d to
every pair of neighboring monomers. The penalty models polarization of the monomers, the so-called
excluded-volume e�ect. The reward models the situation in which there are attractive forces between
the monomers.

The main goal of this article is to study this model for simple random walk in dimension d = 1 for
� = 
 where a phase transition in the asymptotic behavior of the spatial extension occurs.

Conjectures and earlier results

It is generally believed that, under Q�;

n , the path exhibits asymptotic behavior drastically di�erent

from the di�usive behavior of simple random walk. More precisely, one conjectures that

E
Q�;

n

(jSnj) � n�(�;
); n!1; (0.3)

with some characteristic exponent �(�; 
) 2 [0; 1]. There is no problem in de�ning the measure Q1;

n

analogously, hence we are going to assume that � 2 (0;1].

In dimension one, it is shown in [HKl01] that for 
 < �, the polymer behaves ballistically, in the
sense that the number of sites grows like n. This identi�es �(�; 
) = 1 for 
 < �. Moreover, it is shown
that for 
 > �, the polymer collapses to a �nite number of points, so that �(�; 
) = 0 for 
 > �. In
this paper, we will investigate the critical case 
 = �. In dimensions greater than one, there is a richer
structure. Indeed, there it is expected to have two phase transition. The asymptotic behavior of the
polymer is expected to have three possibilities: a collapse to a �nite number of points for 
 > �, a
dense packing of building blocks so that � = 1=d for intermediate 
, and self-avoiding walk behavior
for 
 � �. For a more detailed description of the conjectures in dimension d > 1, see [HKl01].

Intuitively, we can explain these conjectures and results as follows. It is helpful to rewrite the
Hamiltonian in terms of the walker's so-called local times. De�ne

`n(x) =

nX
i=0

1lfSi = xg; n 2 N0 ; x 2 Zd; (0.4)
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the number of monomers at x of the n-polymer chain. Then we have the identity

H�;

n = (� � 
)

X
x2Zd

`n(x)
2 +




4d

X
x2Zd;e�0

[`n(x)� `n(x+ e)]2: (0.5)

where the sum over e � 0 runs over all the 2d neighbors e of the origin.

One has to examine the path's best strategy to minimize H�;

n in (0.5) without having too little

probability under P . If 
 > �, then it is most favorable for the polymer to stay in a bounded region,
so that the Hamiltonian is of order �n2. If 
 � �, then it is most favorable to avoid self-intersections,
and hence the behavior is similar to the behavior of self-avoiding walk. If 0� 
 < � and ��
 is small,
then the penalty for large nearest-neighbor local time di�erences is much larger than the penalty for
self-intersections. Hence, it is most favorable for the polymer to minimize these di�erences. The only
way to do that, and keep the sum of squares of local times of the order n is for the polymer to clump
together in a region of the order n1=d.

Description of the results

In this paper we will study the critical case where � = 
 in dimension one. For the remainder of the
paper, �x d = 1 and assume that (Sn)n2N0 is an ordinary simple random walk on Z starting at S0 = 0.

Observe from (0.5) that our Hamiltonian is given in terms of the local times as

H�;�
n =

�

2

X
x2Z

[`n(x)� `n(x+ 1)]2 : (0.6)

Thus, the path measureQ�;�
n is concentrated on paths whose local times are close together in neighboring

sites, but there is no explicit repulsion or attraction e�ect.

In order to describe our result, we have to introduce some notation. Along the way, we give an
informal description of our result. The precise statement appears in Theorem 1 below.

It turns out that, under Q�;�
n , the endpoint Sn of the polymer chain runs on scale

�n =
n1=2

(log n)1=4
; n 2 N n f1g: (0.7)

The accordingly scaled continuous version `n : R ! [0;1) of the local times is de�ned by

`n

�
x

�n

�
=
�n
n
`n(x); x 2 Z; (0.8)

and by linear interpolation between the points in Z=�n. Note that `n is an element of the set

F =

�
' 2 ACc(R; [0;1)) :

Z
R

'(t) dt = 1

�
(0.9)

of absolutely continuous, compactly supported Lebesgue densities on R. The asymptotics of the parti-
tion function Z�;�

n turns out to be determined by the functional G� : F ! [0;1) given by

G�(') = �

2

Z
R

'0(t)2 dt+
1

4
j supp(')j: (0.10)

A fundamental role in this paper is played by the variational problem connected with G�. We de�ne

�� = inf fG�(') : ' 2 Fg : (0.11)
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We de�ne the function '?� 2 F by

'?�(t) =
3

4R�?

�
1�

�
t
R?�

�2�
+

; where R?
� = (92�)

1=4: (0.12)

Our �rst partial result is that '?� uniquely (up to shifts) minimizes G�.

Proposition 0.1 The minimizer of G� on F is unique up to translations and is equal to '?�, and the

value of the minimum is

�� =
4
p
8p
3
�1=4: (0.13)

Our main result consists of three statements about the asymptotics of the random polymer. The
�rst one is the identi�cation of the logarithmic asymptotics of the partition sum Z�;�

n in terms of ��.
The second statement is that `n approaches a possibly random shift ��'

?
� of '?� in the sense of the

norm k � k = k � k1 + k � k1. (We de�ne ��'(t) = '(t � �) for t; � 2 R.) The third statement is that the
Lebesgue measure of the support of `n, denoted by j supp `nj, converges to the one of '?�, which is 2R?

� .
This implies in particular that the o�set � is concentrated on [�R?

�; R
?
� ]. Here is the precise statement.

Theorem 1 Fix � > 0 and put d = 1. Then

(i)

lim
n!1

1

�n log n
logZ�;�

n = ���: (0.14)

(ii) For any " > 0,

lim
n!1Q�;�

n

�
inf
�2R

k`n � ��'
?
�k > "

�
= 0: (0.15)

(iii) For any Æ > 0,

lim
n!1Q�;�

n

���j supp `nj � 2R?
�

�� > Æ
�
= 0: (0.16)

Quantitative statements on the rate of convergence can be found in Proposition 1.2 and 1.3 below.

Heuristics for the variational problem

Let us roughly calculate the contribution to e�H
�;�
n coming from paths satisfying `n � ' for some �xed

' 2 F . If
1

n
`n(x) � 1

�n
'

�
x

�n

�
; x 2 Z; (0.17)

for some sequence �n in (0;1) and some ' 2 F , then our Hamiltonian is roughly given by

H�;�
n � �

2

n2

�3
n

Z
'0(t)2 dt: (0.18)

In order to obtain an approximation for the probability of the event in (0.17), we use the fact (Knight's
Theorem) that (12`n(x))x2Z is close to being a Markov chain on N with transition kernel

P (i; j) =

�
i+ j � 2
i� 1

��
1

2

�i+j�1

; i; j 2 N: (0.19)
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This kernel has the limiting behavior

P (i; j) � 1p
2�(i+ j)

exp

�
� (i� j)2

2(i+ j)

�
; i; j !1: (0.20)

If we make the mild assumption that �n = o(n), i.e., that the local times tend to in�nity as n ! 1,
then we may use the asymptotics in (0.20). The term coming from the exponential in (0.20) is always
negligible in comparison to the Hamiltonian in (0.18), and therefore we may concentrate on the square
root term. Therefore, the leading term in the expansion is:

P
�
`n � '

� �Y
x2Z

P

�
n

2�n
'

�
x� 1

�n

�
;
n

2�n
'

�
x

�n

��
� exp

�
�1

2
j supp(')j�n log n

�n

�
: (0.21)

Now one must choose the order of �n in such a way that the order of the Hamiltonian in (0.18) and
the order of the logarithm of the probability in (0.21) are equal, i.e.,

n2

�3
n

= �n log
n

�n
: (0.22)

This is the case precisely for the choice in (0.7). Since log(n=�n) � 1
2 logn, we end up with the formula

E
�
e�H

�;�
n 1lf`n � 'g

�
� e�G�(')�n log n; (0.23)

by combining the approximations (0.18) and (0.21). Maximization over ' 2 F yields (0.14).

Discussion

In Theorem 1, the path measure Q�;�
n turns out to be asymptotically slightly self-attractive.

We have a precise conjecture about the limiting joint distribution of the random shift arising in
assertion (ii) and the scaled endpoint 1

�n
Sn of the polymer chain. In order to describe it, we need the

square root of '?� to be normalized as a probability density:

�?�(d�) =
1

N?
�

q
'?�(�) d�; where N?

� =

Z
R

q
'?�(�) d�: (0.24)

Let Y� and Y 0
� be independent random variables with law �?�. Then we conjecture that

L
Q�;�
n

[(Sn=�n; `n)]
n!1
=) L[(Y� + Y 0

�; �Y�'
?
�)]: (0.25)

(Here \L" denotes the law of a random variable and \=)" denotes weak convergence.) This conjecture
is based on heuristic calculations using the formulas in Section 3. Due to insuÆcient control on these
formulas, which would go down to �nite order asymptotics, we have not been able to prove (0.25).

The assertion (0.25) is typical for self-attractive models investigated in the literature. One of
the most prominent examples is the discrete version of the Wiener-sausage model where one uses
the Hamiltonian Hn = #fS0; : : : ; Sng in an arbitrary dimension (see the monograph [Sz98] and the
references therein). There also a variational problem arises whose solution is unique up to shifts, and
the square root of the minimizer serves as an asymptotic density for the endpoint distribution. In
self-attractive models, it is often possible to construct a transformed process in terms of which (0.25)
can be proven. This technique, however, seems to fail in the present context.

The greatest di�erence between the Wiener sausage and the model in the present paper is that
our variational formula does not rely on the Donsker-Varadhan large-deviation functional for the local
times. Also, our functional is not genuinely self-attractive, and therefore the standard techniques of
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folding or periodization do not work here. Indeed, the upper bound in (0.14) is derived by a careful
combinatorial analysis rather than by a compacti�cation procedure.

It is easy to see from (0.25) that there should be a positive constant C such that, for every � > 0,

E
Q�;�
n

(jSnj) � C�1=4�n; n!1: (0.26)

(Our actual Theorem 1 only yields `�'.) This means that there would be a non-monotonicity in � at
� = 0 for large n since �n = o(

p
n). We have no intuitive explanation for this to happen. Note that

our \local times rate functional" ' 7! 1
4 j supp(')j favors highly concentrated ''s while the Donsker-

Varadhan functional ' 7! R
'0(t)2='(t) dt does not.

Organization of the paper

The rest of the paper is devoted to the proof of Proposition 0.1 and Theorem 1. In Section 1 we
formulate three main assertions which imply our main results. The �rst one (Proposition 1.1) which is
purely analytic is proved in Section 2, the other two (Proposition 1.2 and 1.3) are proved in Sections 4
and 5, respectively. Preparatory material for the latter sections is provided in Section 3.

Throughout the remainder of the paper, we �x � 2 (0;1) and suppress the dependence on � from

the notation; in particular we shall write Qn, Zn, '
? etc. instead of Q�;�

n , Z�;�
n , '?� etc.

1 Strategy of the proof of Theorem 1

In this section we formulate three propositions from which Proposition 0.1 and Theorem 1 follow.

The �rst proposition is a stronger version of Proposition 0.1 and says in a strong sense that '? in
(0.12) is the unique minimizer of G on F . We denote the set of minimizers of G on F by

M = f' 2 F : G(') = �g: (1.1)

(Recall that we suppress the dependence on � from the notation.) Recall that ��' denotes the translation
of ' by � 2 R. The proposition formulates that G is bounded away from the minimal value, uniformly
in the distance dist( � ;M) from the set M. Here dist( � ;M) denotes the distance w.r.t. the norm
k � k = k � k1 + k � k1.

Proposition 1.1 (Variational problem)

(i)

M = f��'? : � 2 Rg:
(ii) For every " > 0,

inf fG(') : ' 2 F ;dist(';M) � "g > �:

The proof of Proposition 1.1 is given in Section 2.

The second proposition formulates a quantitative statement about the rates of convergence in
Theorem 1(i) and (ii), that is, for the asymptotics of the partition sum and for the Qn{probability
of fdist(`n;M) � "g. In particular, the next proposition implies that all accumulation points of
Qn(`n 2 � ) are concentrated on M.

Proposition 1.2 (Partition sum and rate of convergence) There exists R0 > 0 such that,

(i) for some N0 > 0,

e���n log ne�R
?�n log log n � Zn � e���n log n eR0�n log log n; n � N0;
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(ii) for any " > 0, there is a C" > 0 and N1 = N1(") such that

E
�
e�Hn1lfdist(`n;M) � "g� � e�(�+C")�n log n eR0�n log log n; n � N1: (1.2)

From Propositions 1.1 and 1.2, the assertions (i) and (ii) of Theorem 1 follow immediately.

The third proposition is the main step in the proof of convergence of j supp(`n)j. We call the number
# supp `n = #fS0; : : : ; Sng the range of the polymer.

Proposition 1.3 (Exponential bound for the range) There is a constant C > 0 such that, for all

Æ > 0 and all suÆciently large n 2 N,
Qn(# supp `n > 2(R? + Æ)�n) � e�CÆ�n : (1.3)

Assertion (iii) of Theorem 1 follows from Proposition 1.3 together with Proposition 1.2. Indeed,
from Proposition 1.2, one knows that 1

�n
#supp `n is bigger than 2(R?�Æ) with Qn-probability tending

to one, and Proposition 1.3 rules out that 1
�n
#supp `n is larger than 2(R? + Æ).

2 Proof of Proposition 1.1: The variational problem

In this section we prove Proposition 1.1. We compute the minimizer of the variational problem (0.13)
and prove that it is unique up to translations. Finally, we show that for a function  2 F in order to
have a small value G( ) it has to be close to the set M in k � k-sense.

We divide the proof in several steps. We need to introduce, for R > 0, the set FR = f 2
F : supp( ) = [�R;R]g and the function 'R 2 FR given by 'R(x) =

3
4R

�
1� (x=R)2

�
+
. Recall that we

suppress the dependence on � from the notation. First we show that 'R is the unique minimizer of G
on FR:

STEP 1 For any  2 FR,

G( ) � G('R) � �

16R3
k � 'Rk21: (2.1)

Proof. Note that the second derivative '00R is constant on (�R;R) and thus
R R
�R '

00
R(x)('R(x) �

 (x)) dx = 0. Furthermore, '0R('R �  )
��R
�R = 0. Hence, partial integration yields

G( ) � G('R) = �

2

Z R

�R

�
( 0)2(x)� ('0R)

2(x)
�
dx =

�

2

Z R

�R
( 0(x)� '0R(x))

2 dx

� �

4R

�Z R

�R

�� 0(x)� '0R(x)
�� dx�2

� �

16R3
k � 'Rk21:

(2.2)

2

Next we show that G('R) is minimal precisely in R = R?:

STEP 2 The map (0;1) ! R, R 7! G('R) is minimal precisely in R = R? = (92�)
1=4: The minimal

value is � = G('R?) =
4p8p
3
�1=4:

Proof. We compute

G('R) = 1

4
� 2R+

�

2

Z R

�R

�
3

4R

�2� 2

R2

�2

x2 dx =
R

2
+

9�

8R6
� 2
3
R3 =

R

2
+

3�

4
R�3:

Minimizing yields R = R? = (92�)
1=4 and G('R?) =

4p8p
3
�1=4. 2
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Together with Step 1 this implies that '? = 'R? is the unique (up to shifts) minimizer of (0.13) with
connected support. In the next step we show that we do not have to consider functions whose support
is not connected.

STEP 3 Let  1;  2 2 F with disjoint supports. Then for every � 2 [0; 1]

G�� 1 + (1� �) 2

� � �p�+
p
1� �

�
�: (2.3)

Proof. We have

G�� 1 + (1� �) 2

�
= �2 �

2 k 01k22 + 1
4 j supp( 1)j+ (1� �)2 �2 k 02k22 + 1

4 j supp( 2)j
� G�2�('?) + G(1��)2�('?)

=
4
p
8p
3
�1=4

�p
�+

p
1� �

�
:

(2.4)

2

Steps 1{3 prove assertion (i) of Proposition 1.1.

In the next step we estimate the norm k � k in terms of the norm k � k1.

STEP 4 Assume that  2 L1(R) is continuous and almost everywhere di�erentiable. Then

k k � k k1 + k k1=31 � k 0k2=32 : (2.5)

Proof. If k 0k2 = 1 then (2.5) is trivially true. Hence we may assume that k 0k2 < 1. In this case
(since k k1 <1) limjxj!1 (x) = 0. Thus

 (x)2 = 2

Z x

�1
 0(t) (t) dt = �2

Z 1

x
 0(t) (t) dt =

Z 1

�1
 0(t) (t) sign(t� x) dt (2.6)

Applying the Cauchy-Schwarz inequality gives

k k21 � k k2 � k 0k2 � k k1=21 k k1=21 � k 0k2; (2.7)

which implies

k k1 � k k1=31 � k 0k2=32 : (2.8)

From this, (2.5) follows.

2

We come to the �nal statement of this section. The assertion (ii) of Proposition 1.1 is equivalent to
the assertion of the following step.

STEP 5 Assume that ( n)n2N is a sequence in F with limn!1 G( n) = �. Then (up to shifts)  n
approaches '?:

lim
n!1 dist( n;M) = 0:
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Proof. By Step 3 we may assume that supp( n) is connected for every n 2 N. We may also assume
that the supports are centered:

supp( n) = [�Rn; Rn] for some Rn > 0; n 2 N: (2.9)

Obviously R := supn2N Rn < 1. Hence, by Step 1, we have limn!1 k n � 'Rnk1 = 0. From Step 1
and Step 2 it is clear that limn!1Rn = R?, thus limn!1 k'Rn � 'R?k = 0.

It remains to show that limn!1 k n�'Rnk = 0. Note that k 0nk2 is bounded since G(') � �
2 k'0k22

for any ' 2 F . Use (2.5) to see that

k n � 'Rnk � k n � 'Rnk1 + const: k n � 'Rnk1=31 ;

which vanishes as n!1. This �nishes the proof. 2

The proof of Proposition 1.1 is now complete.

3 Preparations

In this section, we prepare for the proofs of Propositions 1.2 and 1.3. In Section 3.1 we describe the
distribution of the local times by means of Knight's Theorem, and in Section 3.2 we prove a lower
bound for the partition function by investigating the largest Qn-atom for the local times.

3.1 Using Knight's theorem

We give a characterization of the joint distribution of the walker's local times `n = (`n(x))x2Z and the
endpoint Sn for �xed n 2 N. Our technique is based on Knight's Theorem which is the discrete version
of the so-called Ray-Knight Theorem for the local times of Brownian motion.

Our Hamiltonian is not only a function of the walker's local times, but can also be written in terms
of the walker's number of upsteps by time n, given by

mn(x) =

nX
i=1

1lfSi�1 = x; Si = x+ 1g; x 2 Z; n 2 N: (3.1)

Indeed, we have, for Sn > 0,

`n(x) = mn(x) +mn(x� 1)� 1l[1;Sn�1](x); x 2 Z; n 2 N; (3.2)

and an analogous formula holds for Sn � 0. Note that, given Sn, the sequence mn = (mn(x))x2Z of
upsteps is uniquely determined by the sequence `n = (`n(x))x2Z of local times.

The nice thing about the description in terms of the upsteps rather than local times is that the
sequence mn has an accessible distribution. Up to our best knowledge, the following observation �rst
entered the literature in [Kn63] and has been rediscovered several times since then.

Recall that we have de�ned

P (i; j) =

�
i+ j � 2
i� 1

��
1

2

�i+j�1

; i; j 2 N:

Roughly speaking, Knight's theorem states that, given Sn, the sequence (mn(Sn � x))x=0;::: ;Sn is a
Markov chain on N with transition kernel P ( � ; � ), and that (mn(Sn + x))x2N0 and (mn(�x))x2N0 are
Markov chains on N0 with transition kernel P �( � ; � ) given by

P �(i; j) = P (i; j + 1)1lN(i) + 1lf(0;0)g(i; j); i; j 2 N0 :
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Note that P (i; � ) is the distribution of 1 + the sum of i independent variables which are geometrically
distributed on N0 with parameter 1

2 . Thus, P ( � ; � ) is the transition kernel of a critical branching process
with geometrical o�spring distribution and with one immigrant per time unit. Furthermore, P �( � ; � )
is the transition kernel of a critical branching process on N0 with geometrical o�spring distribution on
N0 with parameter 1=2, that is, with zero as an absorbing boundary.

Note that, given Sn, the sequence mn is, with probability one, a random member of the set In(Sn)
where

In(s) =
n
i = (i(x))x2Z 2 NZ0 :

X
x2Z

i(x) =
1

2
(n+ s); supp(i) � [0; s� 1] connected

o
: (3.3)

The distribution of mn = (mn(x))x2Z is given in the following lemma. For the most concise formu-
lation, we state the lemma only for paths ending with an upstep. Given s 2 N and x 2 Z, we de�ne
the matrix P s

x by

P s
x(i; j) =

8><
>:
P �(i; j) if x � s;

P (i; j) if 0 � x < s;

P �(j; i) if x < 0:

(3.4)

Lemma 3.1 (Distribution of the local times) For any n 2 N, any s 2 N and any i = (ix)x2Z 2
In(s),

P (Sn�1 = s� 1; Sn = s;mn = i) =
Y
x2Z

P s
x(ix�1; ix): (3.5)

Proof. In order to describe the distribution of mn given the event fSn�1 = s�1; Sn = sg, we need one
Markov chain (m(x))x2N0 on N0 having transition kernel P ( � ; � ) and two Markov chains (m�

1(x))x2N0
and (m�

2(x))x2N0 on N0 having the transition kernel P �( � ; � ). These three chains are de�ned on one
probability space and are assumed to be independent. Now condition on the event

n
m�

1(0) = m(s);m�
2(0) = m(0);

X
x2N0

(m�
1(x) +m�

2(x)) +
sX

x=1

m(x) = (n+ s)=2
o
:

Then mn coincides in distribution with ~mn, de�ned by

~mn(x) =

8><
>:
m�

1(x� s) if x � s;

m(x)� 1 if 0 � x < s;

m�
2(�x) if x < 0:

(3.6)

(For the details we refer to [HHK97].) From these facts we obtain (3.5). 2

We will be concerned with products of P (i; j)'s with large i and j.

Lemma 3.2 (Asymptotics of the transition kernel)

(i) As i; j !1, provided that (i� j)=(i + j)! 0,

P (i; j) =
exp

n
� (i�j)2

2(i+j)

o
p
2�(i+ j)

�
1 +O

�
1

i
+

1

j

�
+O

�
(i� j)3

(i+ j)2

��
: (3.7)
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(ii) For any i; j 2 N,

maxfP (i; j); P �(i; j)g �
(

1
2 ; if i = j = 1;

1
2
p
i+j

; otherwise:
(3.8)

Proof. (i). It is suÆcient to derive the assertion for P (i+ 1; j + 1) instead of P (i; j) since

P (i; j) = P (i+ 1; j + 1)

�
1 +O

��
i�j
i+j

�2�
+O

�
1
i +

1
j

��
: (3.9)

Use Stirling's formula to see that, as i; j !1,

P (i+ 1; j + 1) =
exp

n
�(i+ j)S

�
i

i+j

�o
p
2�(i+ j)

�
1�

�
i�j
i+j

�2��1=2�
1 +O

�
1
i +

1
j

��

where S(p) = p log p+(1�p) log(1�p)+log 2 denotes (in the jargon of large deviations) the coin-tossing
rate function. Using a Taylor expansion we see that

2x2 � S(12 + x) � 2x2(1 + 4x2); x 2 ��1
2 ;

1
2

�
:

Applying this with x = 1
2
i�j
i+j completes the proof.

(ii). Since the right hand side of (3.8) is decreasing in i+ j, it suÆces to show the inequality for
P (i; j) only. One checks by direct computation that maxi+j=k P (i; j) =

1
2 ;

1
4 ;

1
4 ;

3
8 ;

3
16 , for k = 2; 3; 4; 5; 6,

thus (3.8) holds for i+ j � 6.

Now use Stirling's formula

m! =
p
2�m (m=e)me�(m); where (12m+ 1)�1 < �(m) < (12m)�1:

In particular, � is strictly decreasing, thus for m � k � 0, we have �(m) � �(k) � �(m � k) � 0. It
follows that �

m

k

�
� 1p

2�

r
m

k(m� k)

�
k

m

��k �
1� k

m

�k�m
� (2�m)�1=2 sup

x2[0;1]

�
x(1� x)

��1=2�
xx(1� x)1�x

��m
=
p
1=�m�1=22m;

(3.10)

since the supremum is attained for x = 1=2. Substituting this estimate into the de�nition of P yields
for i; j 2 N that P (i; j) � 1=

p
2�(i+ j � 2). Now use the fact that 2�(i+j�2) � 4(i+j) if i+j � 6. 2

The following corollary gives an upper bound for the contribution coming from all the paths having
some �xed local time vector. It will be an indispensable tool in Sections 4 and 5.

For Æ > 0, de�ne the functional GÆ : F ! R by

GÆ(') = �

2
k'0k22 +

1

4
jf' > Ægj; (3.11)

where we write f' > Æg = ft 2 R : '(t) > Æg for short, and j � j denotes the Lebesgue measure.

We introduce the discrete set

Fn = f' 2 F : P (`n = ') > 0g; n 2 N; (3.12)

which is the support of the distribution of `n under the simple random walk law P . Recall (3.4).
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Corollary 3.3 (A basic upper bound) For any n; s 2 N, every ' 2 Fn and any Æ > 0,

E
�
e�Hn1lf`n = '; Sn = sg� � e�G

Æ(')�n log n2n2e4
p
�Hn(')e�jf'>Ægj�n log Æ

Y
x : ix+ix�1�Æ n

�n

P s
x(ix�1; ix): (3.13)

where

Hn(') =
�

2
k'0k22�n logn: (3.14)

Proof. Let us introduce some more notation. In the following, we shall use the multi{index i =
(ix)x2Z 2 In(s) for some generic upstep vector, we de�ne a generic local time vector j = (jx)x2Z by
jx = ix + ix�1 � 1lfx 2 [1; s � 1]g and the scaled linear interpolation ' 2 F of j by '( x

�n
) = �n

n jx for
x 2 Z. Note that

mn = i () `n = j+ 1l0 () `n = ': (3.15)

In terms of this notation, we have that

Hn(') =
�

2

X
x2Z

[ix � ix�2]
2 =

�

2

X
x2Z

[jx � jx�1]
2 =

�

2
k'0k22�n logn (3.16)

(recall (0.22)), such that the Hamiltonian Hn is equal to Hn(`n). In an abuse of notation, we sometimes
shall also write Hn(i) or Hn(j) instead of Hn(') if no confusion can arise.

Let us �rst handle paths that end with an upstep. Lemma 3.1 yields

E
�
e�Hn1lf`n = '; Sn�1 = s� 1; Sn = sg� = e�Hn(')P

�
`n = '; Sn�1 = s� 1; Sn = s

�
= e�

�
2
k'0k22�n log n

Y
x2Z

P s
x(ix�1; ix):

(3.17)

Now extract the product over those x with ix�1 + ix > Æ n
�n
, which are �njf' > Ægj factors. For every

such x, use Lemma 3.2(ii) to estimate maxfP (ix�1; ix); P
�(ix�1; ix)g � 1

2j
�1=2
x � (Æn=�n)

�1=2 . Now
use that log n

�n
= 1

2 log n+
1
4 log log n � 1

2 log n and summarize. This shows that the left hand side of

(3.17) is not smaller than the right hand side of (3.13) without the factor 2n2e3
p
�Hn(').

In order to handle the paths that end with a downstep at time n, note that a 
ip of the last step
does not change the path's probability, and it corresponds to a switch from s to s+2, from i to i+1ls+1

respectively from j to j� 1ls + 1ls+2:

P
�
`n = '; Sn�1 = s+ 1; Sn = s

�
= P

�
`n = j� 1ls + 1ls+2; Sn�1 = s+ 1; Sn = s+ 2

�
:

Now apply the above to these new parameters and note that

P s+2
s+2 (is+1 + 1; is+2)P

s+2
s+1 (is; is+1 + 1)

P s
s+2(is+1; is+2)P s

s+1(is; is+1)
=

(is+2 + is+1)(is+1 + is)

4i2s+1

� n2; (3.18)

and

jHn(i+ 1ls+1)�Hn(i)j = j� + �(2is+1 � is�1 � is+3)j � 4
p
�Hn('): (3.19)

Substituting these bounds proves the claim.

2
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3.2 The largest Qn-atom for the local times

In the following lemma, we apply the results of Section 3.1 for deriving a crucial lower bound. It shows
that in our model the entropy e�ect arises only on the level of the path but not on the level of the local
times. In particular, the lower bound in Proposition 1.2(i) follows from Lemma 3.4.

Lemma 3.4 (The lower bound) For suÆciently large n 2 N,

max
'2Fn

E
�
e�Hn1lf`n = 'g� � e���n log n e�

R?

4
�n log log n: (3.20)

Proof. We prove the statement for n even. The proof for n odd is similar.

We pick some approximation ' of '? as follows. Choose some � 2 Fn=2 such that supp� � [�R?; R?]

and such that ix =
1
2
n
�n
�( x

�n
) 2 N0 and such that �1 � ux � 1 for any x 2 Z, where

ux =
1

2

n

�n

�
�
�
x
�n

�� '?
�
x
�n

��
: (3.21)

Note that i = (ix)x2Z lies in In(0). The above � corresponds to a ' 2 Fn via '(t) = �(t� 1=�n)+�(t).
That is, '(x=�n) = (n=�n)jx, where j is given by jx = ix+ ix�1 (recall (3.15) and use that s = 0). This
construction makes sure that both ' and its upstep vector function � are close to '? respectively 1

2'
?.

We claim that, on the event f`n = 'g, we have

(i) Hn =
�

2
k('?)0k22 �n logn

�
1 + o

� 1

log n

��
;

(ii)
X
x2Z

(ix � ix�1)
2

jx
� o(�n);

(iii)
Y
x

j
� 1

2
x � e�R

?�n log n
�n = e�

R?

2
�n log n e�

R?

4
�n log log n:

To see that (i) holds, note that

Hn =
�

2

X
x2Z

[ix � ix�2]
2 =

�

2

X
x2Z

h n

2�n

�
'?
� x

�n

�
� '?

�x� 2

�n

��
+ ux � ux�2

i2
: (3.22)

Writing out the square gives three terms, the �rst of which is� n

2�n

�2X
x2Z

h
'?
� x

�n

�
� '?

�x� 2

�n

�i2
=

Z
R

('?)0(t)2 dt �n log n
�
1 + o

� 1

log n

��
: (3.23)

The third term is bounded in absolute value by jPx[ux�ux�2]
2j � 8R?�n. The cross term is bounded

from above using partial summation by

2
n

�n

X
x2Z

juxj
���'?�x+ 2

�n

�
� 2'?

� x

�n

�
+ '?

�x+ 2

�n

���� � 8k('?)00k1 n
�2
n

= o(�n); (3.24)

where we used that���'?�x+ 2

�n

�
� 2'?

� x

�n

�
+ '?

�x+ 2

�n

���� � 2

�n

Z (x+2)=�n

(x�2)=�n

j('?)00(t)j dt:

In a similar way, one derives assertions (ii) and (iii). Now use Lemmas 3.1 and 3.2 and the fact that
� = �

2 k('?)0k22 +R?=2 to obtain the assertions. 2
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4 Proof of Proposition 1.2

In this section we show the upper bounds of Proposition 1.2. Recall that the lower bound in (i) was
already established in Lemma 3.4.

In Section 4.1 we show that the contribution to e�Hn that comes from paths satisfying j supp(`n)j >
R log n or jft : `n(t) > (log n)�2gj > R is extremely small if R is large enough. This is done by a precise
analysis of the probability of these events under the free walk measure, using the Knight description of
the walker's local times.

In Section 4.2, we take advantage of having established the additional constraints j supp(`n)j �
R log n and jft : `n(t) > (log n)�2gj � R for some R > 0 in order to show that also the contribution
from paths satisfying dist(`n;M) > " is much smaller than the partition sum Zn, which is the assertion
of Proposition 1.2.

4.1 Bounding the range of the polymer

After two preliminary lemmas (Lemma 4.1 and 4.2) supplying us with a volume estimate and a bound
on binomial coeÆcients, we come to the �rst main statement: In Lemma 4.3 we give exponential bounds
for the Qn{probability of a too large support of the polymer. This lemma will be pivotal also for the
proof of Proposition 1.3 in Section 5.

For any function f : ZtoN0 and K 2 R, we abbreviate ff > Kg = fx 2 Z : f(x) > Kg and denote
the cardinality of this set by #ff > Kg. Note that supp `n = fS0; : : : ; Sng.

Lemma 4.1 (Volume estimate) For all suÆciently large R1; R2;M 2 N such that R1 > M , and for

either K = 1 or K � 3 with K < M ,

sup
n2N

P
�
#supp `n = R1;#f`n � Kg = R2;Hn � �

2
M
�
� R12

�R1K�R2=2

�
R1

M

�
8M : (4.1)

Proof. Let

BM;K
R1;R2

=

(
i = (ix)

R1
x=1 2 NR1 :

R1X
x=1

(ix � ix�2)
2 �M;#fx : ix�1 + ix � Kg = R2

)
; (4.2)

where we put iR1+1 = 0. Note that BM;1
R1;R2

is void unless R1 � R2. Bound the left hand side of (4.1)
from above by

R1

X
i2BM;K

R1;R2

R1Y
x=1

maxfP (ix�1; ix); P
�(ix�1; ix)g: (4.3)

For either K = 1 and all x or for large K and x such that ix�1 + ix < K, we use (see Lemma 3.2(ii))
the rough estimate

maxfP (ix�1; ix); P
�(ix�1; ix)g � 1

2
;

while for x such that ix + ix�1 � K, we use that, for K � 3,

maxfP (ix�1; ix); P
�(ix�1; ix)g � 1

2
p
K
:

Hence,

l.h.s. of (4.1) � R1

�1
2

�R1�R2
� 1

2
p
K

�R2

#BM;K
R1;R2

= R12
�R1K� 1

2
R2#BM;K

R1;R2
: (4.4)
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The �rst three factors give the �rst three factors in the right hand side of (4.1). Hence, we are left to
bound #BM;K

R1;R2
. This is done as follows.

#BM;K
R1;R2

� #
n
i = (ix)

R1
x=1 2 NR1 :

R1X
x=1

(ix � ix�2)
2 �M

o

� #
n
d = (dx)

R1
x=1 2 ZR1 :

R1X
x=1

d2x �M
o

�
�
R1

M

�
2M#

n
d = (dx)

M
x=1 2 NM :

MX
x=1

dx �M
o

�
�
R1

M

�
2M

MX
k=0

#
�
d 2 NM : kdk1 = k

	

=

�
R1

M

�
2M

MX
k=0

�
M + k � 1

M

�
:

(4.5)

The proof now follows from the bound
�M+k�1

M

� � 2M+k�1 and performing the sum over k. 2

In the proof of the next corollary and later we need the following elementary estimate for binomials.

Lemma 4.2 (Bound for binomial coeÆcients) For all m; k 2 N such that e2k � m,�
m+ k

m

�
� e2k log (m=k): (4.6)

Proof. Using Stirling's formula as in (3.10), we see that

�
m+ k

m

�
� 1p

2�

r
m+ k

mk

(m+ k)(m+k)

kkmm

� (m+ k)(m+k)

kkmm
=
�
1 +

k

m

�m+k�m
k

�k
= e2k log(m=k) exp

�
(m+ k) log

�
1 +

k

m

�
� k log

m

k

�
:

(4.7)

By assumption m � e2k, so that by the estimate log (1 + x) � x it follows that

(m+ k) log

�
1 +

k

m

�
� k log

m

k
� m+ k

m
k � 2k � 0: (4.8)

2

Based on Lemmas 4.1 and 4.2, we can now prove relatively easily a weaker version of Proposition 1.3.
In particular, we rule out that the support of `n is longer than log n times a large constant.

Lemma 4.3 (Exponential bounds on the range of the polymer) There exist C;R0; N0 > 0
such that, for all n � N0,

(i) for all L � R0�n log n,

Qn

�
#supp `n > 2L

� � e�CL; (4.9)
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(ii) for all R � R0,

Qn

�
#f`n > n

1
8 g > R�n

� � e�CR�n logn: (4.10)

Proof. (i). Estimate, for all c 2 (0; 1),

Qn

�
#supp `n > 2L

� � e��cL=2

Zn
+

1

Zn
P
�
#supp `n > 2L;Hn � �cL

2

�
: (4.11)

In order to further estimate the second term, we apply Lemma 4.1 for M = bcLc for some small c > 0,
K = 1 and R1 = R2 and sum over R1 � 2L, where we determine c in the course of the proof. This
yields

P
�
#supp `n > 2L;Hn � �cL

2

�
� 8cL

X
R1�2L

R12
�R1

�
R1

bcLc
�

� e(3 log 2)cL
X

R1�2L

R12
�R1e2cL log

R1�cL

cL

� e(3 log 2�2 log(2=c))cL
X

R1�2L

R1e
(c�log 2)R1 ;

(4.12)

where in the second line we used that L is large, and we applied Lemma 4.2 with k = bcLc, and
m = R1�bcLc. To be able to apply Lemma 4.2, we need that e2k = e2bcLc �m = R1�bcLc, which is
true when c � 2=(1+e2). Assuming even c 2 (0; 0:01) we have log 2�c � 2=3, thus a simple calculation
shows that for L � 4 X

R1�2L

R1e
(c�log 2)R1 � 4Le(c�log 2)L:

For this choice of c also c(3 log 2�2 log(2=c)) < (log 2)=4 and c < (log 2)=4, thus (4.12) can be continued
by

� 4Le�L(log 2)=4e�L log 2 � e�L log 2

for L large enough.

Hence, using this in (4.11), we see that, for suÆciently small c 2 (0; 1), the r.h.s. of (4.11) is bounded
by 1

Zn
e�CL for some C > 0. Using Corollary 3.4 and recalling that L � R0�n log n, we arrive at the

assertion (after possibly changing the value of C).

(ii). This is analogous to the proof of (i), and we point out the di�erences only. Start with an
estimate analogously to (4.11). This time apply Lemma 4.1 for M = bcR�n log nc and K = bn1=8c and
sum over R1 � R2 � R�n. Again use Lemma 4.2 and summarize to get the assertion. 2

4.2 Using the constraints

In Section 4.1 we have established bounds for the Qn{probability that the range of the polymer is too
large. In Lemma 4.4 we will give an upper bound for the contribution to the partition sum coming from
paths with not too large a range. This puts us in the position to �nish the proof of Proposition 1.2 at
the end of this section.

For the next lemma, recall from Proposition 1.1(ii) that, for any " > 0, the constant

C(") := inf
�G(') : dist(';M) � "

	� � (4.13)

is positive. For R;M > 0, introduce the set

Fn(R;M) =
�
' 2 Fn : j supp(')j � R log n; jf' > (log n)�2gj � R; k'0k22 �M�n log n

	
; (4.14)

where we recall that we write f' > Æg short for ft 2 R : '(t) > Æg. We have already shown in Lemma 4.3
that limn!1Qn(`n 2 Fn(R;M)c) = 0 if R and M are large.
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Lemma 4.4 (The main upper bound) Fix M;R > 0 and " � 0. Then, for all suÆciently large

n 2 N,

E
�
e�Hn1lfdist(`n;M) � "g1lf`n 2 Fn(R;M)g� � e�(�+C("=3))�n log n e8R�n log log n: (4.15)

Proof. Abbreviate Æn = (log n)�2 and "n = "� (3 + 4=(3R?))R= log n = "+ o(1), where we let "n = 0
for " = 0. First we show that for any ' 2 Fn(R;M) such that dist(';M) � ", we have

GÆn(') � (�+ C("n))
�
1� R

log n

�2
: (4.16)

In order to do this, de�ne 'n(x) = ('(x) � Æn)+ and note that, since k'nk1 � 1 � Ænj supp('n)j �
1�RÆn logn = 1�R= log n,

GÆn(') � G('n) � G
�

'n
k'nk1

�
k'nk21 � G

�
'n

k'nk1

� �
1� R

logn

�2
: (4.17)

In order to show that (4.16) holds, it is enough to show that dist('n=k'nk1;M) � "n. For doing this,
use that 1 � k'nk1 and the triangle inequality to get

dist('n=k'nk1;M) � dist('n; k'nk1M) � dist('; M)� k' � 'nk � (1� k'nk1)k'?k: (4.18)

Now recall that dist(';M) � ", that k'?k = 1 + 4
3R? and that 1 � k'nk1 � R= log n and observe that

k'�'nk � 2RÆn logn to conclude that dist('n=k'nk1;M) � "n. Hence (4.16) holds. In particular, we
have, for suÆciently large n 2 N,

GÆn(') � �+ C("=2): (4.19)

Abbreviate R1 = bR�n log nc and put

Bn
R =

(
i = (ix)

R1
x=1 2 NR1

0 :

R1X
x=1

(ix � ix�2)
2 �M�n logn;#

n
x : ix�1 + ix > Æn

n

�n

o
� R�n

)
:

We bound 2n2e4
p
�Hn(') � e

1
2
R�n log Æn . Then, by Corollary 3.3 and (4.19), we have, for large n,

l.h.s. of (4.15) � e�(�+C("=2))�n log n e�
1
2
R�n log Æn

nX
s=�n

X
i2Bn

R

Y
x : ix+ix�1�Æn n

�n

P s
x(ix�1; ix): (4.20)

Note that 1
2R�n log Æn � �3R�n log log n for large n. Therefore, to �nish the proof of

Lemma 4.4, it suÆces to show that the sum over i 2 Bn
R on the r.h.s. of (4.20) is not bigger than

expf5R�n log log ng=(2n + 1). For i 2 Bn
R, de�ne A(i) =

�
x 2 f1; : : : ; R1g : ix + ix�1 > Æn

n
�n

	
. Then

we can rewrite the sum over i in (4.20) asX
A�f1;::: ;R1g
#A�R�n

X
i2Bn

R : A(i)=A

Y
x2f1;::: ;R1gnA

P s
x(ix�1; ix)

=
X

A�f1;::: ;R1g
#A�R�n

X
(dx)x2AP

x2A d2x�M�n log n

X
(ix)x=2A

Y
x2f1;::: ;R1gnA

P s
x(ix�1; ix);

(4.21)

where dx = ix � ix�2. Now use that P s
x for any x � 0 and the transposed of P s

x for any x < 0 are
stochastic matrices to perform the sum over (ix)x=2A, to get that

r.h.s. of (4.21) � #
n
(A; (dx)x2A) : A � f1; : : : ; R1g;#A � R�n;

X
x2A

d2x �M�n log n
o
: (4.22)



18 van der Hofstad, Klenke, Konig

We proceed as in (4.5) to conclude that

r.h.s. of (4.21) �
X

1�k�R�n

�
R1

k

�
#fd 2 Zk : kdk22 �M�n log ng

�
X

1�k�R�n

�
R1

k

�
2k#fd 2 Nk0 : kdk1 �M�n logng

�
X

1�k�R�n

�
R1

k

�
2k

X
1�l�M�n log n

�
l + k � 1

k

�
:

(4.23)

Recall that R1 = R�n logn. We use the fact that
�m
k

�
and

�m+k
k

�
are increasing in m to conclude that

r.h.s. of (4.21) �
X

1�k�R�n

�bR�n lognc
k

�
2kM�n logn

�bM�n log nc+ k � 1

k

�

� 21+R�nM�n logn

�bR�n log nc+ bR�nc
bR�nc

�
�
�bM�n lognc+ bR�nc

bR�nc
�
:

(4.24)

Use Lemma 4.2 to bound this from above by

21+R�nM�n logn � exp
�
2R�n

�
log logn+ log

�
M

R
logn

���
: (4.25)

For large n, this is not bigger than expf5R�n log logng=(2n+ 1). This �nishes the proof. 2

Proof of Proposition 1.2. The lower bound in (i) follows from Lemma 3.4.

Since Hn = �
2 k`

0
nk22 �n log n, one elementarily derives, with the help of Lemma 4.3, if R and M

are chosen large enough, that Qn(`n 2 Fn(R;M)c) � e�C�n log n for suÆciently large n 2 N, for some
C = C(R;M) > 0. Now the upper bound in (i) follows from an application of Lemma 4.4 with " = 0,
and assertion (ii) follows from an application of the same lemma for some " > 0, with the choice
C" = C("=3) ^ C(R;M) > 0. 2

5 Proof of Proposition 1.3

In order to show the proposition we have to make sure that the Qn{typical path does not have too
large a range. We know already that the local times are close to the optimal shape, both in the L1 and
L1-norms. However, this does not suÆce to prove the convergence of the range. Now we have to take
care of small pieces of the path that might exceed the optimal range. The main problem is that the
contributions to the Qn-probability of the small and the main part are of di�erent orders. This forces
us to develop a machinery that allows to consider these parts separately.

In Section 5.1 we develop the basic tools for cutting paths into two pieces and estimating the Qn-
probability of the whole path in terms of the Qn-probabilities of the respective parts. It is essential
that the local time at the point x where we cut the path is not too big. Otherwise we would make too
large an error.

In Section 5.2 we split the event that the path has a large range into three events E1, E2 and E3,
which will be dealt with separately. For E1 the bound in Lemma 4.3(ii) is good enough. For E2 and
E3 we employ results of Section 5.1 to get improved bounds in Lemmas 5.6 and 5.8.

Finally, in Section 5.3 we �nish the proof with a bootstrap method. In a �rst step we use
Lemma 4.3(ii) as well as Lemma 5.6 and 5.8 to show that the range of the path cannot exceed the
optimal range 2R?�n by more than R�n log logn, which is an improvement over the previous R�n log n
bound of Lemma 4.3(i). In two further steps we apply the intermediate result with a special choice
of the parameters in Lemma 4.3(ii), 5.6 and 5.8 again to end up with the �nal result that the range
cannot exceed 2(R? + Æ)�n for any Æ > 0.
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5.1 Surgery on paths

Before we come to the core of the argument in Section 5.2, we develop our main tool: cutting paths
into two parts and estimating the parts separately.

The �rst lemma (Lemma 5.1) is concerned with the basic cutting procedure. We �x a point x at
which we would like to cut the path in two pieces. Next we put all loops below x to the �rst path
and all loops above x to a second path. Modulo some bookkeeping for the initial and �nal part of the
original path this is all.

Note that the paths that we obtain from such a crude cutting procedure are rather rough at the
boundary point x. That is, around this point we have an exceptionally large decay of the local times
and thus an exceptionally large contribution to the Hamiltonian. By adding the mirror images (around
x) to the cut paths we get rid of this problem. This yields improved estimates described in a second
lemma (Lemma 5.4).

Basic cutting procedure

Now we come to the details. We �x a local time con�guration Ln for a path of length n as well as its
upstep vector Mn. From this the position s = sn can be computed. We �x an x 2 N and de�ne the
number of loops the path makes above the level x and the number of loops the path makes below the
level x:

U :=Mn(x)� 1ls>x and D :=Mn(x� 1)� 1: (5.1)

Further let

n̂ :=
X
y�x

Ln(y)�Mn(x� 1)� 1ls>x: (5.2)

The aim is to cut the path into two pieces at the point x. Since there are potentially several possibilities
to do so, we have to specify the cutting procedure. We want to cut in such a way that the upstep vectors
of the left part is given by (Mn(y)1ly�x�1)y, while the upstep vectors of the part on the right (shifted
to the origin) should be (Mn(y+ x)1ly�0)y. The length of the right part is then n̂ and the length of the
left part is n� n̂. The corresponding local times are

L0n�n̂(y) =

8><
>:
Ln(y); if y < x;

Mn(x� 1); if y = x;

0; otherwise,

and L00n̂(y) =

8><
>:
Ln(x+ y); if y > 0;

Mn(x) + 1ls�x; if y = 0;

0; otherwise.

(5.3)

We think of n̂ as being small compared with n (although this does not enter the subsequent formulas).
Hence we call the path left of x the major path and the path right of x the minor path.

Lemma 5.1 (Basic cutting estimate) With the above de�nitions,

E
�
e�Hn1lf`n = Lng

�
= eF+G �E

�
e�Hn�n̂1lf`n�n̂ = L0n�n̂g

�
E
�
e�Hn̂1lf`n̂ = L00n̂g

�
; (5.4)

where

jF j � Ln(x)
�
�Ln(x) +

q
�Hn(�Ln)

�
and 0 � G � Ln(x) � log 2: (5.5)

Proof. Recall the notation in (3.14). Clearly

E
�
e�Hn1lf`n = Lng

�
= e�Hn(�Ln)P (`n = Ln):



20 van der Hofstad, Klenke, Konig

Analogous formulae hold for the expectations on the right hand side of (5.4) Thus we have to estimate
the di�erence of the Hamiltonians and the quotient of the probabilities in (5.4).

We start with the Hamiltonians. Note that the sum in (3.16) di�ers only in the summands for x
and x+ 1. Let �0 = L0n�n̂(x)=Ln(x) and �

00 = L00n̂(0)=Ln(x). The summand in x is estimated using���(Ln(x)� Ln(x� 1))2 � �L0n�n̂(x)2 + (L0n�n̂(x� 1)� L0n�n̂(x))
2
����

=
����1� 2�02

�
Ln(x)

2 � 2(1� �0)Ln(x)Ln(x� 1)
���

=
�
1� 2�0(1� �0)

�
Ln(x)

2 + 2(1 � �0)Ln(x)
��Ln(x� 1)� Ln(x)

��
� Ln(x)

2 + 2(1� �0)Ln(x)
q
Hn(�Ln)

r
2

�
:

(5.6)

An analogous formula holds for the summand in x + 1 with L00n̂ instead of L0n�n̂. Using the fact that
�0 + �00 � 1 we get��Hn(�Ln)�Hn�n̂(�L0n�n̂)�Hn̂(�L

00
n̂)
�� � Ln(x)

�
�Ln(x) +

q
�Hn(�Ln)

�
:

It remains to estimate the ratio of the probability terms. The original path with local times Ln makes
U +D loops from x. There are

�
U+D
U

�
choices for the order of loops above and below x. Hence we get

P (`n = Ln) =

�
U +D

U

�
P (`n�n̂ = L0n�n̂)P (`n̂ = L00n̂):

(This formula can be derived also using the matrices P and P �.) Using
�
U+D
U

� � 2U+D = 2Ln(x)�1 the
proof is completed. 2

We continue with two applications of the lemma. The �rst one estimates the probability for the
minor path having a given �xed length. Note that the bound on the Hamiltonian may be inserted freely
for large M since the opposite has obviously a negligible probability.

Corollary 5.2 (Estimate for a �xed length of the minor path) Fix x 2 N0 and l; k;M � 0 with
l � k. Then

Qn

�
`n(x) � l;

X
y�x

`n(y) = k;Hn � �

2
M�n logn

�

� n2le�l
2
e
p
2�M�n log n max

j2f0;::: ;lg
Zn�k+jZk�j

Zn
:

(5.7)

Proof. Sum (5.4) on all Ln with Ln(x) � l and
P

y�x Ln(y) = k and Hn(Ln) � �
2M�n log n, and

divide by the partition sum Zn. The extra factor n comes from the fact that here we have at most n
possible values for the upstep number Mn(x). 2

Recall that we are interested in getting estimates for the Qn-probability of paths for which the
support right of x is large. This was the purpose of Lemma 5.1. For the next corollary of the lemma
we introduce the following event: For x 2 N0 , M > 0 and k; l;� 2 N0 with � � k

F (x; k;�; l) =
nX
y�x

`n(y) � k; `n(x+�) > 0; 0 < `n(x) � l;Hn � �

2
M�n logn

o
: (5.8)

In words, the path visits at least all the integers in [x; x + �] and does not spend more than k time
units right of x. In our later applications, we shall choose k relatively small in comparison to n, such
that the main part of the path will indeed be left of x.
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Corollary 5.3 (Estimate with a given minimal support of the minor path) For any x, M ,

�, k, l,

Qn

�
F (x; k;�; l)

� � kl � 2le2�l2e2
p
2�M�n log n max

n̂2f�;::: ;kg
inf
'2Fn̂

Hn(')�
�
2M�n log n

Qn̂(# supp `n̂ � �)

Qn̂(`n̂ = ')
: (5.9)

Proof. From Lemma 5.1 we get the following inequality:

Qn

�
F (x; k;�; l)

� � 1

Zn
2le�l

2
e
p
2�M�n log n

�
kX

n̂=�

lX
b=1

E
�
e�Hn�n̂1lfmn�n̂(x� 1) = bg1lfHn�n̂ � �

2
M�n log ng

�
E
�
e�Hn̂1lf#supp `n̂ � �g

�
:

(5.10)

Furthermore, Lemma 5.1 implies, for any choice of b, n̂ and for any ' 2 Fn̂ satisfying Hn̂(') �
�
2M�n log n,

Zn � E
�
e�Hn1lfmn(x� 1) = bg1lf`n(x) � lg1lfHn � �M�n logng

�

� E
�
e�Hn�n̂1lfmn�n̂(x� 1) = bg1l�Hn�n̂ � �

2
M�n log n

	�
E
�
e��Hn̂1lf`n̂ = 'g

�
e��l

2
e�

p
2�M�n log n:

(5.11)

Using (5.11) in (5.10) we get

Qn

�
F (x; k;�; l)

� � 2le2�l
2
e2
p
2�M�n log n

X
��n̂�k
b�l

inf
'2Fn̂

Hn̂(')�
�
2M�n log n

Qn̂

�
#supp `n̂ � �

�
Qn̂(`n̂ = ')

: (5.12)

The right hand side is obviously not bigger than the right hand side of (5.9), and this ends the proof. 2

Doubling paths

The next lemma is concerned with the following situation: Fix a point x 2 Z and let A be an event that
depends only on the local times `n(y) with y � x and on which in particular

P
y�x `n(y) = n̂ holds for

some n̂ 2 N which is much smaller than the length n of the path. We want to estimate Qn(A) in the
situation where the local time `n(x) is too large in order to apply the cutting technique of Lemma 5.1
at the site x. The idea is to add to the piece of the path that lies right of x the mirror image of that
path left of x. This enables us to estimate Qn(A) in terms of the probability that both halves of the
concatenated path of length 2n̂ are in A.

While the formulation of this lemma requires some notation, the main application, which comes in
the subsequent corollary, does not. Thus the reader can skip directly to Corollary 5.5.

Here are the details. For a local time vector Ln denote by Lxn̂ the vector de�ned by Lxn̂(y) =
Ln(y + x)1ly�0. Here n̂ =

P
y�x Ln(y). That is, Lxn̂ is the local time vector of the path right of x,

but shifted to the origin. Denote by s the endpoint of a path corresponding to Ln. We de�ne L2n̂ by
L2n̂(((s � x)+ + 1

2 )� (y + 1
2 )) = Ln(x + y), y � 0. This is the local time shape of a path that ends in

in the point 2(s� x)+ +1. Strictly speaking, we do not require the path of length 2n̂ to be symmetric,
but rather the resulting local time vector L2n̂ is symmetric.

Assume now that we are given two local time vectors L1
n and L2

n and endpoints s1 and s2 with
L1
n(y) = L2

n(y) = Ln(y) for y � x, and s1 ^ x = s2 ^ x = s ^ x. The corresponding upstep vectors will
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always be denoted by M1
n respectively M2

n. De�ne s
1;2 = (s1 � x)+ + (s2 � x)+ + 1 and

L1;2
2n̂ (y) =

(
L1;x
n (x+ y � (s2 � x)+ � 1); if y � (s2 � x)+ + 1;

L2;x
n (x� y + (s2 � x)+); if y � (s2 � x)+:

(5.13)

The pair (L1;2
n ; s1;2) belongs to paths that end in s1;2 and where the second path's mirror image is taken.

Finally let A denote a subset of the local time vectors Ln̂ for paths of length n̂ that stay right of
the origin and for which Ln̂(0) = Ln(x). Denote

A1;2 =
�
L1;2
2n̂ : 9x such that L1;x

n̂ ; L2;x
n̂ 2 A	:

Lemma 5.4 (Doubling paths) Assume that B > 0 is �xed. There exists a constant C > 0 depending
only on B such that whenever Ln(x)�n̂=n̂ < B,

Qn(`
x
n̂ 2 A) � eC�n̂ log�n̂

p
Q2n̂(`2n̂ 2 A1;2) (5.14)

Proof. The basic observation is that for i = 1; 2 (recall the notation P s
x from (3.4)),

Qn

�
`n = Lin; Sn = si

�
Qn

�
`n = Ln; Sn = s

� =

1Y
y=x

hP s
y

�
M i

n(y);M
i
n(y � 1)

�
P s
y

�
Mn(y);Mn(y � 1)

� e��(Lin(y�1)�Lin(y))2

e��(Ln(y�1)�Ln(y))2
i
: (5.15)

It will be suÆcient for our purposes to rewrite the denominators as

1Y
y=x

�
P s
y

�
Mn(y);Mn(y � 1)

�
e��(Ln(y�1)�Ln(y))2�
= E

�
e�H2n̂1lf`2n̂ = L2n̂g1lfS2n̂ = 2(s� x)+ + 1g�1=2:

(5.16)

Hence, we have

Y
i=1;2

Qn

�
`n 2 A; `n(y) = Ln(y); y � x; Sn = si

�
Qn

�
`n = Ln; Sn = s

� � Q2n̂

�
`2n̂ 2 A1;2; S2n̂ = s1;2

�
Q2n̂

�
`2n̂ = L2n̂; S2n̂ = 2(s� x)+ + 1

� : (5.17)

We next sum (5.17) over s1; s2 2 f�n; : : : ; ng to arrive at

Qn

�
`xn 2 A; `n(y) = Ln(y); y � x

�2
Qn

�
`n = Ln; Sn = s

�2 � n2
Q2n̂

�
`2n̂ 2 A1;2

�
Q2n̂

�
`2n̂ = L2n̂; S2n̂ = 2(s� x)+ + 1

� : (5.18)

From (5.18), we obtain that

Qn

�
`xn 2 A; `n(y) = Ln(y); y � x

� � Qn

�
`n = Ln

�
n

s
Q2n̂

�
`2n̂ 2 A1;2

�
mins:L2n̂(s)�1Q2n̂

�
`2n̂ = L2n̂; S2n̂ = s

� : (5.19)

Summing over all possible values of Ln(y), y < x yields

Qn

�
`xn 2 A

� � Qn

�
`xn = Lxn

�
n

s
Q2n̂

�
`2n̂ 2 A1;2

�
mins:L2n̂(s)�1Q2n̂

�
`2n̂ = L2n̂; S2n̂ = s

� (5.20)

� n

s
Q2n̂(`2n̂ 2 A1;2)

mins:L2n̂(s)�1Q2n̂(`2n̂ = L2n̂; S2n̂ = s)
:

Note that in the event in the denominator, it is implicit that L2n̂ is symmetric around some point
s+ 1

2 and that L2n̂(s) = Ln(x). Now we choose L2n̂ such that it is close to a symmetric triangle shape
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around s + 1
2 with �xed slope Ln(x)

2=(2n̂). Similarly as in the proof of Proposition 1.2 we get that
there exists a C > 0 (depending only on B) such that Q2n̂(`2n̂ = L2n̂) � e�2C�n̂ log n̂. Indeed, we have
that jL2n̂(x)� L2n̂(x� 1)j = Ln(x)

2=(2n̂)(1 + o(1)); so that

H2n̂ =
�2n̂

Ln(x)

Ln(x)
4

4n̂2
(1 + o(1)) = �

Ln(x)
3

2n̂2
(1 + o(1)): (5.21)

Moreover, uniformly in s such that L2n̂(s) � 1

P (`2n̂ = L2n̂; S2n̂ = s) = e
� 2n̂
Ln(x)

logLn(x)+O
�
Ln(x)

2

n̂

�
: (5.22)

Hence, using that Ln(x)�n̂=n̂ < B, we �nally obtain that

Q2n̂(`2n̂ = L2n̂; S2n̂ = s) � e�H2n̂P (`2n̂ = L2n̂; Sn = s) � e�C�n̂ log n̂; (5.23)

where C = C(B). Finally, we estimate n � eC�n̂ log n̂ to arrive at the claim. 2

We come to the corollary that was the main reason to state the preceding lemma. The basic splitting
procedure gave suÆciently good estimates in a situation where the local times around the cutting point
x were small, say of order smaller than n1=8. The preceding lemma however gives an estimate that
works in the complementary situation where the paths are in

Ax;R :=
n
#fy � x : `n(y) > n1=8g > R

2
�n

o
; x 2 Z; R > 0: (5.24)

At this point though, we have to make one more assumption on the paths. They have to be in the set
Bx that is de�ned as follows. For � 2 (0; R?) let K� =

R R?
R?�� '

?(t)dt, �x " 2 (0; (K�=2) ^ '?(R? � �))
and de�ne

Bx =
n���n

n
`n(x)� '?(R? � �)

�� < "
o
\
n�� 1
n

1X
y=x

`n(y)�K�

�� < "
o
: (5.25)

Corollary 5.5 There exists C 0 > 0 such that for all choices of �, " and x, for all suÆciently large n
and all R > 0

Qn(Ax;R \Bx) � n sup
n(K��")�n̂�n(K�+")

eC
0�n̂ log n̂

q
Q2n̂(#f`2n̂ > n1=8g > 2R�n): (5.26)

Proof. Note that, for any n(K� � ") � n̂ � n(K� + ") on the event Ax;R \Bx for n > (K�=2)
�2,

`n(x)
2�2

n̂

n̂2
� 8'?(R? � �)2

K�

�
log(nK�=2)

log n

�1=2

� 16'?(R? � �)2

K�
� 3

R?
: (5.27)

Hence, we can apply Lemma 5.4. 2

5.2 Reducing and splitting the problem

This section sets the stage for the proof of the convergence of the range in Proposition 1.3. First we
point out that it is suÆcient to consider paths whose local time is close to the optimal one, centered
around some site x� 2 Z. Then we split the event under interest into three events E1, E2 and E3.
Finally, we give bounds for Qn(E2) and Qn(E3), respectively. (The term Qn(E1) will later be bounded
using Lemma 4.3(ii).)
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Reducing the problem

Recall that our goal is the derivation of the inequality in (4.9) for all L > (R? + Æ)�n rather than only
for L � const�n log n.

Fix M > 2� and de�ne the event

D"
n(x

�) =
n
k`n � �x���1

n
'?k � "

o
\
n
Hn �M�n log n

o
; x� 2 Z; " > 0: (5.28)

In words, the local times are close to the optimal shape, centered around the site x�, and the Hamiltonian
is not too large.

Note that, on D"
n(x

�), we have in particular j`n(x + x�) � n
�n
'?( x

�n
)j � " n

�n
for all x 2 Z

and
P

x : jx�x�j�R?�n `n(x) � (1 � "
2)n, and hence jPx�x�+R?�n `n(x) � nK�j � "n, where K� =R R?

R?�� '
?(t) dt. Furthermore, the set supp `n = fS0; : : : ; Sng contains at least the interval of length

2(R? � "0)�n centered at x�, where "0 = R?(1�p1� 4R?"=3) is chosen such that '?(R? � "0) = ".

Furthermore, by Proposition 1.2, there is C" > 0 such that, for suÆciently large n 2 N,

Qn

� \
x�2Z

D"
n(x

�)c
�
� e�C"�n log n + e�(M���")�n logn � 2e�C"�n logn:

Because of this and since we need to consider only x� 2 f�n; : : : ; ng (this is, there are only 2n + 1
choices for x�, which is small compared with eC"�n log n), it is suÆcient to derive the estimate in (4.9)
for D"

n(x
�) \ f#supp `n > 2Lg instead of f#supp `n > 2Lg.

Next we want to make the symmetric problem of bounding the range to a one-sided problem. Note
that for any x� 2 Z, on the event D"

n(x
�),

f#supp `n > 2Lg � �`(bx� � Lc) > 0
	 [ �`(dx� + Le) > 0

	
:

By symmetry, it suÆces to consider only one of the two events in the brackets; we shall concentrate
on the second one. Hence, to prove Proposition 1.3, it will be suÆcient to show, for some C > 0, the
estimate

max
x�2Z

Qn

�
D"
n(x

�) \ �`(dx� + Le) > 0
	� � e�C(L�R?�n); L > (R? + Æ)�n (5.29)

for all suÆciently large n 2 N.

Three events

We split the event in (5.29) in three events E1, E2 and E3 that will be treated separately. Intuitively
speaking, E1 copes the event that we cannot �nd a good point x � x� + R?�n to make the cutting
procedure work, since the local time `n(x) > n1=8 is too big. On both E2 and E3 there exists at least
one potential cutting point x � x� + R?�n. On E2 it has the property that the support right of x is
large but the path right of x is short. Finally, on E3 the path right of x has a considerable length. We
will de�ne the events as intersections (E1) and unions (E2 and E3) of the corresponding elementary
events E1(x), E2(x) and E3(x), which will be de�ned next.

For given R; r > 0 and x 2 Z, de�ne the events

An(x;R) =
n
`n(
�
x+ R

2 �n
�
) > 0

o
and Bn(x; r) =

nX
y�x

`n(y) � nr2
o
: (5.30)

In words, on An(x;R), the path (S0; : : : ; Sn) also visits the site dx+R�n=2e, and on Bn(x; r), it spends
at most nr2 time units right of x. The parameters r and R will be chosen in the course of the proof.
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For x � x� +R?�n de�ne the events

E1(x) = D"
n(x

�) \ �`n(dx� + Le) > 0
	 \ hf`n(x) > n1=8g [An(x;R)

c
i
;

E2(x) = D"
n(x

�) \
h
f`n(x) � n1=8g \An(x;R) \Bn(x; r)

i
;

E3(x) = D"
n(x

�) \
h
f`n(x) � n1=8g \Bn(x; r)

c
i
:

(5.31)

Obviously, the event D"
n(x

�) \ f`(dx� + Le) > 0g is contained in E1(x) [ E2(x) [ E3(x) for any x �
x� +R?�n. Hence the de Morgan rules yield that

D"
n(x

�) \ f`(dx� + Le) > 0g � E1 [E2 [E3; (5.32)

where

E1 =
\

x�x�+R?�n
E1(x) and Ei =

[
x�x�+R?�n

Ei(x) for i = 2; 3: (5.33)

We will show that for the appropriate values of L; r and R, the probability Qn(Ei) is small for each
i = 1; 2; 3, but for di�erent reasons:

E1 : If L � (R + R?)�n, then on f`n(dx� + Le) > 0g, the event An(x;R)
c does not occur for at least

R�n=2 values of x right of R?�n. Hence, on E1 at least R�n=2 of the local times are larger than
n1=8, which is unlikely due to Lemma 4.3(ii).

E2 : For some x � x� + R?�n, the sum of the local times right of x is less than nr2, whereas the
range is at least R�n=2. If we let r = r(n) decrease with n such that k = nr2 is so small that
R�n � R0�k log k, then Qn(E2) is small due to Lemma 4.3(i).

E3 : Since, for some x � x� + R?�n, the sum of the local times right of x is at least nr2, and by
cutting the path at x, we can estimate this contribution by the ratio of normalization constants
ZkZn�k=Zn. Moreover, we know by Proposition 1.2 that Zn � e���n log n, and since �n logn is
quite concave, the above ratio is small.

Bounds for E2 and E3

We come to giving bounds for Qn(E2) and Qn(E3) that will be needed in Section 5.3 to �nish the proof
of Proposition 1.3.

Lemma 5.6 (Bound for E2) For any C > 0 and all suÆciently large n 2 N, and for all R; r > 0, the
following implication holds: If Qk(# supp `k >

R
2 �n) � e�CR�n holds for all k 2 N with R

2 �n � k � nr2,
then for all " > 0 and all x; x� 2 Z with x � x� +R?�n,

Qn(E2(x)) � e�
1
2
CR�neR0�nr2 log log(nr2); (5.34)

where R0 is chosen according to Proposition 1.2.

In particular, if r = rn is small enough such that

�nr2 log log(nr
2) � CR

8R0
�n; (5.35)

then for n large enough

Qn(E2) � e�
1
4
CR�n : (5.36)
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Proof. On the event E2(x), we cut the local time vector at x into two pieces: the one left and the one
right of x. We use Corollary 5.3. This yields

Qn(E2(x)) � (nr)22n
1=8
e2�n

1=4
e2�

p
M (n logn)3=8 max

R
2
�n�k�nr2

inf
'2Fk

Hk(')�M�n log n

Qk(# supp `k >
R
2 �n)

Qk(`k = ')
(5.37)

Note that from Lemma 3.4 and Proposition 1.2(i) we get that for some R0 and for suÆciently large n,
and for all R

2 �n � k � nr2,

sup
'2Fk

Hk(')�M�n log n

Qk(`k = ') � e�R0�k log log k: (5.38)

We substitute (5.38) in (5.37), use the assumption and the fact that for large n

(nr)22n
1=8
e2�n

1=4
e2�

p
M (n log n)3=8 � e

1
2
CR�n ;

to get

Qn(E2(x)) � e�
1
2
CR�n max

R
2
�n�k�nr2

eR0�k log log k:

Now use the monotonicity of k 7! �k log log k to arrive at the estimate (5.34).

If (5.35) holds, then (5.34) clearly implies, for suÆciently large n and all x; x� 2 Z with x �
x� +R?�n,

Qn(E2(x)) � e�
3
8
CR�n :

Now use that Qn(E2(x)) 6= 0 for at most 2n+ 1 values of x to get

Qn(E2) �
X

x�x�+R?�n
Qn(E2(x)) � (2n+ 1)e�

3
8
CR�n � e�

1
4
CR�n

for n large enough. 2

Abbreviate f(x) =
p
x log

3
4 x for any n 2 N, so that f(n) = �n log n.

Lemma 5.7 (A concavity bound) If n � 10000, and k � n=2

1

2
f(k) + f(n� k) � f(n):

Proof. Let gn(x) =
1
2f(x) + f(n� x)� f(n). Since f 00(x) = � 1

16x
�3=2(log x)�5=4[4 log2 x+ 3] < 0 and

since g00n(x) =
1
2f

00(x)+f 00(n�x), we see that gn is concave on [1; n�1]. Furthermore, one can compute
that gn(2) > 0 for n � 9, and that gn(n=2) =

3
2f(n=2)� f(n) which is is positive for n � 9687. Hence,

gn must be strictly positive between 2 and n
2 . 2

Lemma 5.8 (Bound for E3) Fix " 2 (0; 12). Then for any suÆciently large n 2 N, for any r > 0

such that n1=8 � nr2=2, and for any x; x� 2 Z with x � x� +R?�n,

Qn(E3(x)) � e�
1
2
�f(nr2=2)e5R0�n log log n; (5.39)

where R0 is chosen according to Proposition 1.2.
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Proof. On the event E3(x) we cut the local time vector at x into two pieces: the one left and the one
right of x. We use Corollary 5.2. This yields

Qn(E3(x)) � n2 max
j�n1=8

max
nr2�k�n"

Zk�j Zn�k+j
Zn

eR0�n log logn:

Now we use Proposition 1.2(i) for k � j, n� k + j and n and recall the abbreviation f(n) = �n logn.
Hence, we obtain

Qn(E3(x)) � n2e4R0�n log log n max
j�n1=8

max
nr2�k�n"

e��[f(k�j)+f(n�k+j)�f(n)]:

Now use Lemma 5.7, the monotonicity of n 7! f(n) together with our assumption n1=8 � nr2=2 to
obtain that

f(k � j) + f(n� k + j)� f(n) � 1

2
f(k � j) � 1

2
f(nr2 � n1=8) � 1

2
f(nr2=2):

Furthermore, estimate n2 � eR0�n log log n to arrive at (5.39). 2

5.3 Proof of Proposition 1.3: the bootstrap

Recall that the proof of Proposition 1.3 follows from an extension of the inequality in (4.9) from all
L > R0�n log n to all L > (R? + Æ)�n for any Æ > 0. In the view of Section 5.2, it is suÆcient to give
the respective bounds for Qn(E1), Qn(E2) and Qn(E3) for this choice of L.

The bound on Qn(E2) is the most diÆcult one. We use a two-step bootstrap method for proving
it. More precisely, in Step 1 below we use (4.9) for L � const�n log n with an appropriate choice of
the parameters in order to extend its validity to all L larger than const�n log logn. In the following
Steps 2 and 3, we in turn use this improved bound (with another appropriate choice of the parameters)
in order to prove (4.9) for all L � (R? + Æ)�n. The latter improvement �nally implies Proposition 1.3.

STEP 1 There exist C;R1 > 0 such that for all suÆciently large n 2 N and all R > R1 log log n

Qn

�
#supp `n > 2(R +R?)�n

� � e�CR�n : (5.40)

Proof. We pick the parameters as L = (R +R?)�n and r = R
4R0 log n

where R0 is chosen so large that
Proposition 1.2 and Lemma 4.3 hold with this R0, and R is as in the claim. Recall from (5.29) and
(5.32) that it is suÆcient to prove that Qn(E1), Qn(E2) and Qn(E3) each do not exceed e�CR�n for
suÆciently large n, for some " > 0 and some C > 0.

Pick " > 0 small enough in order to apply Lemma 5.8. In the following, we estimate the probabilities
of E1, E2 and E3 separately.

E1 : Note that on the set E1, we have `n(x) > n1=8 for at least R
2 �n sites x 2 Z. Indeed, on

f`n(dx� + Le) > 0g, for at least R
2 �n sites x, the event An(x;R)

c does not occur, hence the event

f`n(x) > n1=8g must occur for these sites x.
Therefore, according to Lemma 4.3(ii), we have, for suÆciently large n 2 N,

Qn(E1) � Qn

�
#f`n > n1=8g > R

2
�n

�
� e�

1
2
CR�n log n:

E2 : We apply Lemma 5.6. First we check that the assumption of that lemma is satis�ed. For
doing this, we apply Lemma 4.3. Note that, for suÆciently large n, we have R�n � R

2 �n(1 + o(1)) =
2R0�nr2 log(nr

2) � 2R0�k log k if k � nr2. Therefore, (4.9) implies that for any k with R
2 �n � k � nr2

Qk

�
#supp `k >

R
2 �n

� � e�CR�n=4:
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Note that with our choices of r and R,

�k � �n
R

4R0 log n
if k � nr2:

Hence, �nr2 log log(nr
2) = o(R�n). Therefore, Lemma 5.6 yields that Qn(E2) � e�

1
16
CR�n for suÆ-

ciently large n.

E3 : We apply Lemma 5.8 and obtain, for any x� 2 Z,

Qn(E3) �
X

x�x�+R?�n
Qn(E3(x)) � (2n+ 1)e

� 1
2
��nr2=2 log(nr

2=2)
e5R0�n log log n:

Now use that �nr2=2 log(nr
2=2) = R

4
p
2R0

�n(1 + o(1)) and that log logn � R
R1
, according to our choices

of r and R. If we choose R1 large enough, then we obtain therefore the estimate Qn(E3) � e
� �

16R0
R�n

for any suÆciently large n.

Collecting the estimates for E1, E2 and E3 we obtain the assertion with an appropriate choice of
C. 2

At this point, we have shown that the event that the local time support exceeds R0�n log logn is
negligible under Qn. We will next improve this result to the result that the size of the support converges
to 2R?�n. For this, we will use the result of Step 1.

For the following two steps, we put L = (R+R?)�n. Recall (5.32).

STEP 2 There is C > 0 such that, for any Æ > 0 and any suÆciently small " > 0 and suÆciently

large n 2 N, for any R � Æ and any x� 2 Z,

Qn(E1) � e�CR�n log n: (5.41)

Proof. Pick C 0 > 0 according to Corollary 5.5 and C > 0 according to Lemma 4.3. Let Æ > 0 be given
and choose � 2 (0; Æ) so small that f(n(K� + ")) � CR

2C0 f(n) for all " 2 (0;K�) and all suÆciently large

n, where we recall that f(n) = �n logn and K� =
R R?
R?�� '

?(t) dt. Let " be in (0;
K�

2 ^ '?(R? � �)).

We split the local times vector at the site x = bx� + (R? � �)�nc. On the event E1 we have
`n(y) > n1=8 at least for every y 2 Z with 0 � y � x� � R?�n � R

2 �n. Furthermore, recall from
the beginning of Section 5.2 that, on E1, the number l = `n(x) lies inbetween n

�n
['?(R? � �) � "]

and n
�n
['?(R? � �) + "] and that k =

P
y�x `n(y) lies inbetween n(K� � ") and n(K� + "). Hence,

E1 � Ax;R \ Bx for the events de�ned in (5.24) and (5.25). Use Corollary 5.5 and Lemma 4.3(ii) to
obtain the estimate

Qn(E1) � max
n(K��")�k�n(K�+")

eC
0�k log k

q
Q2k

�
#f`2k > n1=8g > R�n

�
� eC

0f(n(K�+")) max
n(K��")�k�n(K�+")

q
Q2k

�
#f`2k > (2k)1=8g > R�n

�2k
�2k

�
� eCRf(n)=2 max

n(K��")�k�n(K�+")
e�CR�n log(2k)

� e
CR
2
�n log ne�CR�n log(2n(K��"));

(5.42)

and this upper bound does not exceed e�
C
4
R�n log n for suÆciently large n, depending on � and ". 2

Finally, from the assertion of the following last step, Proposition 1.3 follows.
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STEP 3 There is C > 0 such that, for any Æ > 0, any suÆciently large n 2 N and any R � Æ,

Qn

�
#supp `n > 2(R +R?)�n

� � e�CR�n : (5.43)

Proof. This time we choose L = (R +R?)�n and

r =
R

16(R1 + (R0=C)) log logn
;

where C and R1 are the constants from Step 1, and R0 is the constant from Proposition 1.2. Again
recall from (5.29) and (5.32) that it is enough to prove that Qn(E1), Qn(E2) and Qn(E3) each do not
exceed e�CR�n for some C > 0 and all suÆciently large n.

Pick " > 0 so small that Lemma 5.8 and Steps 1 and 2 apply. In Step 2 we have already estimated
Qn(E1) � e�CR�n log n for large n and some C > 0. We only have to handle Qn(E2) and Qn(E3).

E2 : We want to apply Lemma 5.6 with the above choices of R and r. In order to check the
assumption of Lemma 5.6, we use Step 1 for nr2 instead of n. For n large enough R�n � 8R?�nr2 .
Thus for n large enough and k � nr2

R�n
4�k

�R? � R

8

�n
�k

� R

8

�n
�nr2

� R

16r
� R1 log log n:

Hence we can apply Step 1 (with R
4
�n
�k
�R? instead of R) to get that there exist K0 and N0 such that

for k � K0 and n � N0 with k � nr2

Qk

�
#supp `k >

R

2
�n

�
= Qk

�
#supp `k > 2

��R
4

�n
�k

�R?
�
+R?

�
�k

�

� e
�C(R

4
�n
�k

�R?)�k � e�
C
4
R�n+CR?�nr2 � e�

1
8
CR�n :

Hence, we may apply Lemma 5.6. Note that by assumption on r, for suÆciently large n,

�nr2 log log(nr
2) � 2r�n log log n � CR�n

8R0
:

Thus Lemma 5.6 yields that for n � N0 large enough such that R
2 �n � K0 we have

Qn(E2) � e�
1
16
CR�n :

E3 : We apply Lemma 5.8 to obtain

Qn(E3) �
X

x�x�+R?�n
Qn(E3(x)) � (2n+ 1)e�

1
2
�f(nr2=2) e5R0�n log log n:

Now use that

f(nr2=2) = �nr2=2 log(nr
2=2) =

R

16
p
2(R1 + (R0=C))

�n
log n

log logn
(1 + o(1))

to see that we have even the bound Qn(E3) � e
�CR�n log n

log log n for all suÆciently large n and some C > 0
suÆciently small.

Collecting all the estimates for Qn(E1), Qn(E2) and Qn(E3), we arrive at the assertion with an
appropriate choice of C. 2

Acknowledgment. The work of R.v.d.H. and W.K. was carried out in part at the Fields Institute,
Toronto. The work of W.K. was partially supported by \Don Dawson's Max Planck Award for Inter-
national Cooperation". We are grateful to EURANDOM in Eindhoven, the Netherlands, for o�ering
us the opportunity to work there.



30 van der Hofstad, Klenke, Konig

References

[Fl71] P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca NY, 1971.

[HHK97] R. van der Hofstad, F. den Hollander and W. K�onig, Central limit theorem for a
weakly interacting random polymer, Markov Processes Relat. Fields 3, 1-62, 1997.

[HKl01] R. van der Hofstad and A. Klenke, Self-attractive random polymers, to appear in Ann.

Appl. Probab., 2001.

[HK�o01] R. van der Hofstad and W. K�onig, A survey of one-dimensional random polymers, to

appear in Jour. Stat. Phys., 2001.

[dH96] F. den Hollander, Random polymers, Stat. Nederl. 50, 136-145, 1996.

[Kn63] F.B. Knight, Random walks and a sojourn density process of Brownian motion, Transactions
of the AMS 109, 56-86, 1963.

[Sz98] A.-S. Sznitman, Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998.

[Va98] C. Vanderzande, Lattice Models of Polymers, Cambridge University Press, Cambridge, 1998.


