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BROWNIAN INTERSECTION LOCAL TIMES:

UPPER TAIL ASYMPTOTICS AND THICK POINTS

By Wolfgang K�onig1 and Peter M�orters2

BRIMS, Hewlett-Packard Laboratories, and Universit�at Kaiserslautern

We equip the intersection of p independent Brownian paths in Rd , d � 2, with the natural measure `

de�ned by projecting the intersection local time measure via one of the Brownian motions onto the

set of intersection points. Given a bounded domain U � R
d we show that, as a " 1, the probability

of the event f`(U) > ag decays with an exponential rate of a1=p�, where � is described in terms of

a variational problem. In the important special case when U is the unit ball in R3 and p = 2, we

characterize � in terms of an ordinary di�erential equation. We apply our results to the problem of

�nding the Hausdor� dimension spectrum for the thick points of the intersection of two independent

Brownian paths in R3 .

1. Introduction and main results

1.1 Aims of the paper

Let a bunch of p independent Brownian motions W1; : : : ;Wp run in R
d until their �rst exit times

T1; : : : ; Tp from a large ball, or, in the transient case, for in�nite time. By classical results of Dvoretzky,
Erd�os, Kakutani and Taylor the intersection of the paths of these motions,

S =

p\
i=1

�
x 2 R

d : x =Wi(t) for some t 2 [0; Ti)
	
;(1.1)

contains points di�erent from the starting point if and only if p < d=(d � 2). By work of Geman,
Horowitz and Rosen [GH84], in these cases the random set S of intersection points can be equipped with
a natural �nite measure `, the (projected) intersection local time, which can be described symbolically
by the formula

`(A) =

Z
A
dy

pY
j=1

Z Tj

0
ds Æy(Wj(s)); for A � R

d Borel.(1.2)

We review rigorous constructions of the random measure ` in Subsection 2.1 below. In the following
we always include the case p = 1 of a single Brownian path, in which the role of ` is played by the
usual occupation measure. However in this case most of our results are known and much easier.

Let U � R
d be a bounded domain in R

d . The �rst aim of the present paper is to determine asymp-
totically the upper tails of the random variables `(U). More precisely, we show in Theorem 1.1 that
the limit

lim
a!1

1

a1=p
log P

�
`(U) > a
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exists and describe its value in terms of a natural variational problem associated with p, the stopping
rule and the domain U � R

d . In the special case that U is the unit ball in R
d and the Brownian

motions run for an in�nite amount of time, we can solve this variational problem explicitly in terms
of an ordinary di�erential equation, which is non-linear in the case p > 1, see Theorem 1.3.

This result is the key in the solution of a problem posed recently by Dembo, Peres, Rosen and Zeitouni
about the re�ned multifractal analysis of intersection local times. Recall that the intersection of two
independent Brownian paths in R3 is a random set of Hausdor� dimension one but length zero. More
precisely, by a result of Le Gall [LG87], its exact Hausdor� dimension gauge is given by the function
 (r) = r[log log(1=r)]2 and, moreover, the Hausdor� measure for this gauge function coincides up to
a constant factor with the projected intersection local time measure on the intersection set S.

The key argument leading to Le Gall's result is the existence of a positive and �nite constant c such
that, almost surely, for typical x in the intersection set S,

lim sup
r#0

`(B(x; r))

r[log log(1=r)]2
= c;

where B(x; r) denotes the open ball of radius r with centre in x. Here we are concerned with �ner
results, which focus on exceptional points in R

3 in a neighbourhood of which the concentration of
intersection local time is untypically large. Our �rst aim is to �nd an explicit gauge function ' such
that

0 < sup
x2S

lim sup
r#0

`(B(x; r))

'(r)
<1:

Having found such a function, we call a point x 2 S thick if lim supr#0 `(B(x; r))='(r) > 0 and ask,
how many thick points there are. This is answered in terms of the Hausdor� dimension spectrum for
the thick points, which is the function

f(a) = dim
n
x 2 S : lim sup

r#0
`(B(x; r))

'(r)
= a

o
:

Both these problems are intimately related with our upper tail asymptotics and the numerical values
featuring the dimension spectrum can be derived from our di�erential equation. Theorem 1.4 describes
just how large the measure ` can be in a neighbourhood of a point and identi�es the Hausdor�
dimension spectrum of thick points for the intersection local time.

The spectrum of exceptionally thick points is also understood for some other classes of random mea-
sures: For example, in the case of the local time measure on the zero set of stable processes [ST98],
the branching measure on a supercritical Galton-Watson process [ST00], [MS01], the occupation mea-
sure on Brownian paths in dimensions exceeding two [DP00a] and in the plane [DP00b], and also
intersections of Brownian paths in the plane [DP00d].

The present paper is organized as follows. In Subsections 1.2{1.4, we describe our main results on the
upper tails of `(U), the characterization of the variational problem arising, and the dimension spectrum
of the thick points, respectively. In Section 2, we survey three constructions of the intersection local
time and prove that the upper tail asymptotics of `(U) are completely described by the asymptotics
of its high moments. The asymptotic analysis of the high moments is carried out in several steps in
Section 3. In Section 4 we analyse the two variational formulae that describe the upper tails resp. the
moment asymptotics. Section 5 contains the proof of our results on the thick points of the intersection
local time, and in Section 6, we announce further results and applications which will appear elsewhere.
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1.2 Upper tail asymptotics

To describe the variational problem featuring the upper tail asymptotics, we �rst introduce the Green's
function associated with (possibly stopped) Brownian motion. The Green's function depends on the
dimension d of the ambient space and on the way we stop the Brownian motion, but it does not
depend on the domain U or the number p of motions. Suppose that we stop Brownian motion on its
�rst exit time from a large open ball B(0; R), and, if d � 3, include the case R = 1 as the case of
Brownian motion running until in�nity. Denote by ps(x; y) the transition sub-probability density of
the killed motion. For x; y in the open centred ball B(0; R), we let

G(x; y) =

Z 1

0
ps(x; y) ds;(1.3)

be the associated Green's function. Explicitly, these functions are, see e.g. [PS78, p.114], if d = 2,

G(x; y) =
1

�

(
log
��x R

jxj � y jxjR
��� log jx� yj if x 6= 0;

logR� log jyj if x = 0;
(1.4)

and, if d � 3 and 0 < R <1, denoting cd = �(d=2 � 1)=(2�d=2),

G(x; y) = cd

(
jx� yj2�d � ��x R

jxj � y jxjR
��2�d if x 6= 0;

jyj2�d �R2�d if x = 0:
(1.5)

Finally, in the case d � 3 and R =1, we have

G(x; y) =
cd

jx� yjd�2 :(1.6)

Note that G is always symmetric, see e.g. [Ba95, II(4.5)]. Furthermore, precisely if p < d=(d� 2), the
function Gp(0; �) is integrable in a neighbourhood of the origin.

Now let U � R
d be an open bounded set whose closure is contained in B(0; R). De�ne the operator

A : L2p=(2p�1)(U)! L2p(U), depending on R and U � R
d , by

Af(x) =

Z
U
G(x; y)f(y) dy; for x 2 U:(1.7)

The operator A is symmetric and continuous, and its restriction A : L1(U) ! L1(U) is moreover
symmetric, positive and compact with norm

R
U

R
U G(x; y) dx dy.

We denote byM1(U) the set of probability measures on the set U � R
d and, if � 2M1(U) and f is an

integrable or nonnegative function de�ned on U we use the notation hf; �i for the integral RU f d�. If
f; g are both nonnegative functions or their product is Lebesgue integrable on U , we use the notation
hf; gi to denote RU f(x)g(x) dx. We write k � kq for the norm on Lq(U).

We can now formulate our �rst main theorem.

Theorem 1.1 (Upper tail asymptotics). Suppose that p and d are positive integers satisfying p <
d=(d � 2). Let U be an open bounded domain in R

d and R 2 (0;1] suÆciently large that B(0; R)
contains the closure of U . Denote by ` the projected intersection local time of p independent Brownian
motions started in �xed points inside U and stopped upon their �rst exit from the ball B(0; R). Then

lim
a!1

1

a1=p
log P

�
`(U) > a

	
= � p

%�
;(1.8)

where %� is de�ned as

%� = sup
n

g2p�1;Ag2p�1

�
: g 2 L2p(U) with kgk2p = 1

o
:(1.9)
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Remark 1 In the transient case d � 3 we denote by %�(R) the supremum in (1.9) for the Green's
function associated with Brownian motion stopped upon leaving B(0; R). Then limR"1 %�(R) is
equal to the supremum in (1.9) for the case of unstopped Brownian motions. This follows easily from
monotone convergence and the fact that the Green's functions on B(0; R) are increasing to the Green's
function in (1.6).

In the next subsection we turn to an analysis of the variational formula in (1.9). We already announce
that in Proposition 2.1 below we characterize %� in terms of another variational formula, which is more
in the spirit of our actual proof of (1.8).

1.3 The variational formula in (1.9). In the special case p = 1, the well-known Rayleigh-Ritz
formula describes the right hand side in formula (1.9) as the principal eigenvalue of the compact
and symmetric operator A on L2(U). Hence, existence and uniqueness and many more properties of
the maximizer are known. For general p � 2, however, already the uniqueness seems to be an open
problem, apart from the special case of the unit ball in R

3 . In our next main result, we establish the
existence of maximizers and characterize them in terms of the corresponding Euler-Lagrange equations.

Theorem 1.2. Suppose that p and d are positive integers satisfying p < d=(d� 2). Let U be an open
bounded domain in R

d and R 2 (0;1] suÆciently large that B(0; R) contains the closure of U . Then
the supremum in the variational problem (1.9) is attained. Every maximizer g in (1.9) is bounded away
from 0 and in�nity and has a version that is twice continuously di�erentiable on U and continuously
di�erentiable on the closure of U . Moreover, g satis�es the following equivalent conditions.

(a) Ag2p�1(x) = %�g(x), for all x 2 U .
(b) g is the restriction to U of a continuous function g : B(0; R)! [0;1) that vanishes on the sphere

@B(0; R), or in the case R = 1 converges to 0 as x ! 1. This function g is continuously
di�erentiable inside B(0; R) and is a solution of

1

2
�g(x) = � 1

%�
g2p�1(x)1U (x) for all x 2 B(0; R) n @U:(1.10)

If p = 1, the solution (g; %�) of (a) and hence the maximizer g in (1.9) is unique.

For p � 2 and general domains U , there seems to be no reason that, for a solution (g; %) of assertion (a),
the number % must coincide with %� in (1.9). However, in the important special case that U = B(0; 1)
is the open unit ball and the Brownian motions run for an in�nite time, we can show uniqueness of
the minimizer in (1.9) and describe it more explicitly in terms of an ordinary di�erential equation.
We are able to do this because G is a rotation invariant function of the di�erence of its arguments,
and hence Riesz' rearrangement theorem is applicable.

Theorem 1.3. Let d � 3 and p a positive integer satisfying p < d=(d � 2), further let R = 1 and
U = B(0; 1). Then the maximization problem (1.9) has a unique solution g. Moreover, g is rotationally
symmetric around the origin and can be constructed as follows.

(i) There is a unique twice continuously di�erentiable function z on a maximal interval [0; �) satis-
fying z(0) = 1, z0(0) = 0 and

z00(x) + (d� 1)
z0(x)
x

+ z(x)2p�1 = 0; for all x 2 [0; �):(1.11)

There is a smallest number a 2 (0; �) with (d � 2)z(a) = �az0(a). Moreover, z is positive and
strictly decreasing on [0; a], and g(x) = cz(ajxj) de�nes the unique maximizer of (1.9), if c is the
normalization constant such that kgk2p = 1.
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(ii) We have

p2

%�2
=

8><>:
a4

4
; for p = 1; d � 3;

4�a

Z a

0
z4(s)s2 ds ; for p = 2; d = 3:

Remark 2 In the case p = 1, one can solve (1.11) explicitly in terms of Bessel functions. Recall
(see e.g., [AS72, 9.1.7]) that the Bessel function J� of the �rst kind of order � � 0 satis�es the
Bessel di�erential equation x2J 00� (x) + xJ 0�(x) + (x2 � �2)J�(x) = 0, and de�ne a continuous function
z : [0;1)! R by z(0) = 1 and

z(x) = �(d=2)
�x
2

� 2�d
2
J d�2

2
(x); for x > 0:(1.12)

From Bessel's equation we easily derive that z satis�es (1.11). Further properties of Bessel functions,
see [AS72, 9.1.30], show that z0(0) = 0. The continuous function �(x) = z(x) + �xz0(x) takes the
positive value �(0) = 1 at the origin and is nonpositive at the �rst zero � of z. Hence there is a
minimal a > 0 with �(a) = 0. For example, in dimension d = 3 we obtain z(x) = 1

x sinx and a = �=2

and thus 1=%� = �2=8. In dimension d = 5 we have z(x) = 3x�3(sinx � x cos x) and a = �, hence
1=%� = �2=2.

1.4 The dimension spectrum of thick points

The �ne multifractal structure of a random measure on Rd consists of the analysis of its exceptionally
thin and thick points. The latter part has been successfully completed in the case of intersection local
times of any number of planar Brownian motions and in the case of the occupation measure of a single
Brownian motion in transient dimensions d � 3.

Before stating our new result for the case of intersections of Brownian motions in R
3 , let us review

the existing results. If ` is the occupation measure of a single Brownian path in d � 3, it was shown
by Dembo et al. in [DP00a] that the correct gauge function is given by r 7! r2[log(1=r)], in the sense
that the number

2%� = sup
x2Rd

lim sup
r#0

`(B(x; r)

r2[log(1=r)]
2 (0;1)(1.13)

exists and is non-random. The value of %� agrees with the value obtained in Theorem 1.3 (ii). The
corresponding dimension spectrum is

dim
n
x 2 R

d : lim sup
r#0

`(B(x; r))

r2[log(1=r)]
= a

o
= 2� a

%�
; for a � 0;(1.14)

where negative values of the dimension mean that the set is empty. However, the assertions in (1.8)
and (1.9) in this case are known for a long time due to the Ciesielski-Taylor identity [CT62], which is
not available in the case of p > 1. The proof of (1.13) and (1.14) is linked to the upper tail behaviour
of Brownian occupation measure in a unit ball via self-similarity: Most of the exceptionally large
mass in a small ball around a given point is accumulated in a very short time, hence by scaling the
probability of high concentration of occupation measure in a small ball is asymptotically equal to the
probability of exceptionally large mass in a unit ball accumulated in a �xed time horizon.

The situation is entirely di�erent in the recurrent dimension d = 2. Here, the same authors have shown
that the intersection local time measures `, which in the case p = 1 degenerate to the occupation
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measure, satisfy �2
p

�p
= sup

x2Rd
lim sup
r#0

`(B(x; r))

r2[log(1=r)]2p
(1.15)

and

dim
n
x 2 R

d : lim sup
r#0

`(B(x; r))

r2[log(1=r)]2p
= a

o
= 2� pa1=p; for a � 0;(1.16)

see [DP00b] in case p = 1 and [DP00d] in case p > 1. The values in the planar case bear no relationship
with our result on the upper tail asymptotics in (1.8) in this case. Heuristically, this is due to the
fact that in the planar case, the probability that a small ball has unusually large concentration of
mass cannot be related via self-similarity to the probability that the unit ball carries large mass, but
depends just on the number of visits of the motions to the ball before the �rst exit from the large ball
B(0; R). In plain words, the asymptotics in (1.13){(1.16) are determined in d = 2 by many returns
to the small ball in a long time range, and in higher dimensions by relatively large occupation times
already in a short time range.

Our next theorem closes the gap in this picture by describing the Hausdor� dimension spectrum of
thick points for intersection local time measure on the intersections of two Brownian paths in R

3 .

Theorem 1.4. Suppose that %� is as in (1.9) for the case d = 3, p = 2, R =1 and U the unit ball,
respectively as in Theorem 1.3 (ii) for p = 2. Then, almost surely,

sup
x2Rd

lim sup
r#0

`(B(x; r))

r[log(1=r)]2
= lim sup

r#0
sup
x2S

`(B(x; r))

r[log(1=r)]2
=
�%�
2

�2
:(1.17)

Moreover,

dim
n
x 2 S : lim sup

r#0
`(B(x; r))

r[log(1=r)]2
= a

o
= 1�p

a
2

%�
for all a � 0 ;(1.18)

where dim denotes the Hausdor� dimension.

Remark 3 There is a further di�erence between the recurrent and transient case, which is worth noting.
In the planar case the limsup may be replaced by a liminf without changing the dimension spectrum.
This gives the so called spectrum of consistently thick points. In higher dimensions this is not the case
and the spectrum of consistently thick points requires a di�erent gauge function. This was observed
in [DP00a, Theorem 1.6]. The precise Hausdor� dimension spectrum for the consistently thick points
of intersection local time measures in Rd , d � 3, is an open problem even in the case p = 1 of a single
Brownian path.

To complete the picture, we review the results of [DP00c] for thin points of the occupation measure
` on a single Brownian path S = fW (t) : t 2 [0; T ]g, T the �rst exit time from a large open ball. It
turns out that here the ambient dimension does not play a major role. In all d � 2, we have

1 = inf
x2S

lim inf
r!0

`(B(x; r))

r2[log(1=r)]�1
;

and a dimension spectrum given by

dim
n
x 2 S : lim inf

r#0
`(B(x; r))

r2[log(1=r)]�1
= a

o
= 2� 2

a
:

The spectrum of thin points for intersections of Brownian paths seems to be an open problem.



BROWNIAN INTERSECTIONS 7

2. Preliminaries

In this section, we collect some material to prepare the proofs. First, we survey three rigorous construc-
tions of the intersection local time measures, afterwards we introduce another important variational
problem which is strongly linked to (1.9), and �nally we show how to reduce the problem of upper tail
asymptotics to the problem of moment asymptotics in our case.

2.1 Brownian intersection local times

Recall that Ti is the �rst time the motion Wi reaches a sphere of �xed radius R > 0, which may be
in�nity in the transient case. Also recall that we kill Wi at time Ti for i = 1; : : : ; p. We denote the
Euclidean ball in R

d centred at x with radius r > 0 by B(x; r). For every " > 0 de�ne the Wiener
sausage around Wi by

Si" =
n
x 2 R

d : there is t 2 [0; Ti) with jx�Wi(t)j < "
o
; for i = 1; : : : ; p ;(2.1)

and their intersection S" =
Tp
i=1 S

i
". Recall (1.1) and observe that

S =
\
">0

S" =
n
z 2 R

d : z =W1(t1) = � � � =Wp(tp) for some ti 2 [0; Ti)
o

is the intersection of the p independent Brownian paths. This set is our object of interest. There are
three ways to equip S with a natural measure:

� by projecting the local time at 0 for the con
uent Brownian motion, see [GH84];
� as renormalized limit for " # 0 of the Lebesgue measure on S", see [LG86];
� as a Hausdor� measure on S with an appropriate dimension gauge function, see [LG87].

Luckily, all three approaches lead to the same object, the intersection local time measure ` on S. Let
us �rst brie
y review the approach of Geman, Horowitz and Rosen [GH84], based on local times for

the con
uent Brownian motion process W : Rp ! R
d(p�1) de�ned by

W (s1; : : : ; sp) =
�
W1(s1)�W2(s2); : : : ;Wp�1(sp�1)�Wp(sp)

�
:

With probability one there is a family f�y : y 2 (Rd)p�1g of �nite measures on Qp
i=1[0; Ti) with the

following two properties:

(i) the mapping y 7! �y is continuous with respect to the vague topology on the space M(Rp) of
locally �nite measures on R

p ,
(ii) for all Borel functions g : (Rd)p�1 ! [0;1] and f :

Qp
i=1[0; Ti)! [0;1],Z

g(y)hf; d�yi dy =
Z
Qp
i=1[0;Ti)

f � g ÆW dsp : : : ds1:(2.2)

These properties imply that �y is supported by the level set at y of the con
uent Brownian motion,
i.e., by n

(s1; : : : ; sp) 2
pY
i=1

[0; Ti) : W (s1; : : : ; sp) = y
o
:

The family f�y : y 2 (Rd)p�1g is called the family of local times of the con
uent Brownian motion
process. The local time �0 at level 0 is of special interest to us, because it is supported by the set
of p-tuples of times where the p motions W1; : : : ;Wp coincide. The image measure ` of �0 under the
mapping (t1; : : : ; tp) 7!W1(t1) is a natural �nite measure on the intersections of the Brownian paths,
which we hence call the intersection local time of the p Brownian motions.
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Le Gall [LG86] carried out the second approach. De�ne

sd(") =

8><>:
��p logp(1="); if d = 2,

(2�")�2; if d = 3 and p = 2,
2

!d(d�2)"
2�d; if d � 3 and p = 1,

(2.3)

where !d is the volume of the d-dimensional unit ball. By [LG86, Theor�eme 3.1], the renormalized
restriction of the Lebesgue measure on S" converges to ` as " # 0, in the sense that, for every set
A � R

d that is almost surely an `-continuity set,

lim
"#0

sd(")�(S" \A) = `(A) :(2.4)

The convergence holds in the Lq(P)-sense for all q 2 [1;1) and, in particular, in probability.

Finally, the most natural way to equip S with a uniform distribution is by means of a suitable Hausdor�
measure. Le Gall showed in [LG87] that ` may be de�ned intrinsically as a constant multiple of the
 -Hausdor� measure on the random set S in the case of p spatial Brownian motions for the gauge
function

 p(r) =

8><>:
r2[log(1=r) log log log(1=r)]p; if d = 2; p 2 N;

r3�p[log log(1=r)]p; if d = 3; p 2 f1; 2g;
r2[log log(1=r)]; if d � 4; p = 1:

(2.5)

Here we have included the results of Ciesielski and Taylor [CT62] and Ray [Ra63] in the case p = 1
for completeness.

2.2 A related variational problem

As announced, we do not directly derive the upper tails of `(U) in (1.8), but we describe the moment
asymptotics and derive (1.8) from this result. In this subsection, we introduce the variational formula
that turns out to feature the moment asymptotics of `(U). Furthermore, we describe the relationship
of the two problems of upper tail and moment asymptotics on the stage of the variational formulas.
We have to introduce more notation.

For any probability measure � and �nite measure e� on the same measurable space the relative entropy
or Kullback-Leibler distance of � with respect to e� is de�ned as

H(� j e�) =
8<:
Z
�(dx) log

�(dx)e�(dx) ; if �� e�,
1; otherwise.

(2.6)

If e� is also a probability measure, then by Jensen's inequality we always have H(� j e�) � 0 and equality
holds if and only if � = e�.
More speci�cally, let U � R

d be an open bounded set and denote by M1(U) the space of probability
measures on U , equipped with the weak topology. For any � 2 M1(U) we de�ne I(�) = H(� j �),
the relative entropy of � with respect to the Lebesgue measure � on U . Note that I(�) � � log �(U)
with equality if and only if � is the normalized Lebesgue measure on U . Moreover, I is a convex and
lower semicontinuous function.

We denote by

M�
1(U) =

n
� 2M1(U

2) : for all Borel sets A � U we have �(A� U) = �(U �A)
o

(2.7)
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the set of probability measures � on U2 with equal marginals �1(A) = �(A�U) and �2(A) = �(U�A).
For � 2M1(U

2) we de�ne

I2�(�) =

(
H(� j �1 
 �) ; if � 2M�

1(U),

1 ; otherwise.
(2.8)

Note that I2� is the rate function for the empirical pair measures of an i.i.d. sequence with marginal

distribution �. In particular, I2� is lower semicontinuous and convex.

De�ne a function G : M1(U) �! R by

G(�) = inf
�2M�

1
(U)

�1=�

�
I2�(�)� h�; logGi	 ;(2.9)

where we extend the notation h�; �i to integrals on U2. Observe that it suÆces to take the in�mum
over measures � satisfying � � �
�. We can replace I2�(�) in the de�nition of G by either the relative
entropy H(� j�
 �) or the mutual information H(� j�1 
 �2).

For the further development, the variational formula

�� = inf
�2M1(U)

n
I(�) + pG(�)

o
(2.10)

is of fundamental interest. We state its link to the formula (1.9) as follows.

Proposition 2.1. For every positive integer p < d=(d� 2) we have

sup
n

g2p�1;Ag2p�1

�
: g 2 L2p(U) with kgk2p = 1

o
= exp

�
� 1

p
inf

�2M1(U)

n
I(�) + pG(�)

o�
:(2.11)

Moreover, g is a maximizer of the left hand side if and only if the measure �(dx) = g2p(x) dx is a
minimizer on the right hand side of (2.11). Every minimizing sequence of the variational problem on
the right hand side of (2.11) has a subsequence converging weakly to a minimizer.

Proposition 2.1 is proved in Section 4 together with the results of Subsection 1.3.

2.3 Tail asymptotics from moment asymptotics

For reasons which are explained at the beginning of Section 3, we are able to deal with integer moments
of `(U) much better than with the probability of the event f`(U) > ag. In this section, we show how
to derive the upper tail asymptotics of `(U) from moment asymptotics. Let us �rst state our main
result for the moment asymptotics.

Proposition 2.2.

lim
k"1

1

k
log E

h `(U)k
(k!)p

i
= � inf

�2M1(U)

�
I(�) + pG(�)	:

Section 3 is devoted to the proof of Proposition 2.2. In order to derive the upper tail asymptotics
from Proposition 2.2 we need the following Tauberian theorem.

Lemma 2.3. Let X be any nonnegative random variable and �x p 2 N. Then for any � 2 R the
following two implications hold:

(i)

lim sup
k"1

1

k
logE

h Xk

(k!)p

i
� �� =) lim sup

a"1
a�1=p logPfX > ag � �pe�=p :
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(ii)

lim
k"1

1

k
logE

h Xk

(k!)p

i
= �� =) lim

a"1
a�1=p logPfX > ag = �pe�=p :

Proof. The proof of (i) is easy and based on the substitution ak = e��kp, Markov's inequality, and
Stirling's formula as follows.

lim sup
k"1

a
�1=p
k logPfX > akg = e�=p lim sup

k"1
1

k
logP

n
Xk > e�k�kkp

o
� e�=p lim sup

k"1
1

k
logE

h Xk

e�k�kkp
i
= e�=p lim sup

k"1

�1
k
logE

h Xk

(k!)p

i
+ �� p

�
� �pe�=p :

Since a
�1=p
k+1 =a

�1=p
k ! 1 as k " 1, we see that it is suÆcient to consider the subsequence ak rather than

an arbitrary sequence tending to in�nity.

The proof of (ii) is based on the construction of the transformed measure

d bP k(X) =
Xk

E[Xk]
dP (X); for k 2 N;

and the fact that the random variable

Yk = log
� X

e��kp
�

satis�es, for every " > 0,

lim
k"1

bP kfjYkj � "g = 1:(2.12)

To prove this, �x an arbitrary " > 0 and pick some small number � > 0. Then, by the Markov
inequality, we may estimatebP kfYk � "g = bP kfXk� � e("��)k�kpk�g � e�"k�e�k�k�pk� bEk[Xk�];

where bEk denotes expectation with respect to bP k. Note that bEk[Xk�] = E[Xk(1+�)]=E[Xk ]. Using
our assumption and Stirling's formula, we see that the quotient has the asymptotic behaviour
e�(�+p)k�kpk�(1 + �)kp(1+�)eo(k) as k " 1. Inserting this in the right hand side above, we get

bP kfYk � "g � exp

�
pk�

�
�"
p
� 1 +

1 + �

�
log(1 + �) + o(1)

��
; as k " 1:

If � > 0 is chosen small enough, then the expression between the inner brackets is negative and

bounded away from zero, such that we obtain that limk"1 bP kfYk � "g = 0. Analogously one shows

that limk"1 bP kfYk � �"g = 0, and this implies (2.12).

In order to �nish the proof of the lower bound, we keep " > 0 arbitrarily �xed and substitute this
time a = e��kpe�". It is again clear that the consideration of this subsequence suÆces. Note that
fX > ag = fYk > �"g � fjYkj � "g. This implies that

a�1=p logPfX > ag � e�=pe"=p
1

k
logPfjYkj � "g:

Note that PfjYkj � "g = bEk[X�k
1fjYkj�"g]E[X

k] and that we may estimate X�k � ek(�"+�)k�pk on

fjYkj � "g. Using this estimate, our assumption on the asymptotics of E[Xk] and Stirling's formula,
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we obtain

lim inf
a"1

a�1=p logPfX > ag � e�=pe"=p
�
�"� p+ lim inf

k"1
1

k
log bP kfjYkj � "g

�
:

Because of (2.12), the latter limit inferior is equal to zero. After letting " # 0, we get the assertion.

Proof of Theorem 1.1. The existence of the limit (1.8) follows from Proposition 2.2 and
Lemma 2.3 (ii), the characterization (1.9) of the limit is then immediate from Proposition 2.1.

3. Large moment asymptotics

In this section we prove the large moment asymptotics in Proposition 2.2. In Subsection 3.1, we
introduce a main tool: a formula for the integer moments of `(U), which is due to Le Gall. The
two main technical steps are carried out in Subsections 3.2 (cutting o� the Green's function) and 3.3
(�nite partitioning of U). The combinatorial core argument of the proof appears in Subsection 3.4.
The ingredients are put together in the �nal Subsection 3.5, where the proof of Proposition 2.2 is
�nished.

3.1 Le Gall's moment formula

Starting point for our analysis of high moments of `(U) is the following formula for the moments of
the intersection local times. For k 2 N, we denote by Sk the set of permutations � = (�(1); : : : ; �(k))
of the numbers 1; : : : ; k. Denote by x1; : : : ; xp 2 U the starting points of the Brownian motions
W1; : : : ;Wp.

Lemma 3.1. For any k 2 N,

E

h
`(U)k

i
=

Z
U
dy1 � � �

Z
U
dyk

pY
j=1

X
�2Sk

G
�
xj; y�(1)

� kY
i=2

G
�
y�(i�1); y�(i)

�
:(3.1)

Proof. This follows from the results of [LG86], see [LG87, Part I,(2.c)].

On a heuristical level, Le Gall's formula can be derived from the symbolical formula (1.2). Indeed,

E
�
`(U)k

�
= E

��Z
U
dy

pY
j=1

Z Tj

0
ds Æy

�
Wj(s)

��k�

=

Z
U
dy1 � � �

Z
U
dyk

pY
j=1

Exj

h X
�2Sk

Z
� � �
Z

0�s1�����sk�T j

kY
i=1

Æy�(i)(Wj(si)) dsi

i

=

Z
U
dy1 � � �

Z
U
dyk

pY
j=1

X
�2Sk

Z
� � �
Z

0�s1�����sk

ps1
�
xj ; y�(1)

� kY
i=2

psi�si�1
�
y�(i�1); y�(i)

�
dsi ds1

=

Z
U
dy1 � � �

Z
U
dyk

pY
j=1

X
�2Sk

G
�
xj ; y�(1)

� kY
i=2

G
�
y�(i�1); y�(i)

�
;

where ps(x; y), as before, denotes the transition density of the stopped Brownian motion.
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For every j 2 f1; : : : ; pg de�ne �jk : Uk ! R by

�jk(y) =
1

k!

X
�2Sk

G
�
xj ; y�(1)

� kY
i=2

G
�
y�(i�1); y�(i)

�
; for y = (y1; : : : ; yk) 2 Uk:(3.2)

Note that �jk(y) = 1 if xj ; y1; : : : ; yk are not pairwise distinct. Moreover, �jk(y) does not really

depend on the vector y = (y1; : : : ; yk), but only on the set fy1; : : : ; ykg, i.e., �jk(y) = �jk(y�) for any
� 2 Sk, where we put y� = (y�(1); : : : ; y�(k)).

Hence, to prove Proposition 2.2 it suÆces to show

lim
k"1

1

k
log

Z
Uk
dy

pY
j=1

�jk(y) = � inf
�2M1(U)

�
I(�) + pG(�)	:(3.3)

3.2 Cutting

In order to derive the upper bound in (3.3), it is necessary to replace the Green's function by some
bounded function. We achieve this by cutting o� the Green's function at a large level and show that we

do not change the exponential rate of �jk(y) asymptotically as the cut-o� level gets large. Introduce,
for M � 0, the cut-o� Green's function GM = G ^M and denote, for j = 1; : : : ; p,

�jk;M(y) =
1

k!

X
�2Sk

GM
�
xj ; y�(1)

� kY
i=2

GM
�
y�(i�1); y�(i)

�
; for y = (y1; : : : ; yk) 2 Uk:(3.4)

First, we need some technical preparation.

Lemma 3.2. There exists a constant K1 > 1, depending only on U , p and d, such that, for all
a1; : : : ; a2p 2 U and q 2 f0; : : : ; pg,Z

U

qY
i=1

G(a2i�1; z)G(z; a2i)
pY

i=q+1

G(a2i�1; z) dz � K1

qY
i=1

G(a2i�1; a2i) :(3.5)

Proof. First note that, as p < d=(d � 2), we have supa2U
R
U G

p(a; z) dz < 1 and therefore
supa1;:::;ap2U

R
U

Qp
i=1G(ai; z) dz <1.

Now we turn to the proof of our assertion. The case d = 2 is simple, because the supremum over
a1; : : : ; a2p 2 U of the left hand side of (3.5) is �nite, and the in�mum over a1; : : : ; a2p 2 U of the
product on the right is positive. The same argument applies in the case d � 3 when p = 1, q = 0 and
in the case d = 3 when p = 2, q = 0.

If d � 3 and p = q = 1, we use that U � U1 [ U2 where
U1 =

�
z 2 U : jz � a1j � 1

4 ja2 � a1j
	
and U2 =

�
z 2 U : jz � a2j � 1

4 ja2 � a1j
	
:

Recall from (1.5) that G(x; y) � cdjx� yj2�d, and pick some c > 0 such that G(x; y) � cjx� yj2�d for
any distinct x; y 2 U . On the �rst domain we estimate, for some K > 1,Z

U1

G(a1; z)G(z; a2) dz � cd
c
4d�2G(a1; a2)

Z
U
G(z; a2) dz � KG(a1; a2) :(3.6)

The second domain is treated analogously, proving the claim if p = 1. Now let d = 3 and p = 2. If
q = 2 we cover U by four domains

Uij =
�
z 2 U : jz � aij � 1

4 ja2 � a1j and jz � aj j � 1
4 ja4 � a3j

	
; i = 1; 2 and j = 3; 4:
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On the �rst domain U13 we estimateZ
Uij

G(a1; z)G(z; a2)G(a3; z)G(z; a4) dz � 16
c2d
c2
G(a1; a2)G(a3; a4)

Z
U
G(z; a2)G(z; a4) dz

� KG(a1; a2)G(a3; a4) :

(3.7)

Again the other domains can be treated analogously, which �nishes the proof in the case q = 2. The
case q = 1 is similar.

Lemma 3.3. There is C0 > 0 and, for all suÆciently large M > 1 and small � 2 (0; 1), there are
constants CM > 0 and "� > 0 such that, for all x1; : : : ; xp 2 U and for any k 2 N,Z

Uk
dy

pY
j=1

�jk(y) � 2ppk(2C0)
kC�kM + 2p(1 + "�)

k
pX
j=1

kX
m=dk(1�p�)e

Z
Um

dy
�
�jm;M(y)

�p
;(3.8)

where limM"1CM = lim�#0 "� = 0.

Proof. Indeed, we show (3.8) with C0 given by

C0 = sup
x2U

Z
U
Gp(x; y) dy _ 1 :

To de�ne CM we choose a minimal ÆM > 0 such that G(x; y) �M whenever x; y 2 U with jx�yj � ÆM .
Clearly, we have that limM"1 ÆM = 0. Now de�ne

CM = sup
x2U

sup
a2U

Z
B(a;ÆM )\U

Gp(x; y) dy:

From the local integrability of Gp(x; �) around x, one sees that C0 and CM are well-de�ned and
limM"1CM = 0. We assume without loss of generality that CM � 1.

For any �xed j 2 f1; : : : ; pg and any vector y = (y1; : : : ; yk) 2 Uk we use the convention y0 = xj. Put
�(0) = 0 for � 2 Sk. Introduce

T j(y) = fn 2 f1; : : : ; kg : there is 0 � i < n such that jyi � ynj � ÆMg(3.9)

and

Aj(y) = f� 2 Sk : #T j(y�) > �kg:
In (3.1) we interchange the summation over � with the integration over y1; : : : ; yk and split the sum
over all � 2 Sk into the sum over � in Aj(y) and in Sk nAj(y).
On the �rst set of summation, we take advantage of the fact that at least �k of the k integrals are
taken just over a �nite union of no more than k balls of radius ÆM , and the other (1 � �)k integrals
yield some bounded exponential rate. On the second set of summation, we use that in at least (1��)k
integrals we may replace G by its cut-o� version GM , and the exponential rate of the contribution
coming from the remaining integrals is small if � is small. Let us turn to the details.

Using the estimate
Qp
j=1(aj + bj) � 2p

Pp
j=1(a

p
j + bpj ) for aj ; bj � 0, we obtain that

pY
j=1

�jk(y) � 2p
pX
j=1

�
Ijk(y) + IIjk(y)

�
;(3.10)
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where

Ijk(y) =

�
1

k!

X
�2Aj(y)

G
�
xj; y�(1)

� kY
i=2

G
�
y�(i�1); y�(i)

��p
;(3.11)

IIjk(y) =

�
1

k!

X
�2SknAj(y)

G
�
xj ; y�(1)

� kY
i=2

G
�
y�(i�1); y�(i)

��p
:(3.12)

We �rst �x j and turn to an estimate for
R
Uk dy I

j
k(y). Use Jensen's inequality for the uniform

distribution on Sk to see that

Ijk(y) �
1

k!

X
�2Aj(y)

kY
i=1

Gp
�
y�(i�1); y�(i)

�
:

Now integrate over y 2 Uk and note that � 2 Aj(y) if and only if id 2 Aj(y�), where id 2 Sk denotes
the identical permutation. Use the permutation invariance of the integrand to obtain,Z

Uk
dy Ijk(y) �

Z
Uk
dy 1fid2Aj(y)g

kY
i=1

Gp(yi�1; yi):

Now substitute

1fid2Aj(y)g = 1f#T j(y)>�kg =
X

B�f1;:::;kg
#B>�k

1fT j(y)=Bg;

and carry out successively the integration over yk; yk�1; : : : ; y1. Note that at least b�kc of the corre-
sponding integration regions for yn (more precisely: the ones for n 2 B), are contained in U\B(yi; ÆM )
for some i < n, the others are over the full set U .

With CM resp. C0 de�ned at the beginning of the proof, we arrive at

2p
pX
j=1

Z
Uk
dy Ijk(y) � 2pp

X
B�f1;:::;kg
#B>�k

k C�kMC
(1��)k
0 � 2ppk (2C0)

kC�kM ;

recalling that CM � 1 and C0 � 1. This yields the �rst term on the right hand side of (3.8).

We now turn to an estimate of the second term. Again �x j 2 f1; : : : ; pg and recall the conventions

y0 = xj and �(0) = 0 for all � 2 Sk. We turn the p-th power in the de�nition of IIjk(y) into a sum
over p indices �1; : : : ; �p, i.e.,

IIjk(y) =
1

(k!)p

X
�1;:::;�p2Sk

X
B1;:::;Bp�f1;:::;kg

8l : #Bl��k

pY
l=1

241fT j(y�l)=Blg kY
il=1

G(y�l(il�1); y�l(il))

35 :(3.13)

Given �1; : : : ; �p and B1; : : : ; Bp, we de�ne B =
Sp
l=1 �l(Bl). Let m = k � #B and note that m �

k � p�k. We write the integration vector in (3.13) as y = (yB; yBc), where Bc = f1; : : : ; kg n B and
yB = (yi)i2B and yBc = (yi)i2Bc .

Given �l 2 Sk and the set B � f1; : : : ; kg, we de�ne a bijective mapping �l : f1; : : : ;mg ! Bc as the
total ordering that is induced by �l on B

c. In other words, if Bc is equal to the set f�l(i1); : : : ; �l(im)g
with i1 < � � � < im, then �l(n) = �l(in) for any n. Note that, on

Tp
l=1fT j(y�l) = Blg, we have

jy�l(il�1) � y�l(il)j � ÆM for all l = 1; : : : ; p and all il = 1; : : : ;m.
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Integrating (3.13), we getZ
Uk
dy IIjk(y) �

1

(k!)p

X
�1;:::;�p

X
B1;:::;Bp

(3.14)

Z
Um

dyBc

pY
l=1

mY
il=1

1fjy�l(il�1)�y�l (il)j�ÆMg

Z
Uk�m

dyB

pY
l=1

kY
il=1

G
�
y�l(il�1); y�l(il)

�
:

Now we apply Lemma 3.2 to each of the k �m single integrals over yj with j 2 B in the second line.
Here we conceive all yj with j 2 Bc as parameters which play the role of a1; : : : ; a2p of Lemma 3.2.
The (k �m)-fold application of this lemma yieldsZ

Uk�m
dyB

pY
l=1

kY
il=1

G
�
y�l(il�1); y�l(il)

� � Kk�m
1

pY
l=1

mY
il=1

G
�
y�l(il�1); y�l(il)

�
:(3.15)

We substitute (3.15) in (3.14) and replace every G byGM on the right hand side of (3.15). Furthermore,
in order to streamline the integration set, we write yBc 2 Um as y 2 Um. This necessitates that we
replace every bijection �l : f1; : : : ;mg ! Bc by a permutation ~�l 2 Sm in such a way that �l(n) is the
~�l(n)-th largest element in Bc for every n 2 f1; : : : ;mg.
Altogether, we obtainZ

Uk
dy IIjk(y) � Kk�m

1

1

(k!)p

X
�1;:::;�p

X
B1;:::;Bp

Z
Um

dy

pY
l=1

mY
il=1

GM (y~�l(il�1); y~�l(il)):(3.16)

The integral on the right hand side of (3.16) depends on the set tuple (B1; : : : ; Bp) only via the
cardinality k�m of B. We now replace the sum over the set tuples by the summ = dk(1�p�)e; : : : ; k.
We estimate the number of set tuples from above by24d�keX

n=1

�
k

n

�35p � kp
�

k

d�ke
�p
:

Furthermore, note that, when passing from the sum over �1; : : : ; �p 2 Sk to the sum over ~�1; : : : ; ~�p 2
Sm, we obtain a counting factor of (k!=m!)p. Then we rewrite

1

m!p

X
~�1;:::;~�p2Sm

pY
l=1

mY
il=1

GM (y~�l(il�1); y~�l(il)) =
�
�jm;M (y)

�p
:

This leads to the estimateZ
Uk
dy IIjk(y) � Kp�k

1 kp
�

k

d�ke
�p kX

m=dk(1�p�)e

Z
Um

dy
�
�jM;m(y)

�p
:

Now use Stirling's formula to see that the factors on the right hand side in front of the integral are
bounded from above by (1 + "�)

k with some "� # 0 as � # 0. This yields the second term on the right
hand side of (3.8), which ends the proof.

3.3 Discretization

Our second main technical tool is a reduction to a discrete counting argument. For this purpose, we
introduce a �nite partition of U , which is carefully chosen in order to represent many details of the
continuous picture.
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To introduce appropriate notation, let �n = f1; : : : ; ng and denote the partition sets by U1; : : : ; Un.
We assume that every Ul is measurable and has positive Lebesgue measure �(Ul). We call � the
canonical projection � : U ! �n, that is, x 2 U�x for any x 2 U . We write �y = (�y1; : : : ; �yk)
for any k 2 N and y = (y1; : : : ; yk) 2 Uk. Furthermore, if � is a probability measure on U , then
�� 2 M1(�n) is its projection on �n. Similarly for � 2 M1(U

2) we denote the projection on �2
n by

�� 2 M1(�
2
n). If v is in the set M�

1(�n) of probability measures on �2
n with equal marginals, we

denote by v 2 M1(�n) its left or right marginal measure. Note that �� = �� for any � 2 M�
1(U),

where we write � for the marginal measure of �.

For measures u 2 M1(�n) and v 2 M1(�
2
n) we de�ne discrete analogues of the relative entropy

functionals I and I2� by

eI(u) = X
l2�n

ul log
� ul
�(Ul)

�
and eI2u(v) = X

l;m2�n
vl;m log

� vl;m
vlum

�
;(3.17)

using the usual convention 0 log 0 = 0. Recall that GM = G ^M and de�ne the approximate Green
functions G+

M ; G
� : �2

n ! R by

G+
M (l;m) = sup

x2Ul
y2Um

GM (x; y) and G�(l;m) = inf
x2Ul
y2Um

G(x; y):(3.18)

Functions G+M and G� on M1(�n) analogous to G in (2.9) are de�ned by

G+M (u) = inf
v2M�

1
(�n)

v=u

neI2u(v)� 
v; logG+
M

�o
and G�(u) = inf

v2M�
1
(�n)

v=u

neI2u(v) � 
v; logG��o ;(3.19)

where we used the notation hv; F i =P
l;m2�n vl;m F (l;m). The functions G+M and G� are continuous.

Indeed, for �xed u, if the set eV � M�
1(�n) is a neighbourhood of the set fv 2 M�

1(�n) : v = ug,
there exists a neighbourhood eU of u with fv 2 M�

1(�n) : v = ~ug � eV for all ~u 2 eU . Together with
the obvious continuity of eI2u(v) in both arguments u and v and of v 7! hv; F i this implies continuity
of G+M and G�.
Our aim is to determine a partition such that the coarsened variational formula is a good approximation
of the variational formula on the right hand side of (3.3).

Lemma 3.4. Given Æ > 0 and M > 0, there is a measurable partition U1; : : : ; Un of U , such that,

inf
�2M1(U)

�eI(��) + pG�(��)	� Æ � inf
�2M1(U)

�
I(�) + pG(�)	 � inf

�2M1(U)

�eI(��) + pG+M (��)
	
+ Æ :

(3.20)

Proof. We start with the upper estimate. Choose the partition such that�� logG+
M (�x; �y)� logGM (x; y)

�� < Æ=p; for all x; y 2 U :
This is possible since logGM is continuous on the closure of U2. To every � 2 M1(U) we associatee� 2 M1(U) with constant density on the partition sets and �� = �e�. Analogously we associate
to each � 2 M�

1(U) a ~� 2 M�
1(U) with constant density on the products of the partition sets and

�� = �~�. Then I(e�) = eI(��) and eI2��(��) = I2e�(~�), and we infer that

G+M (��) = inf
�2M�

1
(U)

��=��

neI2��(��)� 
��; logG+
M

�o � inf
�2M�

1
(U)

~�=e�

n
I2e�(~�)� h~�; logGM i

o
� Æ=p

� G(e�)� Æ=p ;
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and hence

inf
�2M1(U)

�
I(�) + pG(�)	 � inf

�2M1(U)

�
I(e�) + pG(e�)	 � inf

�2M1(U)

�eI(��) + pG+M (��)
	
+ Æ ;

which shows the upper bound in (3.20).

Let us turn to the lower estimate. Given Æ > 0, we select an approximate minimizer � 2M�
1(U) with

marginal � = � such that

inf
�2M1(U)

�
I(�) + pG(�)	 � I(�) + p

�
I2� (�)� h�; logGi�� Æ=2 :(3.21)

We use now Jensen's inequality to show that, for any partition, we have

I(�) � eI(��) and I2� (�) � eI2��(��):(3.22)

To prove this, abbreviate �(x) = x log x and note that

I(�) =
D
�; � Æ d�

d�

E
=
X
l2�n

�(Ul)

Z
Ul

d�l � Æ d�
d�
;

where �l denotes the normalized restriction of the Lebesgue measure to Ul. Now use Jensen's inequality
for the convex function � and summarize to arrive at the �rst inequality in (3.22). The proof of the
second one goes along the same lines, recalling that I2� (�) = h� 
 �; � Æ (d�=d(� 
 �))i.
Furthermore, for the �xed �, every partition can be re�ned such that h�; logGi � h��; logG�i+Æ=(2p) .
This can be seen by choosing N so large that h�; logGi � h�; logGN i < Æ=(4p) and using uniform
continuity of logGN on the closure of U2 to split the domain of integration into partition sets on
which the variation of logGN is less that Æ=(4p). Substituting this and (3.22) into (3.21), we arrive
at the lower bound in (3.20).

3.4 The combinatorial argument

Having removed technical obstacles, like unboundedness of the integrand, and discretized the inte-
grals, we are ready to turn to the combinatorial core argument in the proof of Proposition 2.2. The
main observation is that the k-fold product in (3.2) only depends on the numbers of transitions
the sequence y�(0); y�(1); : : : ; y�(k) makes from one set of the partition to the other. In other words,
one can summarize the permutations that lead to the same empirical pair measure of the sequence
�y�(0); �y�(1); : : : ; �y�(k) and sum over all the empirical pair measures instead. Since the combinatorics
turn out to be manageable, this observation leads to a great simpli�cation and enables us to use large
deviation theory for empirical pair measures. Let us turn to the details.

We �x a large M > 0 and small Æ > 0 and a partition U1; : : : ; Un chosen according to Lemma 3.4.
Recall that M�

1(�n) denotes the set of probability measures on �2
n having equal marginals. In the

next lemma, we give lower and upper bounds for �jk(y) resp. �
j
k;M(y) in terms of a variational problem

on M�
1(�n).

Recall our notation �y = (�y1; : : : ; �yk) for y 2 Uk, and denote by L1�y;k 2 M1(�n) the empirical
measure,

L1�y;k(A) =
1

k

kX
i=1

Æyi(A); for all A � �n :

Lemma 3.5. For all j 2 f1; : : : ; pg, as k " 1, uniformly in y = (y1; : : : ; yk) 2 Uk,
�jk;M(y) � eo(k) exp

��kG+M �
L1�y;k

��
;(3.23)
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and

�jk(y) � eo(k) exp
��kG� �L1�y;k�� :(3.24)

Proof. Fix j and recall the convention y0 = xj and �(0) = 0 for all � 2 Sk. Assume without
loss of generality that y0 2 U1. Note that, for any y = (y1; : : : ; yk) 2 Uk, we have G(y�(i�1); y�(i)) �
G�(�y�(i�1); �y�(i)) and GM (y�(i�1); y�(i)) � G+

M (�y�(i�1); �y�(i)): We introduce the empirical pair
measure

L2 ;k =
1

k

kX
i=1

Æf( i�1; i)g 2M1(�
2
n); for  = ( 1; : : : ;  k) 2 �kn;

where  0 = 1 is the index of the set U1. This implies that, with �y� = (�y�(1); : : : ; �y�(k)),

�jk(y) �
1

k!

X
�2Sk

exp
�
khL2�y� ;k; logG�i� and �jk;M(y) � 1

k!

X
�2Sk

exp
�
khL2�y�;k; logG+

M i
�
:(3.25)

Denote by M(k)
1 (�n) the set of probability measures u on �n such that the numbers ku(1); : : : ; ku(n)

are integers and sum up to k; analogously we de�ne M(k)
1 (�2

n). Abbreviate u = L1�y;k 2M(k)
1 (�n) for

the course of the proof. Note that, for any � 2 Sk, the total variation distance between u and any of

the two marginal measures of L2�y�;k is not bigger than 2=k, which is denoted below as L
2
�y�;k � u.

Now we reorganize the sum over � 2 Sk by summing over all vectors  2 �kn and simply counting the
permutations � such that  = �y�. Hence, for F 2 fG�; G+

Mg, we haveX
�2Sk

exp
�
khL2�y� ;k; logF i

�
(3.26)

=
X
 2�kn

X
�2Sk

1f�y�= g1fL2 ;k�ug
exp

�
khL2 ;k; logF i

�
=

X
v2M

(k)
1

(�2n)

v�u

exp
�
khv; log F i� X

 2�kn
1fL2 ;k=vg#f� 2 Sk : �y� =  g:

Note that, for any  2 �kn satisfying L2 ;k = v for some v satisfying v � u, we have

#f� 2 Sk : �y� =  g =
nY
l=1

(kul)!:(3.27)

In other words, if the empirical measures of �y and  coincide, then there are
Qn
l=1(kul)! reorderings

of (�y1; : : : ; �yk) that are equal to ( 1; : : : ;  k).

Furthermore, well-known combinatorial considerations (see e.g. [dH00, II.2]) yield that

#f 2 �kn : L2 ;k = vg = eo(k)
Q
l2�n(kul)!Q

l;m2�n(kvl;m)!
;(3.28)

where eo(k) is uniform in v 2M(k)
1 (�2

n). Substituting (3.27) and (3.28) in (3.26), we obtain

1

k!

X
�2Sk

exp
�
khL2�y�;k; logF i

�
= eo(k)

X
v2M

(k)
1

(�2n)

v�u

exp
�
khv; log F i� Q

l2�n(kul)!
2

k!
Q
l;m2�n(kvl;m)!

:(3.29)
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Stirling's formula yields that, uniformly in u and v, the last ratio is eo(k) exp(�keI2u(v)). Hence,
uniformly in y 2 Uk,

1

k!

X
�2Sk

exp
�
khL2�y�;k; logF i

�
= eo(k)

X
v2M

(k)
1

(�2n)

v�u

exp
�
� k

�eI2u(v)� hv; log F i�� :(3.30)

Now recall that eI2u(�) � h � ; log F i is continuous, that the total variation distance between fv 2
M1(�

2
n) : v � ug and M�

1(�n) is not bigger than 2=k and that #M(k)
1 (�2

n) is bounded above by
a polynomial in k. From (3.25) we obtain our two assertions, for F = G+

M resp. F = G�.

In the next lemma, we integrate the upper resp. lower bound stated in Lemma 3.5 over y 2 Uk and
obtain an upper resp. lower bound for the logarithmic asymptotics in (3.3) in terms of a variational
formula, which is the coarsened form of the right hand side of (3.3).

Lemma 3.6. For each j 2 f1; : : : ; pg and each M > 0 ,

lim sup
k"1

1

k
log

Z
Uk
dy�jk;M(y)p � � inf

�2M1(U)

�eI(��) + pG+M (��)
	
:(3.31)

Moreover,

lim inf
k"1

1

k
log

Z
Uk
dy

pY
j=1

�jk(y) � � inf
�2M1(U)

�eI(��) + pG�(��)	:(3.32)

Proof. In order to derive (3.31), we raise the upper bound (3.23) to the p-th power and integrate
over y 2 Uk. Note that the right hand side of (3.23) does not depend on y, but only on  = �y =
(�y1; : : : ; �yk). Hence, it makes sense to subdivide the domain of integration according to the tuples
that arise. In this way we get the boundZ

Uk
dy�jk;M(y)p � eo(k)

X
 2�kn

Z
U 1

� � �
Z
U k

dyk : : : dy1 exp
�� kpG+M (L1 ;k)

�
= eo(k)

X
 2�kn

exp
�� kpG+M (L1 ;k)

� Y
l2�n

�(Ul)
kL1 ;k(l)

� eo(k)
X

u2M(k)
1 (�n)

#f 2 �kn : L1 ;k = uge�kpG+M (u) exp
�
k
X
l2�n

ul log �(Ul)
�
:

Now use Stirling's formula to see that the counting factor in the last line is eo(k) exp(�kPl2�n ul log ul),
uniformly in u 2M(k)

1 (�n). We recall (3.17) and infer thatZ
Uk
dy�jk;M(y)p � eo(k)

X
u2M(k)

1 (�n)

exp
�
� k

�
pG+M (u)� eI(u)�� :

From the two facts that eI�pG+M is continuous, and that #M(k)
1 (�n) is bounded above by a polynomial

in k, we infer that (3.31) holds.

The proof of the lower bound (3.32) is analogous, using (3.24).

3.5 Conclusion

In this section we �nish the proof of Proposition 2.2. Recall that only (3.3) is left to be shown.
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The lower bound is immediate from (3.32) and (3.20). For the upper bound take logarithms in (3.8),
divide by k and let k " 1. According to Lemma 3.3, after letting M " 1, one obtains

lim sup
k"1

1

k
log

Z
Uk
dy

pY
j=1

�jk(y)(3.33)

� log(1 + "�) + lim
M"1

p
max
j=1

lim sup
k"1

1

k
log

kX
m=dk(1�p�)e

Z
Um

dy�jm;M(y)p:

Estimate the last integral on the right hand side from above against the maximum on m 2 fdk(1 �
p�)e; : : : ; kg. Now we pick Æ > 0, choose a partition according to Lemma 3.4, and use Lemma 3.6 to
infer

lim sup
m"1

1

m
log

Z
Um

dy�jm;M(y)p � � inf
�2M1(U)

neI(��) + pG+M (��)
o
:

Now use (3.20) and let �rst M " 1, then � # 0, to obtain

lim sup
k"1

1

k
log

Z
Uk
dy

pY
j=1

�jk(y)

� lim
�#0

log(1 + "�)� lim
�#0

(1� p�) inf
�2M1(U)

�
I(�) + pG(�)	+ lim

�#0
Æ(1 � p�)

= inf
�2M1(U)

�
I(�) + pG(�)	+ Æ:

Now let Æ # 0. This �nishes the proof of the upper bound in (3.3).

4. Analysis of the variational formulae in (1.9) and (2.10)

In this section we prove our results related to the characterization of the limit in (1.8). These are
Proposition 2.1, Theorem 1.2, and �nally Theorem 1.3, which we discuss in Subsections 4.1{4.3,
respectively.

4.1 Proof of Proposition 2.1.

It turns out that the variational formula (1.9) is much easier to analyse than (2.10). Indeed, in contrast
to (2.10), for (1.9) compactness and continuity arguments are available, such that the existence of
maximizers, their positivity and the Euler-Lagrange equations can be derived in a fairly standard way.
Furthermore, (1.9) majorizes (2.10) in a certain strong sense, such that the maximizers of (1.9) turn
out to stand in an elementary one-to-one correspondence to the minimizers of (2.10).

Before going into the details of the proof, we discuss general continuity properties of the operator A,
which are of use in the forthcoming proofs.

Lemma 4.1.

(i) If d = 2 and q > 1, then A is a bounded linear map from Lq(U) into L1(U).

(ii) If d � 3 and 1 < q < d=2, then A is a bounded linear map from Lq(U) into L
dq
d�2q (U).

Proof. The �rst statement follows easily from H�older's inequality using that in d = 2 we have
supx

R
G(x; y)q dy <1 for all q > 1.
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If d � 3 we recall, e.g. from [LL97, 4.3], the Hardy-Littlewood-Sobolev inequality. For all s; r > 1,
0 < � < d with 1=r + �=d+ 1=s = 2 there is a constant C > 0 with��� Z

U

Z
U
f(x) jx� yj��h(y) dx dy

��� � C kfkskhkr :(4.1)

Recall that G(x; y) � cdjx � yj2�d and use the Hardy-Littlewood-Sobolev inequality with � = d � 2
and s = q, r = dq=(dq+2q�d), which yields hh;Afi � Ckfkq khkr for any f 2 Lq(U) and h 2 Lr(U).
Hence A maps f continuously into the dual of Lr(U), which is L

dq
d�2q (U). This proves (ii).

For our purposes, it is convenient to rewrite (1.9) as

%� = sup
�hf;Afi : f 2 L2p=(2p�1)(U) and kfk2p=(2p�1) � 1

	
:(4.2)

It is clear that the supremum in (4.2) may be restricted to positive normalized functions f 2
L2p=(2p�1)(U). We start by showing that the operator A : L2p=(2p�1)(U) ! L2p(U) is continuous,
and establish (2.11).

Lemma 4.2. Suppose p is a positive integer with p < d=(d� 2).

(i) A is a bounded linear map from L2p=(2p�1)(U) into L2p(U). In particular, %� � kAk.
(ii) For all � 2M1(U) with g

2p(x) dx = �(dx) we have

exp
�
� 1

p

�
I(�) + pG(�)�� � hg2p�1;Ag2p�1i :(4.3)

(iii) Equality in (4.3) holds if and only if there is % > 0 with the property

Ag2p�1(x) = %g(x) for �-almost every x 2 U:(4.4)

Moreover, in this case I(�) + pG(�) = �p log % and G(�) = � log %� 2h�; log gi .

Proof. Assertion (i) is a direct consequence of Lemma 4.1 and the fact that the spaces Lq(U) are
continuously embedded in each other for decreasing q. Indeed, if d = 2, one can choose q = 2p=(2p�1)
and if d � 3 and p < d=(d� 2) it is always possible to choose the parameter q in such a way that the
three conditions

dq

d� 2q
� 2p; q � 2p

2p� 1
; 1 < q <

d

2
;

are satis�ed, from which (i) readily follows.

We now show (ii). Assume without loss of generality that I(�) + pG(�) < 1. Let Æ > 0 and choose
� 2 M�

1(U) such that the marginals are both equal to � and G(�) > I2�(�) � hlogG ; �i � Æ. As a
�rst step, we infer from this that hlogG; �i is �nite. Indeed, abbreviate f(x; y) = �(dxdy)=dx dy and
choose " > 0 so small that

C = log sup
x2U

Z
U
Gp+"(x; y) dy <1:

Then, estimating pI2�(�) � I2�(�), we obtain

1 > I(�) + I2�(�) + "hlogG; �i � hlogGp+"; �i = "hlogG; �i �
D
f; log

(g2p 
 g2p)1=2Gp+"

f

E
:(4.5)
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For the second term we use Jensen's inequality to estimateD
f; log

(g2p 
 g2p)1=2Gp+"

f

E
=

Z
U
dx g2p(x)

Z
U
dy

f(x; y)

g2p(x)
log

g2p(x)Gp+"(x; y)

f(x; y)

�
Z
U
dx g2p(x) log

� Z
U
Gp+"(x; y) dy

�
� C:

(4.6)

From this we infer that hlogG; �i is �nite.
Now we use the lower bound in a variational principle for I2�, which we recall from [DZ96, 6.5.10]. For

all measurable u : U2 ! (0;1) that are bounded from 0 and in�nity,

I2�(�) �
Z
U2

�(dx dy) log
� u(x; y)R

u(y; z) d�(z)

�
:(4.7)

For arbitrarily large M > 0 and small " > 0 the function

u(x; y) =
G(x; y)

(g ^M)(y) _ "G(x; y) ;

is admissible in (4.7), which yields

I2�(�) �
Z
�(dxdy) log

� G(x; y)

(g ^M)(y) _ "G(x; y)
�
�
Z
�(dy) log

�Z G(y; z)�(dz)

(g ^M)(z) _ "G(y; z)
�
:(4.8)

Now recall that hlogG; �i < 1 and
R
�(dxdy) log g(y) = h�; log gi < 1. Hence, using dominated

convergence, we getZ
U2

�(dxdy) log
�
(g ^M)(y) _ "G(x; y)

�
�
Z
U2

�(dxdy) log
�
g(y) _ "G(x; y)� "#0�! h�; log gi:

Using bounded convergence we also getZ
�(dy) log

� Z G(y; z)�(dz)

(g ^M)(z) _ "G(y; z)
�
M"1�!

Z
�(dy) log

� Z G(y; z)�(dz)

g(z) _ "G(y; z)
�

�
Z
�(dy) log

� Z G(y; z)

g(z)
�(dz)

�
= h�; log(Ag2p�1)i:

(4.9)

Hence, taking limits in (4.8), we get

I2�(�) � h�; logGi � 
�; log(g � Ag2p�1)�:
Recalling the choice of � and letting Æ # 0, we obtain

G(�) � �
�; log(g � Ag2p�1)�:(4.10)

We apply this and Jensen's inequality, to obtain

exp
�
� 1

p

�
I(�) + pG(�)

��
� exp

�
�1

p
h�; log g2pi+ 
�; log(g � Ag2p�1)��

= exp
�D
�; log

Ag2p�1

g

E�
�
D
�;
Ag2p�1

g

E
= hg2p�1;Ag2p�1i:

(4.11)

This proves (ii).

Finally, to prove (iii), assume that we have equality everywhere in (4.11). By strict convexity of the
logarithm, equality in the second line implies that, for some constant % > 0, we have Ag2p�1 = %g, for
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�-almost every x 2 U . Together with equality in the �rst line of (4.11), which is equality in (4.10),
this yields that

G(�) = �
�; log(g � Ag2p�1)� = � log %� 2h�; log gi:
Conversely, if (4.4) holds, we have equality in the second line of (4.11). To check equality in the �rst
line, we de�ne a probability measure � 2M�(U) by

�(dxdy) = h(x; y) dx dy =
1

%
g2p�1(x)g2p�1(y)G(x; y) dx dy:

The measure � is well-de�ned by (4.4) and plugging this into (2.9) yields

G(�) � �h�; log(%g2)i:
This means that equality holds in (4.10) and hence also in the �rst line of (4.11), completing the proof
of (iii).

We now prove the existence of maximizers in (4.2).

Lemma 4.3. Every maximizing sequence for the variational problem in (4.2) has a subsequence that
converges weakly in L1(U) towards some maximizer of this problem.

Proof. Write short k � k for k � k2p=(2p�1) and put K = ff 2 L1(U) : f � 0; kfk � 1g. It is easy to
see that it is suÆcient to establish the following two statements:

K is weakly compact in L1(U);(4.12)

the mapping f 7! hf;Afi is upper semicontinuous on K in the weak topology on L1(U):(4.13)

To establish (4.12) we �rst note that K is weakly relatively compact in L1(U), because the family K
is uniformly integrable, see [DZ96, C7]. It remains to show that K is weakly closed. For this purpose
it suÆces to show weak closedness in ff 2 L1(U) : f � 0g.
Let f � 0 satisfy f 62 K. Then kfk > 1. Let

'n =
� f ^ n
kf ^ nk

� 1
2p�1 2 L1(U):

Then we have,

lim inf
n"1

Z
'nf dx � lim inf

n"1
kf ^ nk 1

1�2p

Z
(f ^ n) 2p

2p�1 dx = lim inf
n"1

kf ^ nk = kfk > 1 ;

and, for all g 2 K, using H�older's inequality,Z
'ng dx � k'nk2pkgk � kf ^ nk 1

1�2p

�Z
(f ^ n) 2p

2p�1 dx
� 1
2p
= 1:

Hence, for n suÆciently large, the function ' = 'n 2 L1(U) satis�es, for all sequences (gk : k 2 N)
in K,

lim sup
k"1

h'; gki � 1 < h'; fi ;

which means that f is not in the weak L1-closure of K. We infer that K must be weakly closed in
L1(U), which proves (4.12).

To show (4.13) we assume that (fn : n 2 N) and f are in K such that fn �! f weakly in L1(U).
Our aim is to show that lim supn!1hfn;Afni � hf;Afi. For some large M > 0, we split A =
AM + (A � AM ), where the operator AM is de�ned like A, but with G1G�M instead of G. We show
that limM!1 supn2Nhfn; (A�AM )fni = 0. In d = 2 this is straightforward using H�older's inequality.
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If d � 3, we recall that G(x; y) � cdjx� yj2�d to estimate G(x; y) � C 0jx� yj3=2�dG(x; y)1=(4�2d) for
some C 0 > 0. Apply the Hardy-Littlewood-Sobolev inequality (4.1) with r = s = 4d=(2d + 3) and
� = d� 3=2 to obtain, for some C > 0,

hfn; (A� AM )fni � C 0M1=(4�2d)
ZZ

fn(x)jx � yj��fn(y) dx dy � C 0CM1=(4�2d)kfnk2r :(4.14)

Since r � 2p=(2p� 1), this vanishes as M !1, uniformly in n 2 N.

Hence, we only have to show that, for �xed M > 0, we have limn!1hfn;AMfni = hf;AMfi and
taking the limit M ! 1 yields the desired conclusion. The proof of this follows from a standard
monotone class argument. Let H be the class of all � 2 L1(U2) with the property that

lim
n"1

ZZ
fn(x)fn(y)�(x; y) dx dy =

ZZ
f(x)f(y)�(x; y) dx dy :

This class is a vector space containing all functions of the form �1(x)�2(y) for �1; �2 2 L1(U). Finally,
suppose that 0 � �k " � 2 L1(U2) and �k 2 H. We can estimate, using the triangle inequality and
H�older's inequality,��� ZZ f(x)f(y)�(x; y) dx dy �

ZZ
fn(x)fn(y)�(x; y) dx dy

���
�
��� ZZ f(x)f(y)(�� �k)(x; y) dx dy

��� + ��� ZZ �
f(x)f(y)� fn(x)fn(y)

�
�k(x; y) dx dy

���
+
��� ZZ fn(x)fn(y)(�� �k)(x; y) dx dy

���
� kfk2 k�� �kk2p +

��� ZZ (f(x)f(y)� fn(x)fn(y))�k(x; y) dx dy
��� + kfnk2k�� �kk2p;

(4.15)

where we recall that k � k = k � k2p=(2p�1) and extend the notation k � k2p to L2p(U2). Now it is easy to
see that the last line of (4.15) can be made arbitrarily small by choosing a large k and letting n!1.
This shows that � 2 H and, by the monotone class theorem, we have shown that H = L1(U2). Hence
G1fG�Mg 2 H and this �nishes the proof of (4.13).

Now we derive the Euler-Lagrange equation for the minimizers in (4.2).

Lemma 4.4. Any nonnegative maximizer of the variational problem in (4.2) is essentially bounded
away from 0. Writing this maximizer as g2p�1, the function g 2 L2p(U) satis�es (4.4) with some
% > 0.

Proof. Let f 2 L2p=(2p�1)(U) be a nonnegative and normalized minimizer in (4.2). We �rst show
that f is essentially bounded from 0. Assume the contrary, which means that �ff � "g > 0 for all
" > 0.

We �x some c > 0 such that �ff � cg > 0. We de�ne a function ~f : U ! [0;1) as follows

~f(x) =

8<:
f(x) + a; if f(x) � ";
f(x)� b; if f(x) � c;
f(x); otherwise.

Our plan is to choose a; b > 0 and " > 0 so small that k ~fk2p=(2p�1) = 1 but h ~f;A ~fi > hf;Afi, which
contradicts the maximality of f .
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For every suÆciently small a and " > 0 we may �nd b � c=2, such that k ~fk1+� = 1, where we
abbreviate � = 1=(2p� 1). This condition implies that

0 = k ~fk1+�1+� � kfk1+�1+� =

Z
ff�"g

�
(f(x) + a)1+� � f(x)1+�

�
dx+

Z
ff�cg

�
(f(x)� b)1+� � f(x)1+�

�
dx;

and one one can see that this implies, for some constant C > 0, that does not depend on a or ",

b � Ca(a+ ")��ff � "g:(4.16)

On the other hand, one can use this to check in the same way that, again for constants C1; C2 > 0,
which do not depend on a or ",

hf;Afi � h ~f;A ~fi � a�ff � "g�C1(a+ ")� � C2
�
:

We may now choose a; " suitably, such that the right hand side is negative. This yields the desired
contradiction.

In order to prove the second assertion, let ' : U ! R be bounded with
R
'(x) dx = 0. For suÆciently

small " > 0, we have kf + "'k1 = 1 and f + "' � 0 on U . Using the maximality of f , we infer

0 =
@

@"

���
"=0



(f + "')

2p�1
2p ;A(f + "')

2p�1
2p
�
= 2p�1

p



'; f

�1
2p Af

2p�1
2p
�
:(4.17)

We infer that, in L2(U), the function f
�1
2p A

�
f
2p�1
2p
�
is orthogonal to the orthogonal complement of the

span of the constants. Hence there is a constant % such that

%f
1
2p (x) = Af

2p�1
2p (x) for �-almost every x 2 U:

As f is essentially positive, we have % > 0. Writing now g2p�1 for f , we have veri�ed (4.4).

Putting together the previous three lemmas we obtain the existence of minimizers for the variational
problem in (2.10) and the convergence of minimizing sequences.

Lemma 4.5. Every minimizing sequence for the variational problem in (2.10) has a subsequence that
converges weakly towards some minimizer of this problem. If g2p denotes its density, then g 2 L2p(U)
satis�es (4.4).

Proof. Suppose that (�n : n 2 N) �M1(U) is any minimizing sequence for the variational problem
in (2.10). At least for suÆciently large n, the measures �n have Lebesgue densities, which we denote

by g2pn 2 L2p(U). By Lemma 4.2, (g2p�1n : n 2 N) is a maximizing sequence of the variational
problem in (4.2). By Lemma 4.3, we can extract a subsequence converging weakly in L1(U) to

some g2p�1 2 L2p=(2p�1)(U). De�ning � by �(dx) = g2p(x) dx yields a maximizer of the problem
(2.10) we started with. It is obvious that � is the weak limit of the corresponding subsequence of
(�n : n 2 N).

We have now established the existence of a minimizer �(dx) = g2p(x) dx for (2.10) satisfying (4.4)
with % = %� de�ned by (1.9) resp. by (4.2). Also, g is a maximizer of (1.9) if and only if the measure
�(dx) = g2p(x) dx is a minimizer of (2.10). Hence, Proposition 2.1 and the existence of the maximizers
have been proved.

4.2 Proof of Theorem 1.2

Next, we establish smoothness properties for every g satisfying (4.4).
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Lemma 4.6. Every g satisfying (4.4) has a version that is twice continuously di�erentiable on U . By

g(x) =
1

%�

Z
U
G(x; y)g2p�1(y) dy ; for x 2 B(0; R) ;(4.18)

one can de�ne an extension of g to B(0; R), which is continuous on the closure of B(0; R) and con-
tinuously di�erentiable in the interior of B(0; R).

Proof. We start by showing that (4.4) implies that g 2 L1(U). Indeed, if d = 2 we know that
g 2 L2p(U) and thus Lemma 4.1 shows that g = (1=%)Ag2p�1 2 L1(U). In the case d = 3 and p = 2
we get from Lemma 4.1 that g = (1=%)Ag3 2 L12(U). By H�older's inequality we infer that

Ag3(x) �
� Z

U
G(x; y)4=3 dy

�3=4� Z
U
g12(y) dy

�1=4
:

Because G(x; y) � cdjx � yj�1 the right hand side is bounded, and we use (4.4) again to infer that
g 2 L1(U). Finally, in the case d � 3 and p = 1 we iterate the use of Lemma 4.1 and (4.4) to obtain
g 2 Ls(U) for some s > d=2. Let q = s=(s�1) and note that 1 < q < d=(d�2). By H�older's inequality
again we infer that Ag(x) � kG(x; �)kq kgkq=(q�1). The right hand side is bounded, and we infer from
(4.4) that g 2 L1(U).
Now extend g by (4.18) to the whole ball B(0; R). Using that g1U 2 L1(U), we know from [PS78,
4.6.6.] that g is continuously di�erentiable on B(0; R) and continuous on the closure of B(0; R). To
see that it is even twice continuously di�erentiable on U let

Bg(y) =

Z
U
GU (x; y)g(x) dx; for y 2 B(0; R);

where GU denotes the Green's function with zero boundary conditions on U rather than on B(0; R).
Denote by hU the harmonic measure on @U . For almost every x 2 U we have

g(x) =
1

%
Ag2p�1(x) =

1

%
Bg2p�1(x) +

1

%

Z
@U
Ag2p�1(z)hU (x; dz) :(4.19)

As g2p�1 is Lipschitz continuous on U , the �rst summand on the right hand side is twice continuously
di�erentiable by [PS78, 4.6.6.] and the second summand is harmonic in U and hence in�nitely often
di�erentiable.

We have by now shown that every maximizer g in (1.9) has a version satisfying Theorem 1.2 (a). We
now prove the equivalence of the two characterizations of the minimizer given in Theorem 1.2.

Lemma 4.7. The equation in Theorem 1.2 (a) and the partial di�erential equation in Theorem 1.2 (b)
are equivalent.

Proof. Suppose (g; %) is a solution of (1.10). By the Meyer-Tanaka formula, for a Brownian motion
B = (Bs : s � 0), the process M de�ned by

Mt = g(Bt) +
1

%

Z t

0
g2p�1(Bs)1U (Bs) ds

is a local martingale on [0; T ), where T is the �rst exit time from B(0; R). Hence, by the optional
stopping theorem, for all x 2 U ,

g(x) = E [M0 ] = E [MT ] = E

h 1
%

Z T

0
g2p�1(Bs)1U (Bs) ds

i
=

1

%
Ag2p�1(x) :

Now assume conversely that the operator equation of Theorem 1.2 (a) holds in U . The continuation
of g to the closure of B(0; R) de�ned in (4.18) has the necessary di�erentiability and continuity
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properties. Recall equation (4.19). Applying ��=2 to both sides of the equation and recalling that
��Bf(x) = 2f(x) for all bounded f 2 C2(U) (see [PS78, Theorem 4.6.6.]) gives (1.10) for x 2 U . To
get (1.10) for x 62 U it suÆces to observe that (4.18) is harmonic on the interior of B(0; R) n U .
Finally, we prove uniqueness of the maximizer in (1.9) in the case p = 1. Note that we do not know
whether uniqueness holds if p > 1, except in the special case when U is a ball and R = 1, see
Subsection 4.3 below.

Lemma 4.8. In the case p = 1 the solution g of (4.4) is uniquely determined.

Proof. Recall the Krein-Rutman theorem (see e.g. [Am76, Theorem 3.2]). L1(U) is an ordered
Banach space whose positive cone has nonempty interior and A is a strongly positive compact linear
operator A : L1(U)! L1(U). Hence A has exactly one normalized strictly positive eigenvector and
this eigenvector is the unique minimizer g.

4.3 Proof of Theorem 1.3.

Suppose now that U = B(0; 1) is the open unit ball centred at the origin and consider unstopped
Brownian motions in Rd , d � 3. By (1.6) in this situation G(x; y) is a rotationally symmetric function
of x� y, and the maximizers for the problem in (4.2) are necessarily rotationally symmetric. This is
a direct consequence of Riesz's strict rearrangement inequality; see [LL97, 3.7, 3.9].

Let f 2 L2p=(2p�1)(U) be a minimizer of the problem in (4.2), put g2p�1 = f on B(0; 1) and extend
g to a C1-function on the whole of Rd . Recall that this is possible by Theorem 1.2 (b). De�ne
z : [0;1)! (0;1) by g(x) = cz(ajxj), choosing the positive parameters a; c such that

z(0) = 1 and %� = 2c2p�2=a2:

Writing the Laplacian in polar coordinates gives for jxj < 1,

�ca2z(ajxj)2p�1 = � 2

%�
g2p�1(x) = �g(x) =

d� 1

jxj caz
0(ajxj) + ca2z00(ajxj):(4.20)

In other words, z satis�es (1.11) on [0; a]. Di�erentiability of g implies z0(0) = 0, and we can infer
that z satis�es the requirements of Theorem 1.3 (i) on the interval [0; a].

We now show uniqueness of the solutions of (1.11) with z(0) = 1 and z0(0) = 0. In the case p = 1
the transformation (1.12) can be inverted and this reduces the problem to uniqueness of solutions
of the Bessel di�erential equation, see Remark 2. To show uniqueness in the remaining case p = 2,
d = 3 we argue as follows. Since the map x 7! xz(x) is strictly increasing on [0; a], we may de�ne
f : [0; az(a)] ! [0;1) by putting f(xz(x)) = xz(x) + x2z0(x). Note that f has a simple zero at the
origin, and that f satis�es the di�erential equation f 0(t) = 1 � t3=f(t). Indeed, using (1.11) in the
penultimate step, we get

f 0(xz(x)) =
d
dxf(xz(x))

xz0(x) + z(x)
= 1 +

2xz0(x) + x2z00(x)
xz0(x) + z(x)

= 1� x2z(x)3

xz0(x) + z(x)
= 1� (xz(x))3

f(xz(x))
;(4.21)

and the result follows by substitution of t = xz(x).

The function f is uniquely determined by the di�erential equation f 0(t) = 1 � t3=f(t), at least close
to the origin. To show this, let k � kT be the supremum norm on [0; T ]. Then, if f1 and f2 satisfy the
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equation and f1(0) = f2(0) = 0, we obtain, for suitable constants C 0; C > 0,

kf1 � f2kT �
Z T

0
jf 01(s)� f 02(s)j ds =

Z T

0

s3

f1(s)f2(s)
jf1(s)� f2(s)j ds

� C 0
Z T

0
skf1 � f2kT ds � CT 2kf1 � f2kT :

For suÆciently small T > 0, this shows that f is unique on [0; T ]. A standard Picard-Lindel�of argument
shows the uniqueness on the whole interval on which f1 and f2 are de�ned and positive.

The uniqueness of z now follows by noting that z can be uniquely recomputed from f by the formulaZ xz(x)

az(a)

ds

f(s)
= C + log x; for x 2 [0; a];

where C = lim"#0
�R "

az(a)
ds
f(s) � log "

�
.

We now check that a is indeed the smallest value such that z(a) = az0(a)=(2�d). Because g is harmonic
on R

d n B(0; 1) and vanishing at in�nity, there exists a constant C > 0 such that g(x) = Cjxj2�d for
all jxj � 1. Hence, z(t) = Kt2�d for some K > 0 and any t � a, and therefore z0(a) = (2 � d)z(a)=a,
as claimed. Now suppose that there is a smaller value 0 < ~a < a satisfying z(~a) = ~az0(~a)=(2 � d).
De�ne h(x) = ~cz(~ajxj) where ~c is chosen such that khk2p = 1. This implies, writing �d�1 for the area
of the (d� 1)-sphere,

~ad

~c2p
= ~ad

Z
U
z2p
�
~ajxj� dx = ~ad�d�1

Z 1

0
rd�1z2p(~ar) dr = �d�1

Z ~a

0
sd�1z2p(s) ds

< �d�1
Z a

0
sd�1z2p(s) ds =

ad

c2p
:

(4.22)

One can check easily, by reverting the arguments above, that h is a solution of

1

2
�h(x) = � ~a2

2~c2p�2
h2p�1(x)1U (x):

In particular, recalling the equivalence of this di�erential equation and the operator equation in The-
orem 1.2 (a) we get

hh2p�1;Ah2p�1i = 2~c2p�2

~a2
>

2c2p�2

a2
= %� ;

where we have used the relationship (4.22). This contradicts the fact that g is a maximizer in (1.9).

We have thus characterized the minimizer uniquely, the formulae relating the value of %� with the
di�erential equation follow easily from the relation %� = 2c2p�2=a2 by evaluating the normalization
constant using polar coordinates as in (4.22). Hence, the proof of Theorem 1.3 is �nished.

5. The dimension spectrum of thick points

In this section we give the proof of Theorem 1.4. The upper bound for both (1.17) and (1.18) follows
from standard methods, for the lower bound we rely on the method of hitting with a percolation limit
set and adapt ideas of [Ly90] and [KP99] for our purpose. A main problem in the investigation of the
Hausdor� dimension of subsets of S comes from the fact that there is no natural parametrization of
S by a non-random set. This makes the investigation more involved than, say, in the case of a single
Brownian path, where such a parametrization is available.

We assume that under P the processes W1 and W2 are two unstopped independent Brownian motions
in R3 , started in the origin and ` their intersection local time. For the limit in (1.8) we introduce the
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abbreviation � = 2=%� with %� given by (1.9) for d = 3, p = 2, U = B(0; 1) and R =1, or equivalently
by Theorem 1.3 for p = 2.

5.1 The upper bounds

In this subsection we prove all upper estimates needed in the proof of Theorem 1.4. Fix a unit cube
C = b+ [0; 1]3 at positive distance from the origin. Fix a > 0 and denote the set of a-thick points in C

by

F (a) =
n
x 2 C : lim sup

r#0
`(B(x; r))

r[log(1=r)]2
� a

o
:(5.1)

The remainder of this subsection is devoted to the proof of the following proposition.

Proposition 5.1. We have, almost surely,

(i) if a > 1=�2, then F (a) = ;;
(ii) if a � 1=�2, then dimF (a) � 1� �

p
a:

Moreover, almost surely,

(iii) lim sup
r#0

sup
x2R3

`(B(x; r))

r[log(1=r)]2
� 1

�2
:

We write P(x;y) for probabilities with respect to two independent Brownian motions W1, W2 started
in the points x and y. In particular, P = P(0;0). The following lemma draws the conclusion from
Theorem 1.1 needed for the proof of Proposition 5.1.

Lemma 5.2. For every Æ > 0 there is an " > 0 such that, for all 0 < r < ", and all y 2 @B(x; r),
P(x;y)

n
`(B(x; r)) � ar[log(1=r)]2

o
� r

p
a��Æ :

Proof. A simple coupling argument shows that the nonnegative random variable `(B(x; r)) is stochas-
tically maximal if the starting points x and y agree. Hence, using also Brownian scaling, we infer that

P(x;y)

n
`(B(x; r)) � ar[log(1=r)]2

o
� P(x;x)

n
`(B(x; r)) � ar[log(1=r)]2

o
= P(0;0)

n
`(B(0; 1)) � a[log(1=r)]2

o
:

From Theorem 1.1 in the case U = B(0; 1) and R = 1 we get the estimate for the right hand side
with the value � = 2=%� identi�ed in Theorem 1.3 (ii).

In the following, we de�ne a random sequence of collections (Jn)n of smaller and smaller cubes such
that the set F (a) is covered by

S
n�j Jn for all j.

Fix " > 0 smaller than a. Pick c > 0 so small that, for suÆciently large N ,

hn = e�cn and kn = hn
�
1 + 1

n

�
satisfy

hn+1
kn

� a� "

a� "=2
; for all n � N:(5.2)

Abbreviate sn = hn=(
p
3n) and observe that limn!1 sn = 0. Introduce the following collection of

cubes of sidelength sn,

In =
n
b+ sn

�
(k; l;m) + [0; 1]3

�
: 0 � k; l;m < s�1n integer

o
:

Note that In is a covering of the cube C.
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For every I 2 In denote by Tn(I) the �rst hitting time of the cube I by W1 and, if Tn(I) < 1, let
z(I) =W1(Tn(I)) 2 @I be the entry point. We pick now those minicubes from In that are hit by W1

and such that the intersection local time of the two motions in a neighbourhood of the entry point
exceeds a certain threshold,

Jn =
n
I 2 In : Tn(I) <1 and `(B(z(I); kn)) � (a� ")kn[log(1=kn)]

2
o
:

We �rst prove that F (a) is covered by the cubes in
S
n�j Jn for all j.

Lemma 5.3.

(i) For all suÆciently large n 2 N and r 2 [hn+1; hn],

V (r) =
n
x 2 C \ S : `

�
B(x; r)

� � �
a� "

2

�
r[log(1=r)]2

o
�

[
I2Jn

I :

(ii) F (a) �
1\
j=1

1[
n=j

[
I2Jn

I:

Proof. Fix a large n and r 2 [hn+1; hn] and let x 2 V (r). As In is a covering of C, certainly x lies in
some I 2 In. We have to show that this small cube I lies in Jn. Note that Tn(I) < 1 since x 2 S.
Put z = z(I). As jx� zj � p

3sn we have, using also (5.2), that

`(B(z; kn)) = `(B(z; hn +
p
3sn)) � `(B(x; r))

� �
a� "

2

�
r[log(1=r)]2 � �

a� "
2

�
hn+1[log(1=hn+1)]

2

� (a� ")kn[log(1=hn+1)]
2 � (a� ")kn[log(1=kn)]

2:

Hence, I 2 Jn and this proves (i).

Now let x be in F (a). Then, for in�nitely many n 2 N, there is an r 2 [hn+1; hn] such that x 2 V (r).
Then x lies in

S
I2Jn I for in�nitely many n, and this implies (ii).

Lemma 5.4. There is a sequence "n # 0 such that, for every I 2 In, we have

P

n
I 2 Jn

o
� h2+

p
a�"��"n

n :

Proof. The probability that a 3-dimensional Brownian motion started in the origin hits a ballB(y; r),
whose closure does not contain the origin, is equal to r=jyj. In particular, as the cube C has positive
distance to the origin, there is a constant K > 0 such that, for suÆciently large n,

P
�
W1 hits I

	 � Ksn for all I 2 In:
Moreover, if we apply the same argument to the second Brownian motion, we can �nd another constant
~K > 0 such that, for suÆciently large n,

P
�
W1 hits I and W2 hits B

�
z(I); kn

�	 � ~Ksnkn for all I 2 In:
Look at a pair of Brownian motions started in z1 resp. z2 with jz1 � z2j = kn. From Lemma 5.2 we
get a sequence Æn # 0, which does not depend on the choice of z1; z2, such that, for suÆciently large n,

P(z1;z2)

�
`(B(z1; kn)) � (a� ")kn[log(1=kn)]

2
	 � k

p
a�"��Æn

n :
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We apply this to the points z1 = z(I) and z2 de�ned as the point where W2 enters B(z1; kn). By the
strong Markov property, if n is suÆciently large,

P

n
I 2 Jn

o
= P

n
W1 hits I and `

�
B(z(I); kn)

� � (a� ")kn[log(1=kn)]
2
o

� ~Ksnk
1+

p
a�"��Æn

n � h2+
p
a�"��"n

n ;

recalling sn = hn=(
p
3n), kn = hn(1 +

1
n) and de�ning "n # 0 accordingly.

Proof of Proposition 5.1. Lemma 5.4 gives, for any 
 2 R,

E

h 1X
n=1

#Jns
n
i
=

1X
n=1

s
n
X
I2In

P

n
I 2 Jn

o
�

1X
n=1

s
nh
2+

p
a�"��"n

n #In

�
1X
n=1

h
�1+
p
a�"��"n

n (
p
3n)�
 ;

(5.3)

where we recall that sn = hn=(
p
3n). Because hn = e�cn the right hand side of (5.3) is �nite for all


 > 1� �
p
a� ", and we can infer that

1X
n=1

#Jns
n <1 almost surely.(5.4)

By Lemma 5.3 (ii), the set F (a) can be covered, for each j, by the family
S
n�j Jn consisting, for each

n � j, of #Jn cubes of sidelength sn. Hence (5.4) implies that dimF (a) � 
. As this holds for all

 > 1� �

p
a� " and " > 0 we can infer that

dimF (a) � 1� �
p
a:

If the right hand side is negative, F (a) must be empty almost surely, so that Propostion 5.1 (i) and
(ii) are proved.

For the proof of (iii) we use the above estimates for arbitrary a > 1=�2, some small " > 0 and 
 = 0.
By Chebyshev's inequality we infer that

1X
n=1

P
�
#Jn � 1

	 � 1X
n=1

E
�
#Jn

�
<1:

By the Borel-Cantelli lemma, Jn must be empty for all suÆciently large n, almost surely. Lemma 5.3 (i)
thus implies

lim sup
r#0

sup
x2S

`(B(x; r))

r[log(1=r)]2
� a:

Letting a tend to 1=�2 �nishes the proof of Proposition 5.1 (iii).

5.2 Hitting with a percolation limit set

To obtain lower bounds we use the method of intersection with independent random sets, see for
example [KP99] for an extensive account of this.

Suppose that C � R
3 is a �xed compact unit cube not containing the origin. We denote by Dn the

collection of compact dyadic subcubes (relative to C) of sidelength 2�n. We also let D =
S1
n=0Dn.

Given 
 2 [0; 3] we construct a random compact set �[
] � C inductively as follows: We keep each of
the eight compact cubes in D1 independently with probability p = 2�
 . Let S1 be the collection of
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cubes kept in this procedure and pass from Sn to Sn+1 by keeping each cube of Dn+1, which is not
contained in a previously rejected cube, independently with probability p. Then the random set

�[
] :=
1\
n=1

[
C2Sn

C

is called percolation limit set. The usefulness of percolation limit sets in fractal geometry comes from
the following lemma, see [Pe96] or [Ha81] for a proof.

Lemma 5.5. For every 
 2 [0; 3] and every Borel set A � C the following properties hold

(i) if dimA < 
, then almost surely, A \ �[
] = ;,
(ii) if dimA > 
, then A \ �[
] 6= ; with positive probability,
(iii) if dimA > 
, then almost surely dim

�
A \ �[
]

� � dimA � 
 and, for all " > 0, with positive

probability dim
�
A \ �[
]

� � dimA� 
 � ".

Observe that the �rst part of the lemma gives a lower bound 
 for the Hausdor� dimension of a set
A, if we can show that A \ �[
] 6= ; with positive probability. To make use of this observation, recall
that � = 2=%�, �x a 2 [0; 1=�2], and put 
 = 1 � �

p
a. We suppose that the random set �[
] and

two unstopped Brownian motions W1 and W2, started at the origin, are realized independently on the
same probability space, and we write P for the joint distribution of the motions and �[
].

Observe that Lemma 5.5 (i), applied to the set F (a) de�ned in (5.1), yields the lower bound
dim

�
F (a)

� � 
 = 1��pa, if we show that the set F (a)\�[
] is non-empty with positive probability.
This is shown in Proposition 5.6 below. A lower bound for the dimension of the set of strictly a-thick
points follows with a little more e�ort, see Subsection 5.3 below.

Proposition 5.6 (Hitting by thick points).

P
�
F (a) \ �[
] 6= ;	 > 0 :(5.5)

The remainder of this subsection is devoted to the proof of Proposition 5.6.

The idea is to construct a compact random subset S� � S \ �[
] with the regularity properties,

(a) S� 6= ; with positive probability,
(b) almost surely, for every open set U � C with U \ S� 6= ; we have dim �U \ S�� � 1� 
.

Property (b) is instrumental in the proof that F (a) \ S� is dense in S� almost surely, which together
with (a) implies that F (a) \ �[
] 6= ; with positive probability.

To construct such a set S� we �x a countable base B of open subsets of C and de�ne, for 0 < Æ � 1�
,
compact random sets

S�[Æ] =
�
S \ �[
]

� n[�
B 2 B : dim(B \ S \ �[
]) < Æ

	
:

Obviously the sets S�[Æ] have the property that, almost surely for every open set U � C,

U \ S�[Æ] 6= ; implies dim
�
U \ S \ �[
]

� � Æ :(5.6)

In the case Æ = 1� 
 this property is closest to property (b), but it still weaker than (b) and there is
also no direct argument to see that S�[1� 
] is nonempty with positive probability.

On the other hand, let 0 < Æ < 1� 
 and recall from Subsection 2.1 that dim(S \ C) = 1 if `(C) > 0,
and the latter event has positive probability. Hence, by Lemma 5.5 (ii), we have dim(S \ �[
]) > Æ
with positive probability. Removing countably many sets of dimension strictly smaller than Æ does
not decrease the dimension of the set and hence we have dimS�[Æ] > Æ and, in particular, S�[Æ] 6= ;,
with positive probability.
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Property (b) is not immediate for S�[Æ], so we have to make do with (5.6). The proof of Lemma 5.9
below, however, implicitly show that (b) holds, and the sets S�[Æ] are the same for all 0 < Æ � 1�
. In
order to avoid unnecessary repetition of arguments, though, we do not make this statement explicit,
but �x some 0 < Æ < 1� 
 once and for all, put S� := S�[Æ] and use (5.6) instead of (b).

We now provide the two main technical lemmas in the proof of Proposition 5.6. The �rst of them is an
extension of the lower bound of our upper tail asymptotics of Theorem 1.1 to the following situation.
For given y 2 R

3 and integer n � 1, we consider three balls centred at y:

� At two points in @B(y; 2�n=n), we start the two motions,
� we measure their intersection local time in B(y; 2�nn),
� we consider the intersections of the paths only until the motions leave B(y; 2�nn2), and we
condition on their respective leaving positions.

Readers unfamiliar with Brownian motion conditioned on leaving a domain at a �xed exit point are
recommended to consult [Ba95, III Prop.(2.7)].

To formulate precisely what we need, we assume for simplicity of notation that y = 0. By `R we
denote the intersection local time for the two independent Brownian motions W1 and W2 stopped at
the time �R1 resp. �R2 of their �rst exit from B(0; R). We write P(x1;x2) for the distribution of the two
motions, started at x1 and x2, respectively.

Lemma 5.7 (Localization). For any " > 0, there is an N > 0 such that, for any n > N and for any
x1; x2; u1; u2 2 @B(0; 1),

P(x1;x2)2�n=n

n
`2�nn2

�
B(0; 2�nn)

� � a2�nn[log(2n=n)]2
���Wi(�

2�nn2
i ) = ui2

�nn2 for i 2 f1; 2g
o

� 2�n(
p
a�+") :

(5.7)

Proof. It is clear from the Brownian scaling property that the left hand side of (5.7) is equal to

P(x1;x2)=n2

n
`n(B(0; 1)) � a[log(2n=n)]2

���Wi(�
n
i ) = uin for i 2 f1; 2g

o
:

In the following we write Pn for the joint distribution of
�
1
nW1(�

n
1 );

1
nW2(�

n
2 )
�
under P(x1;x2)=n2 . Let

A1; A2 be arbitrary Borel subsets of @B(0; 1). Fix some R > 1 and assume that n > 2R. Since
`n � `R, we obtain a lower bound by replacing `n by `R. Use the strong Markov property at time �R1
and �R2 to obtain

1

Pn(A1 �A2)

ZZ
A1�A2

P(x1;x2)=n2

n
`R(B(0; 1)) � a[log(2n=n)]2

���Wi(�
n
i ) = nui for i 2 f1; 2g

o
P
n(du1 du2)

= P(x1;x2)=n2

n
`R(B(0; 1)) � a[log(2n=n)]2

���Wi(�
n
i ) 2 nAi for i 2 f1; 2g

o
� P(x1;x2)=n2

n
`R(B(0; 1)) � a[log(2n=n)]2

o 2Y
i=1

minjuj=R Pu
�
Wi(�

n
i ) 2 nAi

	
maxjuj=R Pu

�
Wi(�ni ) 2 nAi

	 :
From the explicit formula for the harmonic measure, see e.g. [Ba95, II Theorem (1.17)], one can see
that the product on the right converges uniformly in A1 and A2 to 1.

Obviously,

P(x1;x2)=n2

n
`R(B(0; 1)) � a[log(2n=n)]2

o
� P(x1;x2)=n2

n
`R
�
B(x1=n

2; 1� 1
n2
)
� � a[log(2n=n)]2

o
:
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By a simple coupling argument, one can see that the random variable `R(B(x1=n
2; 1� 1

n2
)) is stochas-

tically minimal if the distance of the starting points x1=n
2 and x2=n

2 is maximal. Therefore, �xing
some y 2 @B(0; 1),

P(x1;x2)=n2

n
`R
�
B(x1=n

2; 1� 1
n2
)
� � a[log(2n=n)]2

o
� P(0;y)

n
`R
�
B(0; 1� 1

n2
)
� � a[log(2n=n)]2

o
:

Altogether, there exists an integer N such that, for all u1; u2; x1; x2 2 @B(0; 1) and n � N ,

P(x1;x2)=n2

n
`n(B(0; 1)) � a[log(2n=n)]2

���Wi(�
n
i ) = nui for i 2 f1; 2g

o
� 1

2P(0;y)

n
`R
�
B(0; 1 � 1

n2 )
� � a[log(2n=n)]2

o
:

(5.8)

Recall that the left hand side is equal to the left hand side of (5.7). On the other hand, the right hand
side satis�es, as n!1,

1
2P(0;y)

n
`R
�
B(0; 1 � 1

n2
)
� � a[log(2n=n)]2

o
� e�

p
a log(2n=n)(2=%�(R)+o(1)) � 2�n

p
a(2=%�(R)+o(1));

where we used the lower bound in (1.8) and denoted %�(R) the quantity in (1.9) for motions stopped
at the �rst exit time from B(0; R). Recall from Remark 1 that the limit as R!1 of %�(R) is equal
to the value of %� for the unstopped motions. Since 2=%� = �, we arrive at the assertion.

The second main technical lemma is a lower bound on the probability that the path of two conditioned
Brownian paths intersect �[
] in a set of dimension close to 1� 
.

We look at the following situation. Let n � 1 and V 2 Sn be a cube, which is kept in the percolation
procedure, and � 2 V its centre.

� At two points in @V , we start the two motions,
� we consider the dimension of the intersection of the paths with �[
] only until the motions leave
the annulus B(�; 2�nn2) nB(�; 2�n=n), and we condition on their respective �rst exit positions.

For the precise statement, we again simplify notation by assuming that the cube is centred in the
origin. We consider two independent Brownian motions W1 and W2 and write again P(x1;x2) for the

distribution of the two motions, started at x1 and x2, respectively. For 0 < r < s we let !r;s1 resp. !r;s2
be the time of �rst exit of W1 resp. W2 from the annulus B(0; s) n B(0; r). Write U for the centred
compact cube of sidelength one.

Lemma 5.8. For every " > 0 there is an N = N(") > 0 and p = p(") > 0 such that, for any n > N
and for any x1; x2 2 @U and u1; u2 2 @B(0; 1=n) [ @B(0; n2),

P(x1;x2)2�n

n
dim

�
W1[0; !

2�n=n;2�nn2

1 ] \W2[0; !
2�n=n;2�nn2

2 ] \ 2�nU \ �[
]
�
> 1� 
 � "

���
Wi(!

2�n=n;2�nn2

i ) = 2�nui for i 2 f1; 2g ; 2�nU 2 Sn
o
> p(") :

(5.9)

Proof. By the scaling invariance of Brownian motion and the canonical self-similarity of percolation
fractals, the left hand side of (5.9) is equal to

P(x1;x2)

n
dim

�
W1[0; !

1=n;n2

1 ] \W2[0; !
1=n;n2

2 ] \ �[
]
�
> 1� 
 � "

���Wi(!
1=n;n2

i ) = ui for i 2 f1; 2g
o
;

where �[
] is a percolation fractal in the unit cube U.
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Using the same line of argument as in the beginning of Lemma 5.7 one can show that there exists an
integer N such that, for all n � N , x1; x2 2 @U and u1; u2 2 @B(0; 1=n) [ @B(0; n2),

P(x1;x2)

n
dim

�
W1[0; !

1=n;n2

1 ] \W2[0; !
1=n;n2

2 ] \ �[
]
�
> 1� 
 � "

���Wi(!
1=n;n2

i ) = ui for i 2 f1; 2g
o

� 1
2 P(x1;x2)

n
dim

�
W1[0; !

1=4;2
1 ] \W2[0; !

1=4;2
2 ] \ �[
]

�
> 1� 
 � "

o
;

thus getting rid of the conditioning on the exiting points. Using Lemma 5.5 (iii) it is easy to see
that the latter probability is bounded from below by a positive constant depending only on ". This
completes the proof.

The following lemma constitutes the main step in the proof of Proposition 5.6. De�ne, for m � 1,

U(m) =
n
x 2 S� : there is 0 < h < 2�m+1 with

`(B(x; h))

h[log(1=h)]2
> a� 1

m

o
:

Lemma 5.9. Almost surely, U(m) is dense in S� for all m 2 N.

Proof. Fixm 2 N and an open set O � C. It suÆces to show that, almost surely, the event O\S� 6= ;
implies that U(m)\O 6= ;. By (5.6) the event O \ S� 6= ; implies that dim(O \S \�[
]) � Æ. Hence
there exists a dyadic cube V 2 D with V � O such that dim(V \ S \ �[
]) > Æ=2. It thus suÆces
to show that, almost surely for any dyadic cube V 2 D the event dim(V \ S \ �[
]) > Æ=2 implies
U(m) \ V 6= ;.
Fix n 2 N and a dyadic cube V 2 Dn. We introduce some terminology for the proof. For every integer
k � n we let Ek be the collection of 2k�n cubes in Dk that are contained in V . We subdivide Ek into
m(k) = (k3 + 1)3 disjoint subcollections

E
k
1 ; : : : ;E

k
m(k)

such that, for all 1 � j � m(k), any two distinct cubes in Ekj have distance at least k
32�k.

Recall that
p
a � = 1� 
 and Æ < 1� 
. Fix a small number " > 0 and some � such that

Æ < � and
q
a� 1

2m � + " < � < 1� 
 :(5.10)

For every cube U 2 Ekj with centre � we let �U1 be the �rst entry time of W1 into U , �U1 the �rst

entry time of W1 into B(�; 2
�k=k) and �U1 the �rst exit time after �U1 of W1 from B(�; 2�kk2). Let

!U1 = �U1 ^ �U1 be the �rst exit time after �U1 from the annulus B(�; 2�kk2) n B(�; 2�k=k).
Analogously for the second Brownian motion W2 de�ne the stopping times �

U
2 ; �

U
2 ; �

U
2 and !U2 . Let `

U

be the intersection local time of the two Brownian motions on the (possibly degenerate) time intervals
[!U1 ; �

U
1 ] resp. [!

U
2 ; �

U
2 ].

We call a cube U 2 Ekj admissible if U 2 Sk and both Brownian motions hit the cube, i.e. if

�U1 ; �
U
2 <1. Denote by Mk

j the number of admissible cubes U 2 Ekj .
An admissible cube U 2 Ekj with centre � is called successful if

(A) both motions hit B(�; 2�k=k) before leaving B(�; 2�kk2), in other words �U1 < �U1 and �U2 < �U2 ;
(B) the dimension of the intersection of �[
]\U with the paths before they hit B(�; 2�k=k) is bigger

than �, formally dim
�
W1[�

U
1 ; !

U
1 ] \W2[�

U
2 ; !

U
2 ] \ �[
] \ U� > �;
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(C) the intersection local time in B(�; 2�kk) of the paths started on �rst hitting B(�; 2�k=k) and
stopped upon leaving B(�; 2�kk2) is exceptionally large, more precisely

`U
�
B(�; 2�kk)

�
2�kk[log(2k=k)]2

> a� 1
2m :

We say that the collection Ekj is bad if there exists no successful cube in Ekj .

Let us next explain that it is suÆcient for the proof of this lemma to show that, almost surely given
dim

�
V \ S \ �[
]

�
> Æ=2, for arbitrary large k there exists a successful cube U 2 Ek.

Indeed, if U 2 Ek is successful, then, by condition (B), dim
�
S \ �[
] \ U� > � > Æ. Hence there

does not exist a covering of S \ �[
] \ U by sets B 2 B with dim(S \ �[
] \ B) < Æ. This implies
that S� \ U 6= ; by construction of S�. Pick some y 2 U \ S� and infer from condition (C), for
h = 2�k(k +

p
3),

`
�
B(y; h)

� � `U
�
B(�; 2�kk)

�
>
�
a� 1

2m

�
2�kk[log(2k=k)]2:

Hence, if k is so large that h < 2�m, and�
a� 1

2m

�
2�kk[log(2k=k)]2 � �

a� 1
m

�
h[log(1=h)]2 ;

we have y 2 V \ U(m) and the proof is �nished.

Thus, writing Ak = fEkj is bad for all 1 � j � m(k)g it is suÆcient to show that

lim
k!1

P
�
Ak
�� dim(V \ S \ �[
]) > Æ=2

	
= 0:

We estimate the probability that all collections Ekj are bad as follows. We use the estimate

PfAk
�� dim(V \ S \ �[
]) > Æ=2

	
� P

n
Mk
j � 2�n for all 1 � j � m(k)

��� dim(V \ S \ �[
]) > Æ=2
o

+

m(k)X
j=1

P

n
Ekj is bad

���Mk
j > 2�n

o
Pfdim(V \ S \ �[
]) > Æ=2g :

(5.11)

It suÆces to show that the two terms on the last two lines of (5.11) vanish as k !1. We begin with
the term on the second line.

Recall the de�nition of an admissible cube, and the number Mk
j of admissible cubes U 2 Ekj . Further

recall that m(k) is a polynomial in k and assume that dim
�
V \ S \ �[
]

�
> Æ=2. Together with basic

properties of the Hausdor� dimension this implies that

lim inf
k!1

1

log(2k)
log

m(k)
max
j=1

Mk
j � dim

�
V \ S \ �[
]

�
> Æ=2 ;

Hence, for all suÆciently large k, there exists j with Mk
j > 2kÆ=2.

The next step in the proof is to use self-similarity in order to improve this lower bound and get
Mk
j > 2k� for some j, for all suÆciently large k. For this purpose �x k and 1 � j � m(k). We �nd a

maximal �nite sequence of stopping times

0 < �1(1) < �1(1) < �1(2) < �1(2) < : : : < �1(m) < �1(m) <1
successively as follows: Let �1(1) be the time of �rst entry of W1 into some cube in Ekj , denote its

centre by �1(1) and let �1(1) be the �rst exit time from B(�1(1); 2
�kk2). Having constructed �1(l�1),

we let �1(l) be the �rst time of entry of W1 into a cube in Ekj , which is di�erent from all previous
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cubes, denote its centre by �1(l) and let �1(l) be the �rst exit time from B(�1(l); 2
�kk2). We proceed

until �1(m+ 1) =1.

Denote by F1(j; k) the �-�eld generated by W1 restricted to the time domain�
0; �1(1)

� [ ��1(1); �1(2)� [ : : : [ ��1(m);1� :
The analogous stopping times forW2 are denoted by �2(l); �2(l) and the �-�eld forW2 is F2(j; k). The
�-�eld generated by Sk is called G(k) and we let F(j; k) = F1(j; k) _ F2(j; k) _ G(k). It is important
to note at this place that whether or not a cube U 2 Ekj is admissible is an event in F(j; k) and hence

Mk
j is F(j; k)-measurable.

Conditional on F(j; k), there is a �xed maximal collection fU1; : : : ; UMg � Ekj of admissible cubes

(where M = Mk
j ) whose centres we denote by �1; : : : ; �M . For each 1 � l � M there are unique

values �i(l) 2 N such that �i(�i(l)) is the �rst entry time of Wi in Ul and �i(�i(l)) the exit time from
the ball B(�l; 2

�kk2). Moreover, each Brownian motion Wi in the time interval [�i(�i(l)); �i(�i(l))] is
conditioned to start from a �xed point on @Ul and is stopped upon exiting the ball B(�i(l); 2

�kk2) at
a �xed point of the boundary. Consider the events

El =
n
dim

�
W1[�

Ul
1 ; !

Ul
1 ] \W2[�

Ul
2 ; !

Ul
2 ] \ U \ �[
]

�
> �

o
:

Conditional on F(j; k), the events E1; : : : ; EM are independent, and, by Lemma 5.8, the conditional
probability of each El is

P
�
El
��F(j; k)	 � p(1� 
 � �) :

Hence the conditional probability that all events E1; : : : ; EM fail is at most�
1� p(1� 
 � �)

�Mk
j
:

We infer that the conditional probability, given dim
�
V \ S \ �[
]

�
> Æ=2, that no dyadic subcube

U � V has dim(U \ S \ �[
]) > � is bounded from above by

lim sup
k!1

m(k)
�
1� p(1� 
 � �)

�2kÆ=2
= 0 :

We have thus shown that

P
�
dim

�
V \ S \ �[
]

�
> �

�� dim �V \ S \ �[
]
�
> Æ=2

	
= 1 :(5.12)

As above, this implies that, for all su�ciently large k, we haveMk
j > 2k� for some 1 � j � m(k), almost

surely on dim
�
V \ S \ �[
]

�
> Æ=2. In particular, the term on the second line of (5.11) converges to

0 as k !1.

To deal with the term on the third line of (5.11), we again �x k � 2 and j � m(k). The problem is to
control the probability, conditional on F(j; k), that the collection of admissible cubes does not contain
a successful cube. More precisely, we show that, on Mk

j > 2�n, the conditional probability that Ekj is
bad is exponentially decreasing.

Conditional on F(j; k), we again look at the maximal collection fU1; : : : ; UMg � Ekj of admissible

cubes and recall the notation, �l for the centres of the cubes, and �i(l) 2 N such that �i(�i(l)) is the
�rst entry time of Wi in Ul and �i(�i(l)) the exit time from B(�l; 2

�kk2). Additionally, let �i(�i(l)) the
�rst entry time into B(�l; 2

�k=k) and !i(�i(l)) = �i(�i(l)) ^ �i(�i(l)).
Conditional on F(j; k) each Brownian motionWi in the time interval [�i(�i(l)); �i(�i(l))] is conditioned
to start on a �xed point on the boundary @Ul and exit the ball around �l with radius 2�kk2 at a �xed
point Wi(�i(�i(l))).
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For l 2 f1; : : : ;Mg recall that `Ul denotes the intersection local time of the two motions in the inter-
vals [�1(�1(l)); �1(�1(l))] resp. [�2(�2(l)); �2(�2(l))]. Consider the event El that �1(�1(l)) < �1(�1(l)),
�2(�2(l)) < �2(�2(l)), and

dim
�
W1[�1(�1(l)); !1(�1(l)] \W2[�2(�2(l)); !2(�2(l)] \ U \ �[
]

�
> �;

and also
`Ul
�
B(�; 2�kk)

�
2�kk[log(2k=k)]2

> a� 1
2m :

Clearly the event El implies that Ul is a successful cube. Moreover, conditional on F(j; k), the events
E1; : : : ; EM are independent. To estimate the probability of El from below, �rst note that, for a
Brownian motion started in xi 2 @Ul,

Pxi

n
�Uli < �Uli

o
�
p
2� k�2

k � k�2
� c

k
;

for an absolute constant c > 0. From Lemma 5.8 we know that, given ui 2 @B(�l; 2�k=k), that
P

n
dim

�
W1[�1(�1(l)); !1(�1(l))]\W2[�2(�2(l)); !2(�2(l))] \ U \ �[
]

�
> �

���
Wi(!

Ul
i ) = ui for i 2 f1; 2g

o
> p(1� 
 � �) ;

and �nally, by Lemma 5.7,

P(u1;u2)

n `Ul�B(�; 2�kk)�
2�kk[log(2k=k)]2

> a� 1
2m

o
� 2�k

�q
a� 1

2m�+"
�
:

Altogether, the conditional probability of each El is bounded from below by

P
�
El
��F(j; k)	 � C

k2
2�k

�q
a� 1

2m�+"
�
;

for C = c2p(1� 
� �). Hence the conditional probability that the collection of admissible cubes does
not contain a successful cube is at most�

1� C

k2
2�k

�q
a� 1

2m�+"
��M

:

We infer that, for all 1 � j � m(k),

P

n
E
k
j is bad

���Mk
j > 2�k

o
� E

h�
1� C

k2
2�k

�q
a� 1

2m�+"
��Mk

j
���Mk

j > 2�k
i

�
�
1� C

k2
2�k

�q
a� 1

2m�+"
��2�k � exp

�
� C

k2
2k
�
��
q
a� 1

2m��"
��
:

(5.13)

Recalling (5.10) we see that the right hand side decreases exponentially fast. As the number of
summands in the third line of (5.11) is just polynomial, we infer that this term converges to 0 as
k !1.

Lemma 5.10. F (a) \ S� is almost surely dense in S�. In particular, we have

P
�
F (a) \ S� 6= ; ��S� 6= ;	 = 1 :

Proof. Note that U(m) is relatively open in S� and, by Lemma 5.9, also dense in S� for any m. As
S� is compact, hence complete, one can infer from Baire's Theorem that

F (a) \ S� =
1\
m=1

U(m)
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is dense in S� almost surely. Hence P
�
F (a) \ S� 6= ; �� S� 6= ;	 = 1.

Proof of Proposition 5.6. Recall that

P
�
F (a) \ �[
] 6= ;	 � P

�
F (a) \ S� 6= ;	 = P

�
F (a) \ S� 6= ; ��S� 6= ;	P�S� 6= ;	 = P

�
S� 6= ;	 > 0 :

This proves Proposition 5.6.

5.3 Completion of the proof of Theorem 1.4

Fix 0 � a � 1=�2 and denote the set of strictly a-thick points by

H(a) =
n
x 2 R

3 : lim sup
r#0

`(B(x; r))

r[log(1=r)]2
= a

o
:

For the upper bound in (1.18) �rst �x a unit cube C at positive distance from the origin. Then, by
Proposition 5.1, we have

dim(H(a) \ C) � dimF (a) � 1� �
p
a:

Taking a countable family of such cubes covering R3 n f0g we get dimH(a) � 1� �
p
a.

Turning to the proof of the lower bound in (1.18), we look at a large open ball B � R
3 centred at the

origin and �x a compact unit cube C � B at positive distance from the origin. Let 
 = 1� �
p
a. By

Proposition 5.1 (ii),

dim
�
F (a+ 1

n)
� � 1� �

q
a+ 1

n < 
;

and, by Lemma 5.5 (ii), we have that F (a + 1=n) \ �[
] = ; almost surely for all n. Hence, almost
surely,

H(a) \ �[
] = F (a) \ �[
] \
1\
n=1

F (a+ 1=n)c = F (a) \ �[
]:(5.14)

Recall from Proposition 5.6 that the set on the right hand side of (5.14) is nonempty with positive
probability. Hence we have shown that P

�
H(a) \ �[
] 6= ;	 > 0 : Together with Lemma 5.5 (i) this

implies that dim
�
H(a) \B� � 
 with positive probability.

By the Brownian scaling property this probability does not depend on the radius of the ball B, so
that it holds for arbitrarily small balls. In particular,

P

n
dim

�
H(a) \B(0; r)� � 
 for all r > 0

o
= lim

r#0
P

n
dim

�
H(a) \B(0; r)� � 


o
> 0:

We now use Blumenthal's zero-one law to see that this probability is actually equal to one. Indeed,
recall that three Brownian paths almost surely do not have a point of intersection, hence after the �rst
exit times T1 resp. T2 from any centred ball B both Brownian motions do not hit W [0; T1] \W [0; T2]
again and, by compactness, even keep a positive distance from W [0; T1] \ W [0; T2]. We infer that
almost surely every point, which is strictly a-thick for the intersection local time of the Brownian
motions stopped at T1 resp. T2, is also strictly a-thick for the unstopped motions. Moreover, by
transience, there exists a small (random) centred ball, which is not visited by any Brownian motion
after T1 resp. T2. Thus the event fdim �H(a) \ B(0; r)� � 
 for all r > 0g is in the completion of
the �-�eld generated jointly by the Brownian motion W1 stopped in T1 and the Brownian motion W2

stopped in T2. This holds for every ball B and hence, by Blumenthal's zero-one law, we infer that

P

n
dimH(a) � 


o
� P

n
dim

�
H(a) \B(0; r)� � 
 for all r > 0

o
= 1:

This �nishes the proof of the lower bound in (1.18).
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In order to prove (1.17) we observe that

1

�2
� sup

x2S
lim sup
r#0

`(B(x; r))

r[log(1=r)]2
� lim sup

r#0
sup
x2S

`(B(x; r))

r[log(1=r)]2
� 1

�2
:

Indeed, the �rst equality follows from the fact that, for every a < 1=�2, the set of a-thick points has
positive dimension and hence is nonempty. The second inequality is obvious, and the third inequality
is Lemma 5.1 (iii). This proves (1.17) and thus �nishes the proof of Theorem 1.4.

6. Outlook on future work

The characterization of the limit in (1.8) in terms of (1.9) naturally raises the question how the
maximizers g of (1.9) can be interpreted.

For a �rst answer de�ne, on f`(U) > 0g, the random probability measure L on U as the normalized
restriction of ` to U , more precisely let

L(A) = `(A)=`(U); for A � U Borel.

We ask how the measure L distributes the unit mass over the set U if we condition the Brownian
paths to have a large amount of occupation measure `(U). An answer to this question is given by the
following result. Let d : U � U ! [0;1) be any metric that induces the weak topology on M1(U).

Theorem 6.1 (Law of large masses). Let M � M1(U) be the set of probability measures �(dx) =
g2p(x)dx on U with g a maximizer in the variational problem (1.9). Then, for all " > 0,

lim
a!1P

n
d

�
L;M

�
> "

��� `(U) > a
o
= 0:(6.1)

The convergence in (6.1) is exponentially fast with rate a1=p. Theorem 6.1 itself is a consequence of
the identi�cation of the exact rate of decay of PfL 2 A j `(U) > 0g for sets A �M1(U) in terms of a
large deviation principle. This problem goes beyond the scope of the present paper and will be treated
in a forthcoming paper.
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